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ABSTRACT

We show how the problem of estimating a smooth surface on a
rectangle in Euclidean p-space,which is measured discretely and with
normally distributed errors, reduces to the problem of estimating
the mean of a multivariate normal vector.

Two empirical Bayes type estimators are noted, and it is

observed that cross-validation is useful in certain cases.



1. The Problem of Estimating a Smooth Surface

Our model is
) = £1%) + «lt) » tET

where T is a rectangle in Euclidean p—spaceé/ and

1) e(t) ~ N,6%), 1.i.d., t € T.
o may be known or unknown. f(t) is either a smooth function in a
given reproducing kernel Hilbert space }iQ with reproducting kernel
Q(s,t) or a stochastic process with Ef(t) = 0, Ef(s) £(t) = ba(s,t),
b unknown. It is instructive to compare the two situations.

Q(s,t) 1is given by

Asit) = I Af(6) 400

o0
where {¢}tis an orthonormal set of continuous functions on ;{;[T],

Av > 0 and

for some fixed m > 2.2 e ;HQ iff f € span(@ ) and

o f%/%v < =, where the generalized Fourier coefficients fv are
V=1

given by

1'/T can be much more general, specifically any compact metric space
on which can be defined an infinite sequence of continuous Qﬁe—
orthonormal functions.

g/Our analysis can be carried out for other decay rates of Av,

e.g., A, = o(a=%Y).



F2os % Qv(s) f(s) ds . (1)

We consider the two (distinct) cases

©

i) f€ N _ and ¥ —<w
Q v=1 7\%

oy - ~ P i nde
i34 FlR) = v§ fv¢v(t) B £, /Q(O, bhv) independent ,
The smoothing problem is to recover an estimate F(t) of f£(t), t £ T,
given observations y(t), t € Tn’ where Tn is an n-point subset

of T. The loss when ¢ is used is (£f(t) - %(t))2 dt. “In this

-
note we demonstrate how this problem can (large n) be reduced to

the problem of estimating the mean of a multivariate normal, thus

the extensive literature on this latter problem (see Efron and

Morris [5] and Hudson [7] and the bibliographies there) can be
brought to bear on the problem. We suggest a simple estimate for the
02 known case which looks reasonable for both ii) and iif). When 02
is unknown, we note that an estimator derived from cross wvalidation

as in Wahba and Wold [12] is good for ii). An idea of Anderson and

Bloomfield [1] [2] applies to ii’).



2. The Estimates

We define a one-parameter family of estimates, frl N’ A T Por f
2
as follows:
”~
n fv
£ t) = 2. t tE T
n,?\() v:l(l+7\7\v ;ZSv(),
where
y(t;)
o= (g (5 CR R Rt
Ty T MRS e ¢v nl) 9 3 )
y(tn)///

and Q 1s the mn matrix with 1, jth entry Q(ty,t,). The {?Jshould

be viewed as the sample generalized Fourier ccoefficients and the formula

e
for fv as a Qquadrature formula for the integral

A
I #(s) &(s) as

given g(tl): g(tg)) cae g(tn)‘

We have
f(tl)
£ =4 =308 (%) (+.)) & : 1,2
Efv Sl e ¢V T Ty ¢V tn Qn : V=D1z...,n.
f(tn)
It can be shown that
1
f = 4 ;g 2. 1 Py es
i £¢v()(PTn )(t) at v =12,

where PT f 1is the orthogonal projection in }{Q of f onto the

n

E:



n
subspace V, = span{Qt.(')%flwhere Q (+) =a(t;, ). (For calculations
i - i

of this type see [9] [11] and references cited there.) Sometimes

™MB

g.(t;) y(t,) -

!

o~
P o~1L
n

v y=1

Furthermore, by Parseval's theorem,

oo
2 2
T o(e = £ )= [&(8) - (B ENE)] at . (1)
v yn B
v:l T n
Convergence properties of £- By f when T = [0,1] may be found

n .
in [9,10,11], the quantity (1) is O(n “m'Q)when ii) holds if the maximum

— |
distance between two neighboring points is 0(1/n). Under the model ii’))(rf)/ﬁu)-

%v can be viewed as a good approximation to the posterior mean of fv
and fn,h(t) as a good approximation to the posterior mean of f£(t)
when A = og/nb.

