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A Survey of Some Smoothing Problems and the Method of Generalized

Cross-Validation for Solving Them

by

Grace Wahba

Abstract

Some applications of the method of generalized cross-validation (GCV)
for determining the correct degree of smoothing to minimize mean square error,
are surveyed. These are ridge regression, spline smoothing, density estimation,
and the approximate solution of linear operator equations when the data are
noisy (Tihonov regularization).

1. Introduction. Consider the model

lE) E Pt elt), el Oll ank

where f is a "smooth" function, and ¢ is a noise, Ee(t)=0, Ee(s)e(t)=02, gt

=0 otherwise. Values of y are observed for t=t1,t2,...,tn, and it is desired

m-1) abs, GONE..

to recover an estimate of f. Suppose f e Hm: [ f,f;...,f(
f(m)eLz[U,]]}. Take as an estimate of f the solution, call it f_ . to the

problem: Find f ¢ Hm to minimize

1
i 2 (m)y aa2 .
n L () Hfo (F ™ ud) s oy B ey (1.2)

If n>m, the solution f s known [20], [22] to be unique, and to be a

ok
polynomial spline of degree 2m-1, that is
1) fn , 1s a polynomial of degree 2m-1 in each interval [ti’ti+]]’ and

2) fn i has 2m-2 continuous derivatives.

The parameter A controls the tradeoff between the infidelity of fn \ to the

data, as measured by

n
L (t;)-y;)? (1.3)
j=1
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and the "smoothness",

]
[ 7™ ()% du . (1.4)
0

If » is large, then (1.4) will be small while (1.3) will be large, and vice versa.

As Ao, fn N tends (pointwise) to the polynomial of degree m best fitting the

data in a least squares sense, and as A»0, the solution tends to a spline function
which interpolates the data. The parameter A may be thought of as controlling
the tradeoff between the squared bias and the variance of the estimate fn A(t)

3

for f(t). If =0, the bias of fn,O(ti) equals 0, and the variance is o
Provided f is not a polynomial of degree m or less, as ) increases, the squared
bias increases and the variance decreases. For a large class of problems
there is a value of A strictly between 0 and = which minimizes the squared bias
plus the variance. (If f is a polynomial of degree m or less the optimum
value of A to minimize mean square error is =). The experimenter who wishes to
smooth data by this technique must have a valid method of choosing x. This
problem, of controlling the tradeoff between squared bias and variance occurs
in a variety of contexts, beginning with the problem of admissible estimates for
the mean of a multivariate normal vector with quadratic loss studied by Stein
and associates (See [9,17] and references cited there), ridge regression ([8,
11,167), the correct degree of smoothing (equivalently the window width) in
density and spectral density estimation ([5,7,19, 25]), the smoothing of surfaces [27],
and the approximate solution of linear operator equations when the data are
noisy. The operator equation problem is known in approximation theory circles as
Tichonov regularization, see [26]).

In 1975 Wahba and Wold [29,30] applied an idea they learned from Stone [23],
see also Geisser [10], known as cross-validation, or predictive sample reuse,
to choose . Monte Carlo results were unbelieveably (at least to the authors!)
good. Following this initial success attempts were made to establish
theoretical properties of the method of cross-validation and to see if it

could be applied in other contexts. It turns out that the method of "ordinary"
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1. Introduction. Consider the model
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where f is a "smooth" function, and ¢ is a noise, Ee(t)=0, Es(s)e(t)=02, s=t:

=0 otherwise. Values of y are observed for t=t1,t2,...,tn, and it is desired

to recover an estimate of f. Suppose f e H : {f: f,f;...,f(m'1) abs. cont.,

f(m)sL2[0,1]}. Take as an estimate of f the solution, call it fn 38 to the

problem: Find f ¢ Hm to minimize
1

n
5 L ep® e [rMunfan vy =yt (1.2)
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If n>m, the solution f_ is known [20], [22] to be unique, and to be a

S
polynomial spline of degree 2m-1, that is

1) fn 3 is a polynomial of degree 2m-1 in each interval [ti,t1+1], and

2) B has 2m-2 continuous derivatives.
The parameter A controls the tradeoff between the infidelity of fn A to the

data, as measured by

P10

(t.)-y;)° (1.3)
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and the "smoothness",

