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1. Introduction.

1.1. Density estimation in classification.

| The Neyman-Pearson lemma tells us that, if we want to classify
an object as coming from one of two possible populations with associ-
ated densities fl and fz, then we should base the classification on the
likelihood ratio fl/fz. Frequently this leads to simple and effective
algorithms. For example if each of the two densities can be assumed to
be multivariate normal then the likelihood ratio is constant along hyper-
planes or hyperquadratics in Euclidean p-space. Then the optimal clas-
sification rule consists of determining which side of a certain hyper-
plane or hyperquadratic of constant likelihood the measurement vector to
be classified lies. If the means and covariances are not known a priori,
the problem of 'learning'' the optimal cléssification rule from the déta
reduces p;'ﬂearning” an appropriate hyperplane or hyperquadratic.

This procedure is in common use, and gives satisfactory results
for a wide class of non-normal densities. However, if the underlying
densines have, for.example, C or S shaped ridges or multiple modes,
then one would like to estimate the likeiihood fl/fz' (See Chi and
Van Ryzin [5] who present a simple consistent non-parametric procedure
for estimating fl/f2 in several dimensions. )

In this paper we approach the problem of estimating the likelihood
ratio from the point of view of estimating the individual densities. For
.thé purpose of classification there is no obvious advantage to estimating

the densities as an intermediate step, other than that the state of the art
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of density estimation seems to be further along than that of likelihood
ratio estimation. In fact we would be pleased if the methods described
here could be applied directly to the estimation of the likelihood ratio.

1.2. The major types of density estimation.

There is a very extensive literature on one dimensional and multi-
dimensional density estimation, we mention only a few of the many pa-
pers, The early papers, on kernel methods, are Whittle [47] ,
Rosenblatt [27], Parzen [24]. Orthogonal series estimates have been
discussed by Watson [44], Kronmal and Tarter [20], and recently by
Brunk [4] and Crain [8]. Boneva, Kendall and Stefanov [3] introduced
spline methods, see also Lii and Rosenblatt [21], Wahba [35,39]. The
k-nearest neighbor methods were introduced by Loftsgarten and
Quesenberry [22], see also Van Ryzin [31], Wahba [32,39]. Penalized
maximum likelihood methods were treated by Good and Gaskins [15], and
de Montricher, Tapia and Thompson, [10] showed their relationship
to spline methods. Recently, Walter and Blum [42] have provided a
framework which unifies some of these methods, see also Parzen [25].

A survey and some Monte Carlo studies appear in Wegman [45,46]. For
an extensive bibliography and survey, see Cover and Wagner [7]. The
above list has no pretenfions to completeness.

1.3. The smoothing parameter in kernel, orthogonal series, k-nearest

neighbor, histospline, and penalized maximum likelihood methods.

The (univariate) kernel estimate f is of the form

n X, -X
i
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Xn are independent, identically distributed observa-

~ where XpXpseoos
tions from the density f, and K(-) is a "hill" function integrating to
one and satisfying some regularity conditions. See Parzen [24]. 'The
expelrimenter must choose the parameter h , which will control the vis-
uval smoothness of the resulting density. Mathematically, h controls
the tradeoff between the squared bias and the variance. The optimal h

from the point of view of mean square error depends on both the sample




P

size and on the unknown density. Woodroofe [48] has given a theoretical
approach to chbosing h from the data, but it appears that the method is
‘not practical. In practice, if f is a univariate density, h can frequently
be chosen visually in a satisfactory manner,

The orthogonal series estimate for densities supportedon [0,1]is given

fx) = ) £ ¢ (%)
vl
where r <<n, the fv are the sample Fourier coefficients
A 1 rj‘
Lo=a L e

and the {q:v} are a set of 532[0,1] orthonormal functions. See Kronmal and
Tarter [20] . The parameter r , which must be chosen, controls the
tradeoff between the square bias and the variance, small r means small
variance but possibly large bias, large r means small bias at the ex-
pense of large variance. Again the optimal r depends on the sample
size and the unknown density. Similarly g_\{'g_r_y non-parametric density
estimate (or estimate of the likelihood ratio) has a parameter (sometimes
hiddeﬁ'. ) which must be chosen by the experimenter, and which controls
the tradeoff between the square bias and the variance. In the k-nearest
neighbor methods, the parameter is k , and in the Boneva-Kendall-
Stefanov histospline (or the histogram, for that matter) the parameter is
the '""bin size'. In penalty function methods the parameter is a multi-
plier on the penalty.

Probably one major reason why multidimensional density estimates
are not commonly used for classification in practice despite the fact thét
there is so much theoretical interest in the subject, is that the resulting
classification methods cannot be made to ""'work'' unless ;ﬁhe smoothing
parameter is chosen reasonably well, and this is hard to do visually in
more than one dimension.

T

In this paper we present a ''new' class of density estimates.

TThe example we treat in detall in Section 4 has previously been pro-
posed by Cogburn and Davis [6] in connection with spectral density
estimation,
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In truth, anewclass of density estimates is not really needed atthe pres-
ent state of the art of density estimation. There are plenty of perfectly
good old ones around. Furthermore, if the density to be estimated is
known to be smooth, then there is an-upper bound to convergence rates
‘for mean square error and most of the methods mentioned above are known
to essentially attain it. So no one is likely to come up with a startlingly

better nonparametric method, To be specific, let Gm b be the class of
2

densities defined by

=]
& = {f:f a density, f,f',...,f(m b abs. cont,,
P m) (m)
f Egp: ”f prM},

2

where |- ”p is the norm in ¢ and M is a fixed constant. Let f be

any density estimate based on n independent observations from fe Cm

Then the rate of convergence of sup E(fn(x) - f(x))2

€ Cm,p
-(Zm-Z/p)/(2m+l~2/p)—e

yp

cannot be better than n for arbitrarily small e.