Letting I' be the nxn matrix with ivth entry ¢v(ti), and D be
the nxn diagonal matrix with vvth entry kv, we have that the covariance

T PAS

matrix ). of (fl, cee fn) ig

2

Y =¢_ Dr'(ror' + B)'2 D

where the i,jth entry of B is Z::n+l AB(E) ¢v(tj) .

% 22:1 ¢i(ti) is uniformly bounded, then Trace B = O(n_(2m_2)). Then,z/

to a good approximation,

i;This. is the only placem > 2 1is used. Elsewhere we only use m > 1.



2~ o° or'(ror') ™2 r o = F(rp)t

The loss when T t) 1is used is given by

n,%(

W ETR ) o
T .

and the expected loss, R(A) is given by

- 2
&) 5 E hva
RN} = L ¥ 4E SRR et
v=n+1 % y=1 L Av g
© n vavn = n ki var g;
LERESIGEE arior LF T b
=n+1 y=L\ VY (7\v+?\ v=1 (?\v+7\)2
o0 5 n7\2(f-f)2 TG g (e S )
. ; 3 I, ;n b P Yy = VI }
v=n+1 v=1 (A ) y=1 (7\, + )
5 N f2 n %2 var
st By —2o sy X,
y=1 (7\+7\v) v=1 (7\V+7\)

The first term in brackets is bounded in absolute value by

4 <) 1/2
> i o e f (f(t)—PT f(t))edt + 2\ \ Z N (f f 1/2
v=n+1 e v=n+1 s T n V= l K /

and we we shall suppose that it is negligible compared to the second term
in brackets as n —> «. This is true in all the examples we know of

whenever the points in Tn become dense in T.



Suppose further, that the {ti} are regularly enough spaced

so that
1 1
2 I A0 B(6) = [ A(0) g(0) e (2)
= Ly = v
= 0, K ?é L

Regularity conditions on the distribution of the ti's would be required

for this. Then
2

r'p ~nI var % o
= Vv — n

Thus whenever (1) is very small, and (2) holds approximately, we have

reduced the problem to the "canonical" form

®

i ?}(fv, ce/n) , independent

with either

$4.3 E

V=

<role™o
A
g

or

N AN (O,b7\v)

-1
In either case ii) or ii'), we estimate fV by §V(l + K/hv), with

expected loss



E fﬁv 7 o, fi 2 n Ag
RG) = E (f ______,______) 0 g s (R R S [T
v=1 ¥ 1+ )‘ﬁ‘\)) v=l (}\\)ﬂ)z - | o\\)ﬂ)z

(An argument resulting in an expression similar to (3) can be found in Cogburn

and Davis [3].)
n

2 2
3 f - f - .
If o is known, and Zv:l( % vn) negligible, then an

P8
unbiased estimate of R(A) of (3) is R(A) given by

y X ’%’f) 8 ps inihgEne
RBA) =2 F —tesl § L
v=1 (A, ) v=1 (A )

and it is reasonable to suppose that the minimizer of lﬁ(h) would pro-

vide a good choice of A for either model ii) or ii'). If (2) does not

2y 2 O 2
hold, then wvar f\J = o /n must be replaced by var fv =0 Tvv where
‘UV )"l

Fal
Y is the wvth entry of (I''P) ~, and R(A) becomes

7 s B %% o N Ki & kgrvv
R =W T —Yrt of T
Vil (7\v+?\) vl (7\V +A)

s . 2
Suppose ii ') holds along with (2) and ¢ and b are unknown.
Then a maximum likelihood estimate for A = Gg/nb can be cobtained using

in the likelihood function the distribution

§v ~ N(0,5(n, + /o)) = 70, B(h ), independent.

