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Abstract

Generalized spline smoothing is shown to be equivalent to Bayesian
estimation with a partially improper prior. This result is

related to a result of Kimeldorf and Wahba, J. Math. Anal.

Applic. 33, 1(1971). It supports the idea that spline smoothing is a
natural solution to the regression problem when one is given a set of
regression functions but one also wants to hedge against the possibility
that the true model is not exactly in the span of the given regression
functions. A natural measure of the deviation of the true model from
the span of the regression functions comes out of the spline theory in

a natural way. An appropriate value of this measure can be estimated
from the data and used to constrain the estimated model to have the
estimated deviation. Some convergence results and computational tricks

are also discussed.
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1. Introduction
Consider the model

Y(ti) = g(ti) toeg, 1= 1@a.::e0 t. e T (1.1)

where ¢ = (81""’En)' v N(0,021 ) and g(-) is some "smooth"

nxn
function defined on some index set 7. When T is an interval of the

real line, cubic polynomial smoothing splines are well known to

provide an esthetically satisfying method for estimating g(-), from

a realization y = (yl,...,yn)' of Y = (Y(t1),...,Y(tn))'. See [18]

for a very useful example. Splines are an appealing alternative to
fitting a specified set of m regression functions, for example

polynomials of degree less than m, when one is uncertain that the

true curve g(-) is actually in the span of the specified reqression
functions. In [11,12,13] certain relationships between Bayesian estimation
and spline smoothing are exnlored. In this note we provide a somewhat
agifferent formulation and aeneralization of the result in [13, Section 7].
Here we prove that polynomial spline (respectively generalized spline)
smoothing is equivalent to Bayesian estimation with a prior on g

which is "diffuse" on the coefficients of the polynomials of degree

<m (respectively specified set of m regression functions), and "proper"
over an appropriate set of random variables not including the

coefficients of the regression functions. Since Gauss Markov

estimation is equivalent to Bayesian estimation with a prior diffuse

over the coefficients of the regression functions, this result leads

to the conclusion that spline smoothing is a (the?) natural extension

of Gauss-Markov regression with m specified regression functions. We



claim that spline smoothing is an appropriate solution to the problem
arising when one wants to fit a given set of regression functions

to the data but one also wants to "hedge" against model errors, that
is, against the possibility that the true model g is not exactly in
the span of the given set of regression functions. We show that the
spline smoothing approach leads to a natural measure of the deviation
of the true g from the span of the regression functions, and further-
more, a good value of this measure can be estimated from the data.
The estimated value of the measure is then used to control the

deviation of the estimated g.

From another point of view this measure can be viewed as the
"bandwidth parameter" which controls the "smoothness" of the estimated
g, and so in this approach to non-parametric (or semi-parametric)
regression, a good value of the bandwidth parameter can be estimated
from the data. See [4,5,14,15,21] for other approaches to the
estimation of g in the model (1.1). In the case of polynomial splines
integrated mean square error rates of convergence of the estimated g

to the true g, as qu|ti+1~t -+ 0, have been recently found and are

3
quoted in Section 5 for comparison with the kernel nonparametric

i

regression results of Benedetti [4] and Priestly and Chao [15].

We also remark upon some approaches to the efficient computation

of generalized splines.



2. Polynomial splines as posterior means with a partially improper

prior on the polynomials of degree less than m.

Let 7 = [0,1]. Given data {y(ty),....y(t)}, 0 <ty ... <t <7,

the smoothing polynomial spline of degree 2m-1 to the data, call it

g , is defined as the solution to the minimization problem:
N,
Find g ¢ Ngm): Tq s gl s e g(m_1) abs. cont. g(m) e L,[0,11}
to minimize
L S T
A b Y )T+ et ) T du, (2.1)
=1 0

where Ja = y(tj), and A is to be chosen. If Y cannot be interpolated
exactly by some polynomial of degree less than m, then the solution
is well known to be unique, and to be a polynomial spline of degree
2m-1 (see [19]), that is, it is piecewise a polynomial of deqgree 2m-1

in each interval [ti’ti+1]’ i=1,2,...,n-1, with the pieces joined

so that the resulting function has 2m-2 continuous derivatives. An

efficient computational algorithm for the cubic polynomial smoothing
spline (m=2) is given in [16] and code is available in the IMSL

Tibrary [10]. We show that the spline solution qn’k to the minimization
problem of (2.1) is a Bayesian estimate for g with a "partially

diffuse' prior; the quantity J = z(géTi(u))zdu is a natural measure of
the deviation of I, from the span of the polynomials of degree less

than m, and furthermore a good value of J can be estimated from the

data.