See Farrell [11], Wahba [34]. Furthermore, if the smoothing parameter is
chosen correctly, then kernel methods, orthogonal series methods, histo-

spline methods and certain examples of k-nearest neighbor methods are
—(2m-2/p)/(2m+l-2/p). See Wahba [32],

a/5

all known to achieve the rate n
[35], [39]). Parzen [24] gave the rate n’ in 1963 for the kernel meth-
od for the case m =2, p =@, | |

Why, then, do we test the reader's patience with yet another class
of estimates ? The method presented here appears to be as good as some
of the others floating around, for medium sample sizes (on the basis of
convergence rate calculations and some very preliminary Monte Carlo
results). The difference between this class of methods and the others
we know of is that it comes with a viable algorithm for estimating the

+

optimal (integrated mean square error) smoothing parameter from the data,

Denote by frl the density estimate to be proposed in this paper,
2

A
where n is the sample size, and X is the smoothing parameter to

TI.I. Good has a procedure for selecting the parameter that goes with a
penalized maximum likelihood method [L5], and Tarter and Kronmal [49]
have done the same for orthogonal series methods,

s
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be chosen. Let Xl,X - ’Xn be n independent observations from a
~ ~ *

density f. We provide an estimate X\ = ?\(XI,XZ,. ,Xn) for X where
i ok s

A =X\ (n;f) is defined as the minimizer of the "integrated' mean square
error,

n
L. A i 1.2
B iél(f“:"(“ L T

Some (relatively weak) theorems are presented on the properties of this
estimator. In Monte Carlo studies the estimate works better than the

Theorems indicate. Let x XopseesX be realizations of X ,X P
154 e | 1 n
and fn,?x(t;zl’zz" 2 ’?’n) 1nd1c:ate the dependence of fn,?\ E 22’ bt 4

Z_ s where zi = Xi or x, . We have observed in related studies [9][14]

~

on z

that Mxl,x v ,xn) approximates the minimizer of

L i i 2
(L.1) = 121 (F, \ (3% Xpse - ooX,) - £))
better than it estimates the minimizer of

1 i ‘ .2

\
& = e 1§ &= !
B iLl (£ ) (5 i Xp X0 X)) = HEDT

In the experiments reported on here we found that 7\( EERE ,xn) came

almost as close to the minimizer of (l.1) as it is possible to get, we

typically observed that the relative inefficiency of A, defined as

n : 2

1 i i
n . (fn,h(x,. . < )(n By 2"' X)_f(n))
je=-1 1 n
(l,2) e
- Wy i 1,2
lgf n 121 (fn,x (n ’Xl’xz""’xn) B f(n))

was between 1.0 and 1.1! (In these cases n =170 and f is a mixture .

of Beta densities.)

~

The estimate \ of X is based on the method of generalized cross
validation (GCV), and this method has general applicability in other con-
texts, including curve smoothing (Wahba and Wold [40][4l], surface
smoothing (Wahba [36]), ridge regression (Golub, Heath, and Wahba [14]),
and the approximate solution of linear operator equations when the data
are noisy (Wahba [37]). These problems are all related to the problems

of estimating the mean of a multivariate normal vector, which has
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received much attention by Stein and co-workers, see Hudson [18] for a
bibliography. Feinberg and Holland consider a similar problem for esti-
.mating cell probabilities [12].

In Section 2 of this paper we review the general prcblem of re-
covering a smooth curve from noisy data, without any reference whatever
to density estimation. A smoothing parameter must be chosen, and we
present the GCV method for choosing it from the data, and report some of
the known theoretical properties of the method. In Section 3 we show
how density estimation can be cast in the context of Section 2, that of
recovering a smooth curve from noisy data, and in certain special cases
we are able to obtain the corresponding theoretical properties of the esti-
mate for )\ in the context of density estimation.. In Section 4 we present
a few typical examples from a very modest Monte Carlo study. In Section

5 we outline future work remaining to be done on the method.

2. Recovering a Smooth Curve from Noisy Data.

| In this section we discuss the problem of recovering a smooth

curve from noisy data, without reference to density estimation. In Sec-
tion 3 we show how the density estimation problem can be put in the con-
text of this section and the results of this section used to smooth density
estimates optimally.
2.1, The models.

| Consider the model
(2.1) y(t) = f(t) + e(t), te [0,]]
where f and & are independént zero mean Gaussian stochastic proces-

ses with .
(2.2) E f(g) fit) = bQ(s;t), IR o

b is an unknown positive constant and Q 1is a known strictly positive
definite continuous covariance, and

E glsyelt).s 0y SR ¢
{2, 3)
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Suppose y of (2.1) is observed for t = tl’tz’ REEAN and it is desired to

recover f. Then it follows from elementary principles that

' E{f(t)ly(ti)
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where
Qe % St
Qn is the nXn matrix with ijth entry

(2. 4b) [Qn]].Lj Q(ti,tj),

A

o 2/nb 3
and

y = (yl,yz,...,yn)' : T

Next, suppose that instead of being a stochastic process, f is

an element of £[Q , where NQ is the reproducing kernel Hilbert space
(rkhs) with reproducing kernel (rk) Q . Define