1
[ ™ u)2% au (1.4)
0
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If A is large, then (1.4) will be small while (1.3) will be large, and vice versa.
As Ase, fn,A tends (pointwise) to the polynomial of degree m best fitting the

data in a least squares sense, and as A»0, the solution tends to a spline function
which interpolates the data. The parameter X may be thought of as controlling

the tradeoff between the squared bias and the variance of the estimate fn,h(t)

for f(t). If =0, the bias of fn,O(ti) equals 0, and the variance is 02.
Provided f is not a polynomial of degree m or less, as A increases, the squared
bias increases and the variance decreases. For a large class of problems

there is a value of A strictly between 0 and « which minimizes the squared bias
plus the variance. (If f is a polynomial of degree m or less the optimum

value of A to minimize mean square error is =). The experimenter who wishes to (
smooth data by this technique must have a valid method of choosing x. This
problem, of controlling the tradeoff between squared bias and variance occurs

in a variety of contexts, beginning with the problem of admissible estimates for
the mean of a multivariate normal vector with quadratic loss studied by Stein

and associates (See [9,17] and references cited there), ridge regression ([8,

11,16]), the correct degree of smoothing (equivalently the window width) in

density and spectral density estimation([5,7,19, 25]), the smoothing of surfaces [27],

and the approximate solution of linear operator equations when the data are
noisy. The operator equation problem is known in approximation theory circles as
Tichonov regularization, see [26]).

In 1975 Wahba and Wold [29,30] applied an idea they learned from Stone [23],
see also Geisser [10], known as cross-validation, or predictive sample reuse,
to choose A. Monte Carlo results were unbelieveably (at least to the authors!)
good. Following this initial success attempts were made to establish
theoretical properties of the method of cross-validation and to see if it

could be applied in other contexts. It turns out that the method of "ordinary"
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cross validation must be modified to have desirable properties in general. With
this modification, which we call generalized cross va]idation_(GCV), we have been
able to show theoretically desirable properties in general, and pleasing Monte
Carlo results when the method is used to estimate an optimum smoothing parameter
in ridge regression and to estimate the correct degree of smoothing in density
estimation.

In this paper we give a general formulation of the GCV method
for estimating a good value of the parameter which controls the tradeoff between
square bias and variance. The purpose of this paper is to proyvide a unified
overview of some of the various contexts in which the GCV method is applicable,
and survey some of the known results, published and unpublished. We will state
theorems concerning the properties of the GCV estimate of ) for ridge regression,
spline smoothing and density estimation, without proofs. The proofs have
appeared or will appear elsewhere. Brief mention will be made of the application
to smoothing of surfaces and to Tichonov regularization. In the ridge regression
and density estimation cases we will present preliminary, but typical, Monte
Carlo results, so that the reader may judge for himself or herself wether he or

she would Tike to use the method on real data.

2. Ridge Regression

Consider the usual regression model,

Yx1 ~ anpoNI+EnX1 (2.1)
where subscripts denote the dimensions of the vector or matrix. Let
£ N(O,czlnxn). The ridge estimate éx of & that we consider is

3, = (i) Ty (2.2)

It is well known that ék is the posterior mean of g if 8 has the prior

3 ~ N(O,al_ ), where A=52/na, see for example [11]. It is also not hard to

pxp
show that ék is the solution to the minimization problem:
Find 8 in Euclidean p-space to minimize

1 ? 2
Ly ly=xel 12 + allel13 (2.3)
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where ||-|!q is the Euclidean g norm. It will be convenient to think of

%1]y-X8|!§ as the "infidelity", and 1!Bl{g as the "energy" or "smoothness". For
fixed 8, A controls the tradeoff between squared bias and variance. Thus the reader
may take a Bayesian point of view, or minimize the infidelity plus smoothness
functional, either approach can lead to estimates of the form (2.2). The "ordinary"
cross validation estimate of A for ridge reagression was suggested by Allen (see [1]

and the discussion in Stone [23]) and given the name PRESS. It goes as follows:
Let 3'%) be the solution to:
Find B « Ep to minimize
3 ol pkkY 2 2
e MRS S P S R
where y(k) and X(k) are obtained from y and X by deleting the kth row in each case.

Thus, ng) is a ridge estimate with the kth data point left out. The idea is,

that if a particular » is a good choice, then [Xéik)]k, the kth entry of Xéik),
should be a good predictor of the missing data point Vi This predictive ability

(k)

is measured by ([XéA ]k—yk)z.

The Allen's PRESS estimate for A is then obtained

by choosing A to minimize VO(A) given by
n
_ ~(k)q 2
o) = 1 (06" (2.4)

This idea is intuitively appealing. However, if the components X33 of X-satisfy
xij=0, itj, that is, Yi=X5:Bitess 2 - R YiTes i=p+1,...,n, then
Yyseeo¥yo1 Y10 Yy, cannot be expected to provide much information about
the kth component g, of g, and in fact it can be shown that VO(A) is independent
of A in that case, and insensitive to A in nearby cases.