Theorem 1. Let g(t), t e [0,1] have the prior distribution which is

the same as the distribution of the stochastic process Xg(t), t & [0.1];

ne-—13s

X (t) =

! 8. ¢j(t) + b]/zz(t), (2.2)

j=1



-

where & = (8:,...,8 )" v N(0,EL_ ), o:(t) = t371/(i-1)1, § = 1,2,....m,

m J
b is fixed, and Z(t) is the m-fold integrated Wiener process [207,
t (’c-u)T_1
Z(t) = é T dW(u) . (2.3)
Then

(i) The polynomial spline g A(') which is the minimizer of (2.1)

has the property

9 5 1B = lig Eg(t)[Y = v} (2.4)

with » = o2/nb, where EE is expectation over the posterior distribution
of g(t) with the prior (2.2). (&= corresponds to the "diffuse" prior on 8).

(ii) Suppose y cannot be interpolated exactly by some polynomial

of degree less than m. Then 1im 9, A(-) is the polynomial of degree
A0 2

m-1 best fitting the data in a Teast squares sense, 1im 9 k(-) is
1 A=+0 i
that function in Ném) which minimizes f(g(m)(u)) du subject to the
0 1
conditions that it interpolate y, and J(A) = f(qﬁmi(u))zdu je-5
e O 1

monotone strictly decreasing function of A.
(iii) Let loss be measured by the mean square prediction error
R(x) given by

n
R{AY = Z (a(t;)-g

Define R(1) by

A

R(n)

1

%{II(I—A(A))yH2 + o2 Trace A2(3) - o2 Trace (I-A(x))%3
where A(x) is the symmetric non-negative definte matrix satisfying

gn,k - A(A)X ?



where

(8 Joasnally lET)

If g = (g{t]),...,g(tn))' is viewed as fixed, and expectation taken

with respect to =, then
ER(A) = E R(A)

so that an optimum ) for squared error of prediction Toss may be

estimated from the data by minimizing ﬁ(k).

Proof: This theorem is a special case of Theorem 2 which will be
proved below. Part (ii) is well known (see [2,13,17,19]), (iii) recently

appeared in [6].

We interpret (i) and (ii) as saying that estimation with the
polynomial spline gn,A should be viewed as a (the?) natural extension
of Gauss-Markov estimation with polynomial regression functions (i.e.
estimation with gn’w). This is because the Gauss-Markov regression
estimate can be obtained as the posterior mean of g when g has a
prior diffuse on the coefficients of the polynomials; gn,k’ T
obtained as the posterior mean of g when g has a diffuse prior on the
coefficients of the polynomials modified by the addition of b'/2z(.)

to the prior specification, b > 0.

In practice » = o2/nb is not generally known, so that it is
fortunate that A can be estimated from the data via (iii). If o2 is
not known an estimate of A which minimizes E R(2) asymptotically for
large n for fixed g ¢ wém) can be obtained by using the method of

generalized cross-validation [6].



3. Generalized splines as posterior means with a partially improper prior.

We now consider the general case where polynomials on [0,1] are
replaced by some real-valued functions {¢j(')}?=1 defined on some
separable index set T. Families of extensions of Gauss-Markov
estimates analogous to the smoothing polynomial spline will be found.

We require only that the nxm matrix with jk-th entry ¢k(tj) be of rank

m.