-1
(2. 5) £, 08 = 19 B0, QulENR MY

Then (see Kimeldorf and Wahba [19]) fn \ is the solution to the minimi-
7 ]

zation problem: Find fe ¥ to minimize

. 0
1 2
(2.6) = Z (t) - v)" + Mg (v; = ¥(t))

where ||| ~ is the norm in %_. Here \ may be thought of as con-

Q

2
trolling the tradeoff between smoothness as measured by ||f||Q and

O

infidelity to the data, as measured by

n
1 Z 2
pig (£t - v,)
T j |
Thus, the "f 1is a stochastic process' point of view" and "f is an
element of %Q" point of view, lead to the same form of algorithm for

recovering f from noisy data, only the meaning given to \ is different.
(We remark that it is well known that sample functions f from the

stochastic model are, with probability 1, not-in %Q).
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Assume that Q is given and 0‘2 and b -are unknown, If f is
a stochastic process then one must estimate A = crz/nb from the data
in order to-estimate f . On the other hand, if f is known to be in ?’[Q’
then we would like to estimate A which minimizes some measure of the

error., We adopt as our measure the average square error T(\A) given by

(2.7) T(\) —if(f t) - £(t.))°
. ( _n,’ln,x(j_ j

We have obtained elsewhere gWahba and Wold [40,41], Wahba [37],
Craven and Wahba [9], and Golub, Heath and Wahba [14]) an estimate
K = K(yl,yz,. B . ,yn) called the generalized cross validation (GCV)
estimate of AN which has the remarkably nice property that if f is the
stochastic process (;_af (2.2) then ; estimates crz/nb, and if fe NQ

then X\ estimates the minimizer of T(N\)!

2.2. The Generalized Cross Validation (GCV) estimate X for the

smoothing parameter \ , and some of its properties.

In this subsection we give the GCV estimate N for A , and re-
port some of its properties. We defer until the end of this section a
discussion of where the estimate came from,

To define the estimate, let A(\) be the nXn matrix defined by

(2.8) AN = Q(Q + an) ™

and define the function V(\) as

1 2
— [l - a0yl

(2.9) V(N) = 1 >

[ Tr(d- AN
where | “n is the Euclidean n-space norm, and Q_ has been defined
in (2, 4b).

Definition of i: The GCV estimate ;: of M is defined as the
value of N which minimizes V(\) defined in (2. 8) and (2.9).

The first property of { is easy to verify, and we sta.te the re-
sults as a theorem, '
Theorem 1. Let f be the stochastic process given by (2.2). Let EN

denote expectation with respect to the noise random variables
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e tl)’ E:(tz), i s ,e(tn)) and ES expectation with respect to the '"signal"

random variables {f(tl), f(tz),. $i ,f(tn))} Then ES E V( ) and

ES Ey T(\)- are both minimized for A = o /nb

.Proof: Let ?\v'n, v=12,...,n be the eigenvalues of Qn' Then

% (- 2)f| 2 + crz Tr (I - A)Z

(2.10) E, V(\)=
N (ni Tr (1 - A))°

2

Sra-mo a-2+% ma-n°
{2,11) ESENV(M = i 5
(=Tr (I -34))
n
n (xm/n) + (o-z/nb) n { ;
= b ( —)°,
v=l ((xm/n) + A )2 v=l ((hvn]n) ki)
The minimum is achieved when UlU:2 = UZUi where U1 and U2 are
the numerator and denominator, respectively, in (2.11), or
X,./n) + (c°/nb) *h x g |
2 (n, /n)+h s
((n, /n) + ) ((h, /n) +))
{2.12)
2
5 : 3 y ”‘vn/”) + (¢"/nb) |
Waalp) o) (O, /) + N

and it is easily seen by setting A = o-z/nb in (2.12) that X\ = crz/nb is

a solution, and it can be verified that it is a minimizer. We can write

00 = = Ay - £

and 2

| 1 2 o | 2
{2.13) EyTON = = (@ - )| -+ = Tr A
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2

1 ndke 2
ESENT(?\) = B T Tt -A)Qn(l - A)+ — TrA~}
' 2
) CHAPRRE < B il NI
" b( Z; vn : + o vn
BT o o R
vn vn
which is also minimized for X\ = O'Z/nb, B

We remark that with the stochastic model (2.1-2, 3) the maximum
likelihood estimate for )\ is given by the minimizer of

y'(1 - ANy
(2.15) M(\) =
[Det(1 - AT

and it can be verified that Theorem 1 is also true for this estimate. That

SENM(M isg X = a‘z/nb. This is the approach

taken by Anderssen and Bloomfield in their pioneering papers [1][2].

is, the minimizer of E

What happens if fe %Q ? We have the property that the minimizer
of ENV()\) tends to the minimizer of ENT(?\) as n—c for any fe %Q

under very general conditions on the mesh {’ci }, andon Q.

Theorem 2. t

; in
et ti =t -5 1 =1:2:. .50 D =dyly .o, satisly f w(u)du =
i in 0
i, where w(u) is a strictly positive continuous function with
l S
f w(u)du =1, and suppose that the probability measure associated with
0
the covariance Q is equivalent (see Root [28], Hajek [17], Wahba [33]

for definitions and examples) to that corresponding to some continuous -
time stochastic process {X(t), te [0,1]}, satisfying an mth order linear

differential equation
m
(3), ., _ dW(t)
(2.16) (meut)jzo 8, (X (1) = ~g—, te [0,1],
for some m, where W 1is the Wiener process, | 80 20 and the aj's
satisfy some regularity conditions, Then, for any fixed fe NQ , the

T( 7\)-

ES ~
minimizer, \ , say of ENV(M’ and the minimizer, \ , say of EN

satisfy

(2.17) " = X o
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where o(l)- 0 as n—o0,
Proof:
A proof for the case tin =1/n and fe ¥ . satisfies further "very

(v) 2

smooth' conditions roughly equivalent to f' ' abs. cont., v =0,1,...,

: %
2m-1, Lm me € 32, may be found in Wahba [37]. The case of general tin

and general fe NQ with L.~ D™ will appearin Craven and Wahba Q1(D :d%—),
A sketch of a proof in the special case ¥ _. a space of periodic functions,

Q
‘cin = i/n , and Lm = Dm appears in Wahba and Wold [4l] and in more de-

tail in Section 4 . L]
: We remark that the equivalence condition on Q can be reformu-
lated, roughly, that % __ is topologically equivalent to a Hilbert space
of functions {f :f(v) gbe. conb,, v =01, remiel; me € S.Z[O,l]}.
Since topological equivalence means '"same convergent sequences'' itis
not important which Q from a particular equivalence class is used in
practice, when n is large. For computational reasons, then, one
chooses the simplest Q which in most applications will turn out to be

: m
one corresponding to Lm = - IpHEnE will be a polynomial

A
spline of degree 2m-l (See [19]). The prarclz,tical minded statistican
or numerical analyst who has small or medium sized data sets would
probably choose the lowest order method which is nontrivial - i.e., m=2.
We recommend m = 2 for small to medium sized data sets no matter how
many derivatives one can assume f has.