The generalized cross validation (GCV) estimate of » is obtained as follows:
Let the singular value decomposition (see [14]) of X be

_ 14
23 o Ui U

where U and V are orthogonal, and D is diagonal. Consider the model

0Ty =ovTg +UTe (2.5)
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This model is basically the same as the original model (2.1) with X replaced by a

diagonal matrix, since if 8 ~ N(0,al__ ) and ¢ ~ N(O,OZI then VTsw N(O,al__ )

pxp pxp
2

and UTsm N(O,o Inxn)' Now, (2.5) is just in that form where no information about

)
nxn’?

Yk:[vgjk is provided from {[UEJﬂ, j*k. We now want to rotate the coordinate
system so that when a "data point" is left out the remaining data points provide
maximal information about the missing point. Let W be the nxn unitary matrix
which diagonalizes the circulant matrices. (See [4,24]) In complex form, the

jkth entry of W is given by

[ - L P
(Recall that if Cnxn is any diagonal matrix, then WCW* is a circulant matrix).
Write

y = wuly = wp(vTg) + wu'e. (2.6)

Since we have only effected a rotation, the model is still essentially the same

as (2.1), except that it is in complex form. The "new" design matrix, call it

X is now

X = WDV' (2.7)

and i R*T'B a circulant matrix. The GCV estimate of » is defined as the result

of doing "ordinary" cross validation, or Allen's PRESS, on the rotated system

y = Wuly = wovlgrayTe
PE (2.8)
Xg+WU e .

1]

Upon substituting X and y into (2.4) and after some manipulation (see [13]), it

can be shown that the GCV estimate defined this way is the minimizer of V(i) given

by

V(3) = | [(1-A())y]| %/ [Trace(1-A(1))1? (2.9)
where

AG) = x(xXeman) XL Ay = XE, (2.10)
V(x) can also be written

V(n) = E (D32 2 foy _mo2 (2.11)
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where A1,A2,...,Ap are the singular values of X, Ap+1=...=kn=0, and

z=(z1,22,...,znjris given by z=UTy. (
We will first give some of the theoretical properties relating to the

behavior of A, the minimizer of V(1). Proofs may be found in Golub, Heath,

and Wahba [13]. The general idea of Theorem 1 is that A is an estimate of the

minimizer of the mean square prediction error.

Theorem 1. Let the mean square prediction error T(A) be defined by

_ Tyivaoxa 112
T(A)= | [X8-X8, ||

Let A be the minimizer of ET(A) and A* be the minimizer of EV(X). Let B8 be

fixed. Suppose either

Case a) 1im %—XTX = Bpxp, 02 fixed, where B is a pxp matrix, or
N-—ee
Case b) X fixed, n>p+1, fixed, and 6
Then .
ax = a(1+0(1)) (2.12) (

where 0(1)+0 as n+= (case a) or as 02+0 (case b).
The next theorem would appeal to a Bayesian, but, practically speaking, tells
us not to be surprised if A is a good estimate of the minimizer of T(x) even if

n is small and 02 medium-sized.

Theorem 2. Let EP denote expectation with respect to the prior distribution
B N(O,aIpxp), (and E denote expectation with respect to the prior distribution
£ U N(U,OZI)). Let Q be any pxp matrix. Then EPEHQ(B—éA)[I2 and EPEV(A) are both
minimized for A=02/na. 5

An unbiased estimate of the negative risk improvement ET(A)-c“, is given by R(}),

1 2 .
R(A) = T (1-A() )y | |%-26°(F Trace (1-A0))), (2.13)

where 82 is an unbiased estimate of 02. The minimizer of R()x) as an estimate of A

has been suggested by Hudson [17]. The GCV estimate may be considered as a form of

. ; 2
risk improvement (RI) estimate which does not require knowledge of, or an estimate of o .
For comparison we describe the maximum 1ikelihood estimate of A=U2/na when f

8 ~ N(0,al). By writing the prior distribution of y as

y N(O,aXXT+021)
(2.14)

= N(0,a(XXT+nA1))




.
one can obtain that the maximum likelihood estimate of X in the model (2.14) s

the minimizer of

n n
M= (T (1-A())y)/D0et (1-AG)) Y= | P2/ w (31",

v=1 A% V=1 A%
Vv v

(2.15)
It can be shown that Theorem 2 is also true for the maximum likelihood estimate,

that is, EpE M(%2) is minimized for A=02/na. However, (2.12) of Theorem 1 does
not hold for all g, for the MLE estimate.