Let HK be a reproducing kernel Hilbert space (r.k.h.s.) of real
valued functions on T and containing the {¢j}. Recall [3] that an r.k.h.s.
is a Hilbert space with the property that, for each fixed t, e T, the
Tinear functional which maps g ¢ HK to g(ts) is a continuous linear
functional. The reproducing kernel (r.k.) and inner product for HK
are denoted respectively by K(s,t), s, t € T, and Kty S It is not

hard to show that H, is the direct sum of span {¢j} and HQ’ the r.k.h.s.

K
with r.k. Q(s,t), s, t € T given by (see [24])

$:(t)

¢1(5) kij j

m
glset) = Kissb) =}
il.j=

1
where kij is the ij-th entry of the inverse of the (necessarily
strictly positive definite) matrix with ij-th entry <¢1,¢j>K . Let PQ
be the orthogonal projection operator in HK onto HQ' (That is, I—PQ
és the orthogonal projection in HK onto span {¢j}.) The analogue of
f(g(m)(u))zdu is [IPQg\|§, and this is, of course,a measure of the
geviation of g from span {¢j}, being the distance in H|< from g to

span {¢j}.

Suppose y is not in the span of the vectors {¢.}ﬂq where

i o

¢ = (¢j(t]),...,¢j(tn))'. Then [2,13] there is a unique solution,

call it 9. to the minimization problem: Find g e HK to minimize



D5 {1Pgal I - (3.1)

We shall call any 9.2 obtained as a solution of this minimization

problem a generalized smoothing spline, or, consistent with the

terminology in [2], just a smoothing spline.

Theorem 2. Let g(t), t ¢ T have the prior distribution which is the
(t)s

same as the distribution of the stochastic process Xg

6 wbET 5 2, b i (3.2)

Lt = ]

3

I~13

J
where o = (91""’em) . N(O,glmxm), b is fixed >0 and Z(t) is a zero

mean Gaussian stochastic process with E Z(s)Z{t) = Q(s,t). Then

(i) The generalized spline 9, which is the minimizer of (3.1)

A
has the property

gn,A(t) = 1im E

E—eo

La(t)[ Y=y}

with A = ¢2/nb, where E_ is expectation over the posterior distribution

3
of g(t) with the prior (3.2).

(1) Suppose y is not in the span of the {¢j}’ Then
(+) is that element in span {¢j(-)} best fitting the data in a
least squares sense. If Qn’ the nxn matrix with ij-th entry Q(ti’tj) is
of full rank, 1im g

n-0
||PQ9||§ subject to the conditions that it interpolate the data, and

n A(-) is that function in HK which minimizes

d{a) = ]|Pan Alli is a monotone decreasing function of .
(iii) Let
1 & 2
R(K) = ﬁ' Z](Q(tj)'gn,k(tj)) s



and define &(A) by
ROD = T (I-AG) [ 12 + 02 Trace A2(3) - o? Trace (I-A(3)°}.

where A(%x) is the symmetric, non-negative definite matrix satisfying

so that an optimum A for squared error of prediction loss may be

estimated from the data by minimizing é(x).

Proof: (i) Using Lemma 5.1 of [13], an explicit formula for

gn,k is given by

)Tty

* (0 (8, e (T Ty
n

(3.3)

where T is the nxm matrix of rank m with jk-th entry ¢k(tj),
M AT e where Q_ is the nxn matrix with jk-th entry Q(tj,tk),
and Qt (t) = Q(ti,t). With the prior of {3.2) it is easily seen

i

that the prior covariances E Xg(t)Y and E Y'Y are

m
><
_—
+
—
-
1l

 T(oy (), (£D)" + (0 (),0050; (£))"

1

m

-

-
1

ETT + an + 02 1.



=1 0=

Therefore, from elementary considerations [1]

ECX () |Y=y) = {aT(¢1(t),...,¢m(t)r+b(ot](t),...,Qtn

(£TT'+bQ +621) "y .

Setting A = ¢2/nb, n = £/b and M = Qn + nxl gives

ECK(8) [Yoy3 = (0 (1), 000 (80T (nTTH40) 7y

* (0 ()50 () (nTTH+m) Ty
n

By comparing (3.3) and (3.4), it remains only to show that

Tim nT'(TT'+M)'] = (T‘M_]T)"]T'M"]
7’]-9»00
and

-1 1

1im (arT' M) = wl-T(r W

n-—)OG

y Ity .