It can be shown (See Section 3) that if f satisfies the ''very

smooth'' conditions given above plus some boundary conditions,

-2m/(4m+1)

* s
then A and X\ go to zero at the rate n However, the

maximum likelihood estimate can be shown to go to zero at a faster rate

n—Zm/(4m+l), and for this reason we use the GCV estimate instead.

than
We pause to indicate where the mysterious function V(\) with
the magical properties came from. The fundamental idea began with
cross-validation (also known as predictive sample reuse) as discussed
in Geisser [13], Stone [29]. Suppose a particular X\ is a good choice
(k)

for the smoothing parameter. Let fn X be the“solution of the
' ’
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minimization problem of (2.6) with the kth data point left out. Then
f(k) (t ) should be a good predictor of the missing data point y(tk), and
we measurée this by

(2.18) V(N Z GRNCRERCRIRTAY

where the weights w ( \) will be discussed shortly. 1f Q is periodic
and stationary, that is, Q(s,t) = q{(s-t)modl) for some q; and tj = j/n
then Qn is a circulant matrix and using this fact it can be shown that
VO()\) = V(\) with the weights wk(K) =1, (See Wahba and Wold [41]).

In general, if the Wk(M are chosen so that

(1 -, ()

i n
SO
j=1

are the kktP entries of A(\), then it can be shown that

wk(?\) =

where the akk(?\)
VO(M - V(\). See Craven and Wahba [9]. The weights wk(h) were cho-

sen because they are just those weights required to give the result of
Theorem 2. We challenge the reader to find V(\) as the result of apply-

ing some reasonable optimality principle, we don't know what this prin-

ciple is, but think it exists!

3. Density Estimation as a Problem in Recovering a Smooth Curve from

Noisy Data,
3.1. The density estimate.
Let Q bea r.k. satisfying the hypotheses of Theorem 2. Let

the Mercer-Hilbert-Schmidt expansion (see Riesz-Nagy [26]) of Q be
o0

(3.0) Qls,t) = VZ‘,O N, 0,(8) ¢ (1)
(That is, {?\ } and {4 } are the eigenvalues and eigenfunctions of the

Hilbert-Schmidt operator with Hilbert-Schmidt kernel Q). We will always
assume here that ¢0(t) =1, and this assures that f ¢ (s)ds =0, v =
IO e e % e associated with Lm’ of Theorem 2, then Q behaves
like a Green's function for a >mth order linear differential operator, and

then it is known [23] that the eigenvalues {7\ } of Q go to zero at the
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rate v “™, The {¢,1}are infinitely differentiable [26].

Let XI’XZ’ : @ 3 ,Xn be n independent observations from a density
f supported on [0,1] and let the sample (generalized) Fourier coefficients
f of f be defined by

v

O |

n

fO: fO =} i

It is easy to see that fv is an unbiased estimate of fv = fl ¢:v(t)f(t)dt,
0

with variance going to zero at the rate 1/n. We define fn(t), the sample

inverse Fourier transform of f by

n
(3.2) £ = L £, ¢,(0)
, o
(3.3) == ‘Z K (t,X)
. j=0
where
-
(3.4) K (s,t) = ¢ (s) ¢ (1) .
v=0 i fZ
1f fe &% . , it can be shown that ]if”z =), “— < , and then
Q Q =0 Kv

fn(t) is very nearly unbiased for AOYH<"n 15 larg})e_ since

n
(.31 BE Y =fl K_(t,wf(u)du = Y £ (1) = f(t)+ o)),

0 et B
where
0 00 f2 o 5 o f2
' W) v 1%
(3.6) lo)| =10, feml <) = X Aol <), 5 Q.
v=n+l v=n+l v v=n+l v=n+l v

~The estimate fn(t) is not consistent for f(t), however. Letting Z be a

random variable with density f , we have

1 1
(3.7) Ef(s)f (t) = < EK (s,2) K (£,2) + (1-0) EX (s,2)EK (t,2),

(3.8) cov fn(s) fn(t) =

;i—[{)l K (s,WK (t,u)f(u)du - fol K (s, w)f(u)du fol K_(t, u)f(u)du].



S

Now since the eigenfunctions of Q are analytic, and f is ""nice"
v 2

we may write

k
.90 LUK (WK (5w fudy

0

Ll ol B T ol el
_nﬂlen(n’n)Kn(n’n)f(n)

1 I R VR o g
:5Ezzof(“)}_o%(“w“(“)vio%(“W"(“)

Now, since

1

n 4
3.10) = Y o (hedi= [l e (e mds =1 w=v

ndl ~ Tpn v o R v
i =0, p#v,
p,v =0,1,...,0,
we also must have
Hor N '
el S =1 2y = f
() =l YRl % Ly
p=0
~ 0, j#! {
Thus,'we observe from the right hand side of (3.9)
1. el
}T{) K (s,u) K (t,u) fludu = £t) , s 2 f j
SSRRIE ]S't|=H:j'—"l;2y---:n
which results in
(3.12) : Efn(t) = ft)
j k ) .
o 2y o~ f(= -
cov fn(n)fn(n) 2l i=k
= 0 ’ j#k. b