We present a summary of the results from the first run of a Monte Carlo
study evaluating the GCV estimate of A and comparing it with several other
estimates. The complete study will appear in Golub, Heath and Wahba [13]. The
values for n and p were 21 and 10, and the design matrix and 8 come from
discretizing a numerical inversion of the Laplace transform. The condition
number of X, namely the ratio of the largest to the smallest singular value, was
1.54x10°.  Four values of o>, namely o2=10"2, 107, 107" and 1072 were tried
and for each value of 02 the experiment was replicated 4 times, giving a total of
16 runs. The e; were generated as pseudo random N(O,cz) independent r.v.'s, V(1)
was computed using the right hand side of (2.11) and the Golub-Reinsch singular
value decomposition [14], and the minimizer A of V()) determined by a global search.

T(x) was also computed, and ;the relative inefficiencies ID and IR, of A, defined by

) 2 ; - a -
1) = I1e-85] 1%/ (min|a-8,|1%)5 1, = T()/minT(1) (2.16)
A A
were computed. (D = "domain", R = "range"). Four other methods were studied for

comparison. They are

1) Hoerl-Kennard-Baldwin (HKB) [16]. ni=82/%||é0}|2, where 6° is the "usual

: AN W Y
estimator of o°, o° = ;0 ly-X8yl 1" .

2) Maximum Likelihood. X is the minimizer of (2.15).

3) Allen's PRESS. X is the minimizer of (2.4).

4) Dempster's RIDGM [8]. X is the solution to
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)
: E 52 p—= 58,
v=1 AZ4n

o i B .
where YZ(Y] ’YZ:---sYp) =Y BO .

Comparison with Hudson's risk improvement estimate is in progress.

Dempster's RIDGM was initially chosen because it was reported to be the best
of a number of estimates tried in a fairly extensive Monte Carlo study [8]. It

can be seen that A from RIDGM will be larger than A from Hoerl-Kennard and will

be nearly the same if A%/(A5+nl)r1. ID and IR were determined for each of

these four methods as well as GCV and the results are presented in Table 1.
The entries next to "Min Sol'n" and "Min Data" are the inefficiencies (2.15)

with 1 taken as the minimizer of |!B'éA|[2 and T(») respectively. S/N, the

"signal to noise ratio" is defined by S/N = [02/%1|X8l]2]1/2. Figure 1 gives

a plot of V(r), M(n), VO(A), HB-éAH2 and T(») for Replicate 2 of the oPay0id

case. The T(») and V(1) curves tend to follow each other, and this is fairly

typical.

‘ 1+ \{3(?\)
B lians TRl ( PRESS)
o
T -—
=
S wlla%: - ®

REPLICATE 2

M@) (MLE)

), MG, V, (3, 1l B-Bal™, TH)

V(A

g
>
\
ot
1
v
|
»
]
W
1
]
|
%}

Figure 1
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We make a few comments on these very preliminary results. The superiority (
of the GCV estimate of X is apparent,at least in this example, compared to the
other methods listed. The Gauss Markov estimate of )X was not included
because it is uniformly worse than all the other estimates in this very
ill-conditioned problem. A first run comparing GCV and the RI estimate of

(2.13) as this goes to press indicates that the two methods give similar results

for n-p=11.

We feel that GCV is generally going to be superior to PRESS, unless XXT 18
circulant, in which case they will be the same. It is reasonable to think MLE
will look good when g acts "as though" it came from the prior. This really
means either p is small or {8?}?=] have about the same spread or less as
independent xz(l) random variables times some constant. If p is large it is
possible to construct examples where MLE will Took bad compared to GCV. In these
examples, B§+0 in a manner uncharacteristic of the prior and the MLE estimate is
too small. We think the Hoerl-Kennard and RIDGM estimates will look worse
compared to GCV the more ill-conditioned the X matrix is, since Hoerl-Kennard
and RIDGM, as well as all the other methods we have seen except MLE and RI
divide somewhere by the eigenvalues A; as.an intermediate step (in the
computation of éO’ for instance). This division by Ai introduces a large

variance for whatever quantity is being computed. RI should look good if n-p is large.

3. Spline Smoothing
We return to the model (1.1), y(t)=f(t)+e(t), and the estimate fn , for f.

Let fn A be the solution to the minimization problem (1.2) of Section 1. As in

the ridge regression case, there is a prior on the "signal", here f, for which

fn A(t), is a posterior mean. It is given as follows:

Let f(t) be a stochastic process modeled by (




« T}
m-1 ’ t (t-u
_ ] +
£{t) = J_ZO B % % /aTJ; ~TyT dW(w) (3.1)

where W(u) is the Weiner process, a is a constant, and {ej} are Gaussian random

)m~1

variables with a "flat" prior, i.e. infinite variance. It can be shown (by

using the results in Kimeldorf and Wahba [18]) that fn A(t) is the posterior

mean of f(t) given y(ti)=yi, with A=02/na.