Now, it can be verified (see also [9]) that

G R (C S e S AT
and so
Tim (a7T+)71 = Tim (oo (et 1y Teew )
T‘l-')-CD n‘—>00
= Tim (- It der Iy T
n=-« 1
=l e il T

also

(£))'3.
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im AT(aTT 4" = Tim nT M —n M 7T T M) TN
T n--©
e et sl =Ty ]
= Tim i T=nT MOV (T4 ) T oM
]’]4}00
L il iy K P
= 1im n{(I+nT'M ' T)-nT'M 'TH(I+nT'M'T) " 'T'M
n%
= Vi sl T
-0
- Tim G n !
e

= (ruwinTewt

giving (3.5) and (3.6).

ii) To show that Tim 9, (+) is the Gauss-Markov estimate of g, one

A=

s A
notes that

1

Tim (T'M']T)"‘T'M” = (TLT)’]T'

A =0
B e ey s p

A0

~

J

~

(t)s where é = (9]""551.“)' 5 (TIT)_]

~—13

(t) = Ty

and so N i ¢

is the Gauss Markov estimate of 6 = (e],...,em). The conclusion

concerning 1im g is a consequence of Lemma 3.1 of [13], see also [2].
A0

The decreasing monotonicity of ||PQgn A||§ is known from [16, Eq.(7)]

n,A

where it has been derived explicitly from [2]. An easy proof also

follows from the representation of PQ g which is given on the Teft of

s
Egn. (4.5) below.
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i11) Since RO = ilg, ,-al1% = 71 1AGIy-gl 1°

E R(Y) = 10 [(1-A0))gl 12 + o2 Tr 200} .

Now
£ [(1-AQ))y[ % = [1(1-AGD)g| |2 + o2 Tr (1-A(1)°

so the result is immediate.

We remark that A()) is obtained from (3.3) and is

A = T I e s T T T petails of

computing ﬁ(k), and the results of some numerical experiments
demonstrating the efficacy of 9,5 as an estimate of g may be found
in [6] for the cubic polynomial spline case. (i is the minimizer of é(A}.)

Theorem 1 follows from Theorem 2 by making the identifications

m-1 m-1
o7 L ! 1 (s—u)+ (t-u)y i
fly = Wy s Q(s,t) = é ((m-1)l)2 du, and }{PQg[}K

1
j(g(m)(u))zdu, for complete details concerning this and the remainder
0

of this paragraph see [13]. If {¢j} is any extended Tchebychev
system of functions on [0,1], then T is of rank m whenever n > m

and the {ti} are distinct. There will exist an m-th order linear
differential operator Lm whose null space is spanned by the {¢j}. If
?ne takes Z(t) formally satisfying Lm Z(t) = dW(t), then Q(s,t) =

[ G(s,u)G(t,u)du where G is a Green's function for L_, and
0 1

[1Pal Ty = [LLy@) (w))au

The results here generalize easily to ¢ ~ N(0,02}), for known

g2 and } via the results in [13].

For related work concerning the use of smoothing splines for

smoothing surfaces (7 = [0,1] x [0,1] x ... x [0,1]) see [25].
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4. Representations of 9, for efficient Computing

A

We believe smoothing splines are appropriate for solving a wide
variety of practical problems in practice including smoothing surfaces,
once efficient numerical algorithms are developed. If HK is a space
of periodic functions on [0,1] or a tensor product of periodic spaces
oft [Bs1] = 545 200,11 and the {t;} are equally spaced or the tensor
product of equally spaced points then computing problems are readily
solved. (See [26], for a computed example). In general. however, the
efficient computation of gn,x presents challenges, if n is very large,
as would usually be the case if T is a rectangle in d-space. It will
probably be necessary to choose () with computational ease an

important consideration.