Thus we have the approximate model for fn(t) :

(3:.13) fn(t) ~ f(t) + e(t)
where
i
(3.14) Ea(;) ~ 0
1 . R 4 _
EE(n)a(n) ~ f(=), 1=]

13
o
-
e
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We will take as ''data'’ the '""observations"

(3.15) vid) =y, = £(2), i=L2,...,n

where fn(t") is defined by (3.2), and proceed to look at the problem of
obtaining an estimate of f as that of recovering f given the noisy
"ordinate'' data Y - '

The model given by (3.12) - (3.15) is not exactly the same as that
considered in Section 2 since here E 52 (ljli*) depends on 1 in general
whereas in (2.3) E aZ(Hi) = crz . However, at least in the stationary
periodic case (see immediately following (3.18)) and below, we will be
able to obtain the density estimate version of Theorems 1 and 2.

Following (2. 4) and (2. 5) we begin by considering as a density

estimate
(3.16) o, W = 408 G wes @ HONQ $ 0 BTy
where ti = i/n, and
1 2 n
y o= () B8 s B0D)

and M\ is going to be chosen by the method of generalized cross-valida-
tion. We want to obtain an approximate form for (3.16) which is easier

to compute, and then modify the result to use the information that f0 i

fl f(u)du =1 . By observing that since
0 [ee}

Qls,t) = VZ_O N, b, (s) ¢ (1)
then :
(3.17) Qn & pPDE

. ; : : 1 : j .
where here I is the nXn matrix with vjth entryﬁ ¢v—l (H), V. 4=
0,l,2,...,n-1, and D is the diagonal matrix with vth entry n )\v—l’

v=1,2,...,n. Substituting (3.17) into (3.16) gives the approximate

expression for (3.16) evaluated at t = E, k= L2y | Loty
F k
n=l " F 4 (X
: k v 'v'n
; (3.18) . fn,h(n) - vz-:() l+?\/?\v
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where

Slb-‘-

(3:19) 4

120 4

The expression we actually want to use is

::1,...

(3.20) - . 08} = 13 Z 1+x/x 0,8

b

This is an approximation to

- . 1
E {0 vit) =y, ¥e L2 nnm fof(u)duzl}

for the stochastic model of Section 2. For the model fe % ., thisis an

Q

approximation to the solution of a constrained version of the minimization

problem of (2.6), namely, find fe ?{Q to minimize
n
2 2
(f(t,) - v)" + A[f]
e 7 -5 Q
j=1
subject to

82l fl flu)du = 1
0

(See [19] for details).

o ?\(t) given by (3. 20), where the
b ]

crucial smoothing parameter A will be chosen according to the method

Our density estimate will be f

of generalized cross-validation for densities, to be described in the next
section. The estimate is a form of an orthogonal series estimate; instead

of truncating the series we ''taper' it. The function fn x may be

3
thought of as the result of putting fn through a "'low-pass'' filter, where

the shape of the filter is determined by Q and the ""half power point", Vo
of the filter is determined by )\"0 = X . On the other hand, letting

. n o ¢ (s) ¢, (1)
“13..29%) K (s,t) =1+

n, \ 2 1+>\/>\v A
we have
1 n
3. 2-4 ~ o~ — ~ t
( ) fn,?\ n ;21 Kn,)\{ ’Xi)
which is a window estimate in the case K {s,f) = K (s-t), and X\
n, A n,A

controls the width of the window. (An example will appear later.) In

general, fn \ is a & -function estimate of the type considered recently

i4




5

by Walter and Blum [42].

3.2. Generalized cross-validation for estimating A\ in the density

estimation case.

Returning to the expression for V(\) in Section 2 for the curve

smoothing problem we can write (2.9) as
v

5 ((Kun/n)+k)2

(3.25) V(\)=
- A 2
[n ; (()xvn/n)+?~)]

where the {\ _} are the eigenvalues of Qn as in (2.10) and (2.11),

vn
and
fl
f2 ;
= By
#
n

= s : ~T o ,
where I’ is the orthogonalizing matrix for Qn ; I QnI‘ = dlag{Kvn} :
In the density estimation context the expression we want to use to approx-

imate (3.25) is

i 7\2|fv| £
_ov=l (}xv 4 7\)2
(3, 26) V(\) = =
1 A 2
[ 2 TS
v=l
where
~ l n
fu, - H iZ—‘:l ¢V(X1)

is an estimate for fv, as before. (It can be shown that the {kvn}

"behave like'" n\,, v =1,2,...,n )
Since the '"noise model" of (3.12)-(3.15) is not exactly the same

as that of Section 2 it does not necessarily follow that the minimizer of

V(\) has the properties described in Section 2.- It turns out however,
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that if ¥ _ is a space of perlodic functions in [0,l], then we can get

Q

the same properties for the minimizer of V(\) in the density estimation

case as in'Section 2. For the remainder of this section we let

e} 4 /
*
(3. 27) Qs,t) = ) A, o, (s) o ()
V=00
where ¢v(s) = e2w1vs, v 0,2l,2,:0., and
}\0 = ]
A= A = |P (21Tiv)|-2 = 9,2
v ~ -v m 3 e B A

where Pm(z) is an mth degree polynomial with all its zeros inside the
unit circle. Q satisfies the hypotheses of Theorem 2, with

L X = P (DX
m m

where D= d_c’ic_ and X satisfies the periodic boundary conditions
X( v)(l)E X(v)(O), v =0,1,...,m-1. Furthermore, it can be verified that

o0
2 . 1 2 20, 2
”f”Q = [f f(u)du]™ + Z ‘Pm(Z‘n'lv)| va‘
0 Y ==00
(3. 28) ok A
1 2
= [ [ fwdu]® + fl [(me)(u)]zdu ,
| 0 0
where '
(3.29) e o= 1 e M fmat, U
0