The estimate for A is the minimizer of

ATE L @ )

[ (v/(n, )1
Vel

7



This idea is to be found in Anderssen and Bloomfield [1] [2].
;i -1 -2m
Suppose ii) and (2) holds. If hv =8 (V)W where

a <h < b, then

Ke n
E: Vi = F 4 " c fm dx
= ~ 5
el (7\v+?\)2 v=1 (1 + An(v) V) R (1 + )

-1/2m ,~1/em

It is then not hard to show (see [14] for

where Db Le<

*
details) that the minimizer A of R(%) of (5) satisfies

5 . 2m/(km+1)
* o fi 71
A o= e 5 T (1 +0o(1)),
e
=1 2
L Y 7\-\;
with o(l) —> 0 as n —> « , and so
R(A*) r O(n-hm/(hm+l)) .
Let
2 P, Y=) 2
- AT T A (E /(0 ))
1¢h 2
E 2 (VO

It is shown in [12][13] that

v = 2 ey - (6 0)P w ()
k=1 g

(k)
n,A

cmitted, and

where f is f 15 where the kth data point y(tk) has been
T



0 () = @F A T adim)

where m?9(A) is the jjth entry of (Qn + n?\I)_l. The minimizer of
V(A) may thus be viewed as a cross-validation estimate of A. Tt is
shown in [12][13] that, if A is the minimizer of EV(A), then

e e o(1)), where o(l) —> 0 as n —> w.

4. Remarks on Tensor Product Spaces and Reduction to Regression Models.

For computational purposes, when T is the unit cube in
Euclidean p-space, it may be convenient to let MQ = MR X :HR X P :HR
where :H'K is a reproducing kernel Hilbert space of functions on [0,1].
When p =2 and s = (Sl’sg)’ t = (tl’ta)’ then

s

Q(J\S/',E) = Q(Sl’SE; tl)te) = R(sl)tl) R(Seﬁte) b

where R(sl,tl) is the reproducing kernel for :&R' ie
R(s,t) = Z:—l 7\V¢v(s) ¢v(t), then the eigenfunctions and eigenvalues of
Q are given by

oM o TR
[SY VY

) = 8.(8) B,65)

#

S5
pv'

See Cogburn and Davis [3], Golomb [6] for handy reproducing kernels
for spaces of periodic functions on [0,1]. If R(s ,- ) is a spline
il

function (see, e.g. [4] [8]) then Q(s,-) will be a tensor product spline.
3



Under model ii'), the exact posterior mean fg E(E)’ say, of f£(t)
3 fad

2
when A = o /nb 1is given by

7 i)\

. AN

il |
fn,?\(z) = (Q._EQ(E)J ses g QEH(E)) (Qlfl 7t I].?\I) . /
\a(t,)

/

/

of which f is a good approximation. fo is in the subspace V .
n,A n,A n

If the ’31 are irregularly spaced and n is very large the following

procedure (p = 2), which reduces to the model to a regression model,

may be computationally simpler without much loss in accuracy. Let

i J

ka = span{QE(-), Ex—_ Tkk.} where Tkk = A —E) s
2
i, 3=0,1, ... , k, (k+t1)" = g < n. If, e.g., R(sl,') is a cubic

spline,then V,, is a space of bi-cubic (tensor product) splines. Choose

: : 2
any convenient basis, say [NV(E)}v:l for V. Then

gt fte}

£(t) =

k w,(t) g, + (£ -2, 1) (8),

1 ki .k

for some {p } where P f is the projection of f onto V .. If
v Tkk kk

R(s,t) '"behaves like" a Green's function for a 2myth order linear
differential operator,E/ (which happens for R(sl,') a polynomial spline

of degree QmO-l) then it can be shown for model ii) that

B, =)
2(t) - B, 2(®)] <ok © )
' kk

-2m
0
1s

E/Then the eigenvalues for R(s,t) are O(v
10



(see [10] for some of the details.) Thus a good approximation to the

original model ii) is the regression model,

q
y(t) = \El w (8) B, + (L) » e T (L)

If X is the nXq matrix with ivth entry wv(Ei) and (4) is a good

approximation to the original model, then the pwice ii') is approximately
equivalent to a zero mean Gaussian prior on the [BV} with covariance

bly, approximately satisfying bQ ~ bXZBBX'. Under model ii'), then,

the posterior mean of B = (Bl, e 6q) is B, given by

Dy

(XP + N

]

P BB

where A= Gg/b. Zél can be approximated e.g. by

o

where T is the g X n dimensional matrix whose rows are the first q eigen-

vectors of Qn, and %1, S Aq are the first (largest) q eigenvalues

of Qn.
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