Equation (3.3) will generally not be the best representation for

computing 9, 5 We discuss some other representations for 9 chosen
? 3

A

with efficient computing in mind. We assume below that Qn 15 af full
rank. Since

1

et = o

|"] BV
TEM  [T=T(T"N L

it is clear that B 5 has a representation

? n-m )
g = 6.9, + S (4.1
Nsd ™ gfp TR T gy M1
where 0 and ¢ = (CT,...,Cn_m) are vectors of constants, and
n-m
hi() = I b.s Q. ()
i =1 1 tj

where the (n-m)xn dimensional matrix B with ij-th entry bij satisfies

BT = O( - but is otherwise arbitrary.

n-m)x
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We will demonstrate shortly that c, 6 and A())y = Iy 3 satisfy
(Zh+nABB')c = By (4.2)
To = y-MB'c (4.5)
and
9y a4 = A(A)¥ =y - HAB'E, (4.4)

where Zh is the (n-m)x(n-m) dimensional matrix with jk-th entry
<h1’hj>Q' One attempts to choose B so that {hj}, B and Zh have
convenient properties for computing, and then to obtain c, © 9y 3>

and g_ .(+) from (4.1)-(4.4) by first solving the linear system (4.2).

n,A
In the polynomial spline case, by choosing the entries in B
corresponding to divided differences, one can obtain Zh and B both
banded matrices and an efficient code results (see [2,16]). The span
of the {hj} can be constructed from B-splines, which are nice hill-

like functions (see [7,8]1).

Equation (4.2) is equivalent to [2, Eqns. (8.26), (9.1)]. However
we provide a direct proof of (4.2) using (3.3) without the elegant but

lengthy machinery of [2]. We must show that

(hys-..sh _m)(zh+nABB')_1By

B W NN . N

s whrerw o e hy (4.5)
1 n -

Now since <Qt1’Qtj>K = Q(ti’tj)’ we have that Xh = BQ,B' and so the

lTeft hand side of (4.5) is given by

(0 s ol )B'(BMB‘)_]B¥ . (4.6)

1 n
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However

1

B (BMB') 1B = M low!

1

e Tyt (4.7)

as can be seen by observing that the nxn matrix X = [-EM ] is of full
rank and

T 1 1 0

!
xew w7 (rewn Iy T e e = (-&-T-mRT~-)

= ¥{B' (BMB') 'BIX"' . (4.8)

Equations (4.3) and (4.4) follow immediately from (4.2) and (3.3).

5. Convergence properties of 9y 5

In the case of polynomial splines with T = [0,1] the mean square
error convergence properties (of ER(1)) are known from [6], and we

give them here for comparison purposes. We have, from Theorem 1,

(a(t;)-g, ,(t:0)% = T[[(1-A(1)) g || P02 TrA°(2)3.

il NaA

=

Ne~1>
iy

ER(A) =E

It is shown in [6] Temmas 4.1 and 4.3 that, if g ¢ Ném), then

|

Hi-a001® <o J6™ W)
and st

L Ao nh]/g (1+0(1))
where .

) f dx

m 0 (]+X2m)2

and
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Thus (ignoring terms of order o(1)), an upper bound on E R(A) is
given by

2
Ccq a

1
(m) 2 m
R(A) < ( (u) ) odu + ==
i) 23 é g u u —T/m

This bound is minimized for A = A* given by

0

A* = 2/ (2T )

where

“n o 12n/ (2m+1)
2m )

1
[(¢™ (u))%du
0

and so

min R(A) < R(x*) = o(n~2™ (2m+1)y

! .
We remark on the comparison between this rate and that obtained

by Benedetti [4] and Priestly and Chao, [15] for kernel type non-

parametric regression estimates. They obtain mean square error at

a point convergence rates for their estimate, call it é, of the form

~

E(g(t)-a(t))% = o(n=2™ (2mH1)y

under the assumption that g(m)(-) is well-defined and bounded at t.
Their rates and ours are not directly comparable since we assume

g e wém), and compute an estimate of integrated mean square error.
However, as in the case of density estimation (see [22,23]) it
appears that the same convergence rates under identical assumptions
will obtain if the method is matched to "m" and the bandwidth
parameter is chosen optimally. Benedetti notes that practical
objective estimates for the optimal bandwidth parameter with window

estimates are yet to be obtained.
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