Also, the solution to the constrained minimization problem of (3. 22) in

this space is just the solution to: Find fe % . to minimize

i 45 2 1 ¥ 2
(3.30) & iz=1 (f(t) - y)" + X {) [(L_£) (w)] du
subject to
fl flaydy = L.
0
Here
o 1 L 2mivX
(3.31) inknet ) jeg” j

.
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and it is appropriate to take V(A) as
n/2 J\2| f |2
! v

2
v=l (P\V + A)

{3.32) V(A) = ’
| L nfz g2
n o4 ()\v + \)

where we are supposing n even for simplicity. Then

B K '
~ o2 2 ¢
(3.33) El fvl _ _12_ EZ Z eva(Xj Xk) = {1 ';,I'valz‘r ﬁ_
n =1 k=l
and
2 2
o l)nz>\|f1 +.1_n\42 \2
N yal (hv+>\)2 Nzl (xv+)\)2
(3.34) EV(M\) = 5
[l Z A 2
n = (A +N\) ]
Letting
1 2 T
Y s (fn(n): fn(;{); » fn(;’))
5 1 2 D
f -(f(n):f(n), ’ f(n))
1 2 n..
E = (S(H)’ 8(;), ’ S(H))

where fn(-) and e(-) are defined by (3.2) and (3.13), we have
n

1 i i 2
g9t L e (-rdn? = 2 Aoy - £
j=1
(3.35)  ET(\) = S |[(I-A)f||2 + Ee' Ae
n n
1 3, L& g
~ = -l Do+ ) N E

where A(A) = Q_(Q_+nM) 15 in (2.8), and Ea”i.l(x) is the ii

of AZ()\). Since Qn is circulant A is circulant, AZ is circulant and

th entry

n
aii(h) T Tr A”(A) . Since — 121 f(n) 1, we have
' 1 2 1. .2
(3 36) E T()\) B ]|(I—A)f“n+nTrA (X} .

Inspection of (3.34) and (3. 36) with the aidof (3.17) reveals that
(3.34) and (3.36) are essentially the same as (2.10) and (2.13), the
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expressions for ENV()\) and ENT(M, with o2 =1 .

Let us put a '"phoney prior'' on f(s) induced by

(3.37) L fg) = 1% ) £ &[s)

y=-00
* v#0
where fv = f_v and otherwise the fv are independent zero mean complex

normal random variables (See Goodman [14]) with E]fvl2 =b\ . We
have in effect introduced the prior convariance bQ(s,t) on f and then condi-
tioned on fl f(u)du = 1. The prior is "phoney'' of course, because the
"sample functions'' are not necessarily positive even though they do inte-
grate to 1 . Proceeding boldly despite the phoniness of the prior, and

letting E_, be expectation with respect to this prior, we have

S
n/2 \ +1/nb nf2 ! >
(3.38) E_ E V(: L L) f () e

S s (k. AL AR 4N

i/ 2 ok kv 1

(3.39) Eg ET(\) = b ( e _b
val (A, # n° val (A + x)

and the right hand sides of these expressions are mimmlzed for the same
X , namely \ =1/nb.

We now return to a more defensible assumption, namely, f.is a
density in 'MQ y
Theorem 2'.

Let Q be given by (3.27). Let 2 and X be the minimizers of
EV(N) and ET(\) as given by‘the right hand sides of (3. 34) and (3.36).

Let f be any density in 'MQ . Then as n—+

(3. 40) soic R S0

Qutline of Proof.

Set (I —-rl;) ~ ] , in the expression for V(M\) in (3.34), Itcanbe
shown that if n—, X - 0 in such a way that n )‘l/Zm - , then
1 A 1 v 1 |
(3.41) 1-=% o= Prdism) (L+o(1)),
N +A A
B RoAh R ST SR l+[Pm(21rv)i2)\ i 1/2
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. 2 A
2 )N 1 A 1 v v 1 1
(3.42) 1- =), §= P = ) =1y
2
) .n Kv-!—?\ n O‘V'H‘) n ()‘V'H‘)Z n l+|P (ZWV)|2 )2
i k (14 o(l))
12
A
where
~ 1 0 dx 1 po dx
g o.Lgeax Lo dx
m 2m 0 (l+x2m) m 2 0 (l+x2m)2
and o(l)- 0 as n— %, Setting
2
(3.43) o) = 2F Y e
. f i
(?\ -}-?\)
and substituting (3. 41) and (3. 42) into (3.34) and- (3. 36) one obtains,
z'lZm k El 2
(B0 BYR) = {0 # G- Lz V1L l/Zm
l"‘m
(3. 45) E T(\) = q;f()\) + W

~

The minimum X of E T(\) given by the right hand side of (3. 45)

occurs for the (smallest) solution of

k
m
(3.46) Wi(X)
f 2mn)\(2m+1)/2m
Differentiating EV(\) given by the right hand side gf (3.44) gives
d 1 km ka UZ
== W)= A - [1 = (.= 1}
dx Uy Zmn)\(Zm-H.)/Zm ko Ul/z
where _
k
m 2
U, = (I= )
1 n)\l 2m
1 P
U2 = Ll.lf(?\) + (1 - 1/ 2m (ka - km)) 5
ni
Provided n\ - ®© in such a way that m\l/Zm — © , we have
Ul = 1 + ofl)
U2 =1 +o(])

and
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o
™o

1

UZ
—-*—173 = l#co(l) .
Ul

It can be shown that the minimizers of EV(A) and ET(\) have the prop-

erty that A\ —» 0, nhl/zm-» o, and so
k
d ; m
a-)TEV(K) = [L& o(l)]{\pf()\) - -—————-ﬁu—l/zm [1 + o(1)]},
2mnX\

so that for large n , EV(\) and ET(A) have asymptotically the same

A

minimizer, that is, A i(l+0(l)).
fZ
B
v

2 Bl s TaMial, g

< o ,(which in this case entails that f(v) abg. conty,

* - S
Jur L HnTde = Cp <o )
then

o

W+ Ot xS C 1+ o))