The vector ?ﬁ =(f (t]),f (tz),...,f (tn))T depends linearly on the

data y=(y1,y2,...,yn), and we define the matrix A(A) by
= A(\)y . (3.2)]

s n,A n,i n,A

fn,A
We omit giving an explicit formula for A(r), it can be obtained for

computational purposes in the m=2 case from Reinsch [ 20 ]; in general from

Kimeldorf and Wahba, [ 18 ], and is explicitly given in Craven and Wahba [ 6 J.

The GCY estimate of A is defined as the minimizer of

2

V(x) = [[(1-A(A))y] %/ [Trace (1-A(3))] (3.3)

(Compare (2.9)). The MLE estimate of A with the prior (3.1) can be shown to be

the minimizer of

T( 1/n

M(x) = (y (I-A(x))y)/[Det(I-A(X))] (3.4)

This MLE estimate for X is essentially that proposed by Anderssen and Bloomfield
in their pioneering papers [ 2] and [ 3], and generalizes their estimate to the
non-periodic non-equally spaced data case.

In the equally spaced data case (t1=1/n) for large n, GCV and "ordinary"
cross validation are very similar. (In analogy to the ridge regression case,
the matrix that plays the role of U is very close to the matrix that plays the
role of W). Wahba and Wold [29] reported on Monte Carlo results using "ordinary"

cross-validation in connection with spline smoothing. Reinsch's program [20]

(k)

Ny

of (1.2) with the kth data point omitted. Favorable results were reported with

was used to repeatedly calculate f the solution to the minimization problem

the method. Cheap computational procedures for calculating V(x) from (3.3)

are under development and wil] be reported in [61. Data sets of 50 can be
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handled for a few dollars. The following theorem is proved in Craven and

Wahba [6].
Theorem 3. Let f e H_ ={f:f(:) abs. cont., v=0,1,...,m-1, f(m)eLz} and

in

suppose {ti}?=1 = {t }n=1 where j- w(u)du=i/n, 1i=1,2,...,n, n=1,2,..., and w
0

in’i

is a strictly positive continuous weight function. Let

ro) = L T (r (6 )-f(t, )2
n o1 MA in in

and let A be the minimizer of ET()») and r»* be the minimizer of EV(A).

i) If f is a polynomial of degree m-1 or less then

ii) If f is not a polynomial of degree m-1 or less then
A* = X (1+0(1)) (3.5)

where o(1)>0 as n-.

Letting E be expectation with respect to the prior of (3.1), the following
can be proved.

Theorem 4. The functions EPEV(A), EPET(A) and EPEM(A) have the common
minimizer A=02/na.

If f is a very smooth function in Hm’ however it can be shown that (3.5)
is false for the MLE estimate. It can be shown that as n-= the MLE estimate
will tend to O more rapidly than the GCV estimate. This is not surprising,
since it can be shown that sample functions from the prior (3.1) are, with
probability 1, not in Hm.

The smoothing spline f 2 may be used to estimate f(v)(t) for any v<m-1.

53

The estimate is fﬁf%(t). Pleasing numerical results for v=1, m=2 can be found

in Wahba and Wold [29]. This problem was in fact the motivation for Anderssen
and Bloomfield [23] who also had nice numerical results.

If Hm is constrained to be a space of periodic functions, the computations

are vastly simplified. See section 4.
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4. Density Estimation

Every reasonable non-parametric density estimate has (implicitly or explicitly) a

parameter or parameters which control the tradeoff between the square bias and
the variance. For example, in an estimate of kernel type, the density estimate
% is given by

t-X,

: K(_ﬁ_l)

where XT’XQ""’Xn are iid observations from some density f, and K(t) is a "hill

13

F(t) = -
J

function" integrating to 1. See Parzen [19]. The parameter h controls the
tradeoff between the square bias and the variance and the h which minimizes
mean square error depends on the unknown f as well as the sample size n. To
our knowledge, no completely automatic, practical method for choosing the
smoothing parameter to minimize mean square error has been reported (See,
however, Good and Gaskins [15], Woodroofe [31]). However, the method of GCV
can be used to do this in conjunction with a smoothing spline density estimate.
Detailed results will appear in [28]. We summarize the main idea here, for the
purpose of illustrating the wide applicability of the GCV method.