=
'-ht—‘-
>"
I
>
[§S]
4
T <

and it can be shown (See [38]) that A\ and X\ satisfy

k
2 m
X O, = : (I + o(l))
i 2rr_ln)\(2m+1)/2m

or
k
m .2m/4m+l

Zman )

A o= ML+ o) = ( (1 + ofl))

and then

k4m/(4m+i)

(3.4 BER(k )= [ + (2mC )V 11+ o(l)),
n4m/(4m+l) (2 mcf)4m/(4m+l) £ 0

We note that the above above assumptions on f say that f ECZm "
W

© was defined in the introduction) and so if f % is to be in the
2m, 2 n, A

class of ""good'' estimates we should have, for mean square error at a

- point

B(E () - )2 = ¢ po(4m-D/(am)

2
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The rate n of (3. 47) reflects the fact that slightly better con-

-4m/4m+])
vergence rates obtain for integrated mean square error over a finite inter-
val than mgan square error at a point,

We remark on the importance of the periodic assumption. In
principle f can be estimated by (3.16) with the minimizer of V(XA) given
by (3.25) usedas theestimate of \. The practical problem occurs in com-
puting the eigenfunctions. If the cbv are taken as complex exponentials,
and the true density is not periodic, then the resulting f will not

n, A
My = oy =0, v =

approximate f at the endpoints. Of course f
0,1,...,m-l, are a perfectly good and quite reasonable set of periodic
boundary conditions. With respect to the theoretical properties of the
minimizer of V(\), we used Var Ev = const. and 'A(\) circulant to get
Theorem 2', these properties do not hold in general when 'MQ is not a
periodic space., Without this simplification the expressions for EV(\)
and ET(X\) are slightly more messy. We believe that in general the
minimizer of V(\) estimates the minimizer of T(?\) for T some other

quadratic form in the errors, but do not have a demonstration,

4, Preliminary Experimental Results.

The method was _tried experimentally on five densities satisfying
periodic boundary conditions, by generating a set of pseudo-random numbers
distributed according to each density. We present details of the results
from three of the examples. (The other two were not substantially dif-
ferent). We let Q be the periodic covariance of (3. 27) with m =2 and
'k'vl = (Zwv)zm, v=2%l,2,,.. « This corresponds to the assumption '
that f and f' are continuous, f"¢ £, and f(v)(l) £ f(v)(O), peEiBsls
The density estimate we use is then an approximation to the solution of
the problem: Find f such that f, f' continuous, f'" ¢ .1:2, f(v)(l) = f(v)(O),

=0y fl f(u)du =1, to minimize
1§, 2 1 2
(4.1) - El(f(;) =7y)" * xfo (£'(w) “du

where



_20.-

i
Yi = fn(n)
(4.2) F(t) = L+ L o
n
V"—n/Z :
v#0

-Znivxj

:Jlr—a

The approximation to the solution of the minimization problem actually

being computed is =
g fv 2mivt
(4.3) £ (814 B T
' ’ v=-n/2 (l+(2mv) \)
v#0
The GCV estimate A for M\ is found by computing
1 n/2 £ ]
n 2
v=-n/2 (A, + M) _
(4, 4) Fin) o e T
1 n/2 ! 5 v
[ = STar L.
n V:-n/Z (KV 4 h.)
v#0

at increments A = 10]/3 for j = -21 to 3 and determining the global

/3

The densities tried were all mlxtures of beta densities and the

minimum )\ by inspection (to the nearest 10

three cases presented are

Case I f o~ 3143(10,5) +% B(7,7) +% B(5,10), n =174
Case II f ~ 1% B(12,7) + —4-@(3,11), n =174
Case IV f —ﬁ( 0,5) + ——[3(12 12) +——B(5,20) n= 170

Flgure 1 presents plots of the true densities along with histograms of the
Monte Carlo realizations of n mdependent observations from each den-

sity. The "bin size' of the histogram was chosen by eye to give a pleas-

ing picture.

— e
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150 1
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# n =174
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Case II
25 . 6 4
i = 0 (12,7)+E (3,11}
& i n =174
-0 /
.25 I
.00
.50
25
'UO. i .Zl
Case III
1 1
- % B(20,5) +§[3(12,12)
a2 1
+ 3 B(5,20)
] n = 170
7 -] .9 -l 0

True Density and Histogram of n Computer-Generated
Observations

Figure 1
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Figure 2 gives plots of V(\) of (4.4) and T(\) vs. logloh . T(\) was
computed by

i..2
(;1')) .

1w, i
TA) e s g (B 8,
i=]

b

The reader can see that the minimizer of V(\) is close to the minimizer
of T(\).