We discuss the method as it applies only to densities that are in H”‘of
Section 3 and furthermore satisfy the periodic boundary conditions

f(v)(‘l)-f(\))((}):o: v=0,1,...,m-1

In practice for small to medium sample sizes m=2 should be chosen. The value

m=2 corresponds to visual smoothness. We restrict ourselves to the periodic case
for practical rather than theoretical reasons. The computations are easy to
program and are "dirt cheap" in the periodic case as can be seen below. To
obtain the method we first discuss periodic smoothing splines. It can be shown
(See Golomb [12], Kimeldorf and Wahba [18], for the necessary background), that

the solution fn to the minimization problem: Find f in Hm satisfying

A

jl f(u)du=1, f(v)(1)-f(v)(0)=0, v=0,1,...,m-1
0



and minimizing

i=1 n J n
satisfies A
. n/2 f hed>.
NCOIERES) Y PTIVI/ (140(1))
’ v==n/2 (1+A(27v)")
\)#0
where
& _ 1 o 2mivi/n
£ =5 jz1 y; e (4.1)

and o(1)>0 (rapidly) as n»<. Thus, the periodic smoothing spline with equally
spaced data points can be viewed as the result of passing the data through a low

pass filter. The parameter A controls the half power point of the filter, by

the relationship that the frequency Vo at which fU is damped by a factor of 2

satisfies A(va0)2m=1, or v0=(2wA1/2m)']. The value of A which minimizes mean

square error is estimated by GCV, as the minimizer of

L A 2.2
f‘
Vz1((2wv)-2m+l) i
n
L wriers

w1 (2r0)" Mgy

V(2) =
2

(Compare (2.11)). The eigenvalues of the (formal) operator [(é%)m]-1 are

(27v)™ and play the role of the singular values of X. See Wahba [28] for details.

In the estimation of a periodic density, (with m=2), the estimate is

n/2 .
_Fn )\(t) - -I + z Av} ""&"_ e2’ff-|\)t
i v=-n/2 (1+r(27v)")
vz0
where the %v of (4.1) are replaced by the sample fourier coefficients,
% n .
'f'- - E]]_ Z eZTF'I\JXj

The estimate is related to that of Cogburn and Davis [7] for estimating spectral
densities, but the method for choosing A is new. The GCV method can be used in the
Cogburn-Davis spectral density estimate to choose A, see [30].

The following Theorem is proved in [28].

n
Theorem 5. Let f be a periodic density in K . Let T())= lAX



~15a
and let A* and A be the minimizers of EV(r) and ET(A) respectively. Then
A% = 2 (1+0(1))
where 0(1)+0 as n-w,

f(\))

It can be shown that if, further, abs. cont., v=m, mtl,...,2m-1,

f(m) e Ly, and f(v)(l)—f(v)(O) =0, v = mml,...,2m-1, then

eT(x) = o(n™ (4mH1))

and hence that this density estimate shares the convergence properties of most
of the well known estimates. See [25] for a discussion of the best mean square
error at a point convergence rates abtainable for densities in Hm'

Figure 2 provides the results of a demonstration run of this method. One
hundred and seventy-four observations from a density which is a mixture of two

betas were generated by Monte Carlo methods. The density f is

4

6
Fon, T55(12,7) +

Figure 2a gives a plot of the true density and a histogram of the 174 Monte
Carlo samples. The "bin size", which is the "smoothing" parameter in the
histogram estimate, was chosen by eye. Figure 2b gives a plot of T(x) and
V(x). It can be seen that the minimizers are quite close. The minimizer of
Vi) cis » and the relative inefficiency T(A)/(minT(A)), was 1.04. Figure 2c

A
gives a plot of g O(t} and the density estimate f_ i(t)' £ i(t) is-1h fact

the low-pass filtered version of fn 0(t). Figure 2d gives a plot of f and fn -
We remind the reader that the computation of fn s is "completely automatic", with

no human intervention required to choose the optimal smoothing.

5. The approximate solution of linear operator equations when the data are noisy.
Let
1
y(t) = f K(t,s)f(s)ds+e(t) (5.1)
0

where K is a continuous kernel and £ is a noise satisfying Ee(t)=0, Es(s)e(t)=02,

s=t, =0, otherwise. y is observed for t=t1,t2,...,tn, and it is desired to recover
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7
f. This problem is a common one in many physical sciences. It is assumed that
f is in some Hilbert space H, of smooth functions. The approximate
solution fn,k is taken as the solution to the minimization problem: Find
f e H to minimize

IIMS

'I :
f 52)F(s)ds-y, 1% + Al IFI[g s vy = w(ty). (5.2)
0

This method for solving (5.1) approximately is known in the approximation theory
literature as Tichonov regularization, and is a Hilbert space version of ridge
regression. See [26].

The GCV estimate of A is the minimizer of V(1) : given by (3.3) where

A(r) is defined by (3.2), with ¥ replaced by g l=(‘€ K(tyss)f ,(s)ds,...,

Bis A
jl K(tn,s)fn,}\(s)ds) , where fn,)\ is the solution to the minimization problem of
?5.2). Analogous theorems to those of Sections 2 and 3 are found in [26].

There is nothing special about the index set t ¢ [0,1] other than that it
is bounded. The results of Section 3 and above can be shown to hold for t in an
interval in Euclidean d-space, that is, for the surface smoothing problem.

See [27].




g

“LLL-99L *Lb
*(0461) W *e3004pooy

“l21-621 ‘2 “p "3S13eIS THNIO) ‘Buyyjoouws
30 39463p ayy Buruiwaalap a0y UOLIBPL|RA-SSOJD 4O 3SN 3Y| :uoLIBWL}SA
A3Lsuap |ea3dads oy saui|ds J21poLday

“"3IS13103S “yley "uuy  "@duanbas-e3|ap e bBupsooyy ug

-1 ‘b 1513035 WWO) ‘uoilepl|BA-SSO4D AQ SUOL}IUNy aui|ds bui3lLy
T3AINI Youad4 dLjewolne A|aja|dwod y "(S46L) “°S ‘pPLOM pue ‘g “eqyep

P2 “ULZAY URA UYOP "ULSUOISLM ‘UOSLPEY 3B §/6| ‘G-f Aoy PLay Buiaagsn|)
: PUE UOLJBOL}LSSE(]) UO JRULWAS paJueApy 3y} 30 sbuipaadoudd ‘ueadde 03
‘uoledLjLsse|d 4oy S3JRWLYSA AJLSUBP PaYIooLS A |ewi3dg “(9461) “'9 ‘equey

: ‘02p# 340day [eoLuyday
*SI1IS13035 JO JUdWIARAAQ ‘UOS|PR-ULSUOISEM 4O AJLSUBALUN *SadBLUNS
yjoows Burjewiysa yo wapqoud ayj 4oy WAy [B3UOUBD Y -(9/6L) ©-9 ‘equeM

“IRUY CIAN T WylS ‘ueadde o -pepg quoday [ediuyda) *saLysijess 30 juswjdedag
‘UOSLPEBW-ULSUDISIM 40 AJLSdarluf “Asiou ade B1Bp 3y} usaym suorjenba
403e43d0 4EBUL] 0] SUOLYN|OS Arewixoadde |PIVIB L feicg) ten ep

‘62-G1 ‘€ "3IS13€3S “uuy
‘uoLlewtlsa A3LSuUIp 40y SPOYIAW S3LU3S |BUOBOYIA0 pue  [au4ay
0Uy ajqerdea 30 satjuadouad sdusbuaauod |ewyidg *(G5L61) *82euy ‘equey

"298L-681L
‘9 “6E "3IS}IEIS “Ylmy ‘uuy -saiuas aw|y Aueuorieys Afqurol jo siskjeue
'3 U} LNJ3SN SILISLIRYS A0S JO UOLINQLIISLP BYI UQ -(§YGL) °°9 ‘eqyeM

TLPL-LLL ‘2 “9E ‘8 s3L4ag ‘TSYF ‘worjdipaud
LBILISLILIS JO JUIWSSISSR puR 3D10Yd AUOJBP|[BA-S5047 “(pi6L) *°W *au03s

"096-4¥6 ‘25 (VSN] "19S "PEOY 3eN -o04q
‘uotjenpedt jo wa|qoud ay3 pue suoijduny auLlds  “(p9gl) ‘"pI *Baaquaoyas

“¥St - LS ‘91
*(LL6L) “"H'D ‘yIsupay

“YIBW “J4awniy  -I1 *suoi3ouny aug|ds Aq buyyjoous

"E8L-LLL “OL "YIBW "J3unN *suoijouny duy|ds Aq Bujyjoows "(£961) ‘*H'D “ydsujay

"9/01-6901 ‘€€ "3I51303S "Yjey ‘uuy ‘apow
Pue uorjouny A3gsuap A1ipLqeqoud e Jo UoL3RWL}S3 3yl up  *(2961) ‘"3 ‘uazuey

*G6-28 ‘€€ "1ddy “[eUy ‘Ujey ¢ fsuoijouny suj|ds
URLJJBYIAQayYd] uo S3|NS3L WS *(1L61) *@2eug ‘eqyeyM pue abuoag “440p | Bupy

!m—.l

'

[i€]

“(SL6L) “*S ‘PLoN pue *°p ‘eqyeM ([og]

[62]
[s2]

[¢2]

[¥2]
[e2]
[2z]

[1e]
[oz]

[61]

[8L]

! "RLUIOJL[B) ‘pJojuR)S *SI}3SI3e3S JO juauiuedag A3)sdaaLun paojueys
‘89¥ 34o0day |edLuyda) ‘uojjewlysd sakeg pedpdidug *($L61) *"W'H ‘uospny

"€21-501 ‘2 ‘P "3S19EIS WMD) -suoije|nuis awos

‘uopssaubas 8bpy  *(§/61) ‘47N ‘upMpleg pue ‘MY ‘paeuudy ‘-3-y *[Ja0y

"LL2-552 ‘8§ eylJjauoig

S3j31suap A3 |Lqeqoud
404 sajyjeuad ssauybnod djujaweded-uoy

“(L61) “°¥ Yy “supysen pue “p-] *poog

"02v-€0% “tl "YIEW "JBWNN ‘SuoL3n|os sadenbs
3523 pue U0L31SCdwoIIP BNLBA JBLNDULS  *(0/6L) ‘D ‘4OSuLay pue ‘H'H ‘gqniog

aeadde 03 juoday [earuyda)

"0dsiouRly ues ‘G/6L G ‘p ‘g Jaquadag ‘Buijamy ||e4 /6| WNNIIS-WYIS

3y} je pajuasald ag 0] sdadeq Jo S30BAISQy ujp 10ed3sqe ‘uoLssaubaa abpida
wnu3do pue Uo}IBPLIBA-SSO4)  “(G/6L) ‘'O ‘BqueM pue ‘'l ‘y3esy *'5 ‘qnion

"69-92 ‘| Ayl ‘Xouddy -p *saysau
udojLun uo sjuejodiajul auy|ds oiporuad Aq uoitjewixodddy (896L) “‘W ‘qualog

*162-v82 ‘2 ‘O9F @ "43S 205 ‘3e35 Aoy ‘[ “sisk|eue uopssadbag
404 saojeut3sa 3dA3-abpiy  *(pL6L) W4TV ‘YIIWS pue -y ‘uraysplog

‘82€£-02€ “0SE ‘0L ‘YSVE
| ‘suojjeot|dde y3iMm poylaw ssnad a|dues aAaL1opaad ayy “(GL61) “°S “daassiag

“BLE-LLE “0SE *0f ‘YSWD “suoijezy)esauab S1} pue
403}ewLlsa s,uLajs buisn sysAjeue ejeg *(S461) *™) “siduoy pue -g ‘uoayl

“spa ‘ejdng -4y pue

SQBY 'D°0  "2/6L “G2-EZ YOBW ‘Xeyl[BH “A31SAIALUf 3isnoyleq e 4BULWAS

- 4248353y aY3 Jo sbuLpaadodq ‘3IUBUBSU] [BILSIIRIS SIRLUBALY (MY UL
‘uo}ssadbaa aldiy(nw uy sasenbs 3sea| 03 SSALIRUIRLLY  (EL61) “"d°V ‘433sduag

"9ZL1-80LL ‘z ‘TISIIe3s -uuy
‘uoilewllsy eajoads pue saul|ds J1potdag “(bL61) “L'H *SiAaeg pue -y ‘uangboy
‘uojjededadd up ‘uopjepleA-SS0UD
paz||v4auab jo poyjaw a8y} Aq Buryjoows jo aaubiap 3234403 3y3 buijewyysy
tsuol3ouny auj|ds y3ym e3ep Asiou Bupyjoouws “(9L61) *'9 ‘equey pue -4 ‘uaned)

"H0L MBN ‘daAaog

‘eu323ds JaMod 4o JuBwRANSEAW BY) *(8S6L) **M'p “Aayny pue ‘-g-y ‘uewyoe|g

THMOL M3N “LLLH Mg *sisk|euy X|43eW 03 u0LIONpoLU] ‘(0961) ‘¥ ‘uewyjag

"28L-G1 “Zz "yiey -Jeuny ‘ejep uunmwacoc 404
§3.Npadoad UD|IR|IUBLAILP RILABUNN (pL6L) ‘d ‘PLALjwoo|g pue g ‘uassdapuy

'64-69 ‘L ‘91 *s3jpJqawouyda)

"UOLIRLIUBUBLILP |EDLJdaBwny
03 yovoudde sajuas awyy y

"(PL61) "d ‘PLaLJwoo|g pue *§°y ‘uassdapuy

"£21-2L *L ‘9l “SOTATeWOULDP] ‘uoi3dipadd 4oy poyjaw e pue uorjejuaubne
PIEP pUB U0}}D3|3s 3|qeideA uaamlaq diysuoije|ad ayl (pl6l) *"W°Q ‘uapy

RENLELEEELE

-glL-

[£1]
[9t]
[s1]

[v1]

(el
[z1]
[
Lol

(6]

(8]

[z]

[9]

[s]
[+]

[e]
(2]

[