Table 1 gives the computed numbers on which Figure 2 was based
- in the neighborhood of the minima, along with the (approximate) relative

inefficiency

T()\)

inf T(\ = 1oj/3)
J, _

The minima of V and T are marked ''¥',
Figure 3 gives plots of fn(t) and fn i(t) (defined by (4. 2) and
) N

(4. 3) respectively). Note that fn 3 is a smoothed version of fn' Figure
]

4 compares fn N and the original density f. The periodicity of fn X
2 2

is evident in Case II of Figure 4, where it can be seen that f;_l }\(O) =
2

1
fn,?\(l) # 0,

Once the computer programs were debugged runs reported here
cost less than $30 to run at the weekend rate, and most of this expense

went toward determining T(A).
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X V() T(N) Relative Inefficiency
(defined by(l, 2))

.464-05 .291-04 .203-01
.100-04 . 288-04 171-01
.215-04 .287-04 .153-01
.464-04 . 286-04% . 149-01%*
,100-03 . 287-04 . 179-01 ST 10 1.0
.215-03 .294-04 . 337-01 ot
.464-03 .313-04 .815-01
.200-02 .348-04 . 171400
.215-02 .389-04 . 278400

Casel
.464-06 .352-04 .505-01 .
.100-05 .347-04 .398-01
.215-05 .344-04 .301-01
.464-05 .343-04%* .222-01
.100-04 .345-04 .202-01% i

202 - 1l

.215-04 .354-04 .355-01 i
.464-04 .374-04 .819-01
. 100-03 .402-04 . 154+00
.215-03 .428-04 . 227400

Case II
.100-06 .383-04 .546-01 :
.215-06 .374-04 .453-01
.464-06 .367-04 .371-01
.100-05 .361-04 .317-01% _2%2_ M
.215-05 .359-04 . 330-01 ’
.464-05 .360-04 .458-01
,100-04 .366-04 .728-01
.215-04 ,375-04 . 108+00
.464-04 .383-04 . 143400 o

Case III

Table I

Vv(\) and T(\) vs. )\ in the neighborhood of the minima, and
the Relative Inefficiency of M\ . |
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Case II

Case III

Sample Invefse Fourier Transform, fn(x), and the Density

Es_tlmate fn,)\(x) ¢

Figure 3
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5, Further Work,

The first question that arises is: How does this method compare .

‘with other methods for estimating a density, under comparable assump- -

tions on thé unknown density. . We believe that the method will give-
about the same results as a corresponding kernel or histospline method
for large n , provided that the smoothing parameter in each method is
chosen as well as possible (i. e.' to rﬁinimize the a'veragé'fnéan'squéfe
error knowing the true density). A fair study of how two methods might
compare in practice, however, requires that both methods have an objec-
tive procedure for choosing their respective smoothing parameters from
the sample.

It remains to determine theoretically exactly what the minimizer
of V(M) estimates in the non-periodic case.

It remains to develop cheap calculational procedures when %[Q
(v)

is not a periodic space. Any function on [0,1] with f ° abs. cont, 5

(m)

w2 0,1, il b € _s_'z, can be decomposed into a polynomial of

degree m and an element of the periodic space 'MQ in (3. 27) with

hv £ (Zwv)—zm. We are attempting to use this to develop approximate
computational procedures that can handle the non-periodic case eaéily.

: f(U)(O‘) s
f(v)(l) 2.0, V2 Oyl - s0-1y Then fn \ can be taken as the solution to
the minimization problem of (4.1) suk;ject to these additional constraints,

When f is known to be periodic and furthermore,

(The solution can be written down using results in e.q. Kimeldorf and
Wahba [19]). V(\) would be unchanged, and Case II of Figure 4 would
not have that annoying increase in fn,i near & = JJi0,

In principle the method extends immediately to f a (doubly
periodic) density on the unit square, where f is in the tensor product
space of 2 periodic rkhs on the unit interval. See Wahba [36]. Tt is
apparent that all of the theoretical results will hold, since they depend
only on the eigenvalues of the r. k. and the Fourier coefficients of f .
We think the method may actually be computationally feasible, with very

clever programming, in up to 3 or 4 dimensions, but of course at some
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point an overwhelmingly large number of observations would be required
to estimate a multi-dimensional density by this method. One approach

to simplifying the computation in the multi-dimensional approach would

~

be to use a simple approximation to the window of (3. 24) to compute fn N -

>3

Acknowledgment.

The computer programs for the study in Section 4 were ably writ-

ten by Mr, Dick Jones. General assistance was provided by Mr. Michael

Akritas.

References
L, Anderssen, R. S. and Bloomfield, P, (1974), A time series ap-

proach to numerical differentiation, Technometrics 16 (1}, ©9-75.

8 Anderssen, B. and Bloomfield, P. (1974), Numerical differentia-

tion procedures for non-exact data, Numer. Math. 22, 157-182.

3, Boneva, L., Kendall, D. and Stefanov, I. (1971), Spline trans-
formations: Three new diagnostic aids for the statistical data

analyst, J. Roy. Statist. Soc. 33, 1-70.

4, Brunk, H.D. (1976), Univariate density estimation by orthogonal
series, TR#51, Dept. of Statistics, Oregon State University,

Corvallis, Oregon,

By Chi, P.Y. and Van Ryzin, John, A histogram method for non-
parametric classification, this volume.
6. Cogburn, R. and Davis, H.T. (1974), Periodic splines and

spectra estimation, Ann. Statist, 2, 1108-1126.

2y Cover, T. M. and Wagner, I.T. (1976), Topics in statistical

pattern recognition, in Digital Pattern Recognition, Vol. 10 of

Communications in Statistics, eds. Fu, Keidel and Wolter,

Springer Verlag, 15-46.
8. Crain, B.R. (1976), Matrix density estimation, Commun. Statist.

A5(1), 89-96.




10,

1.,

12,

13,

14,

15,

6.

17,

18.

19.

B

Craven, P, and Wahba, G. (1976), Smoothing noisy data with
spline functions: Estimating the correct degree of smoothing by
the. method of generalized cross-validation, in preparation.

de ‘Montricher, G.F., Tapia, R. A., and Thompson, J. R. (1975),
Nonparametric maximum likelihood estimation of probability den-

sities by penalty function methods, Ann. Statist. 6, 1329-1348,

Farrell, R. H. (1972), On best obtainable asymptotic rates of
convergence in estimation of a density function at a point, Ann.

Math, Statist., 43, 170-180.

Fienberg, S. and Holland, P, (1972), On the choice of flattening

constants for estimating multinomial probabilities, J. Multivariate

Aol ovdyils - 127134,

Geisser, S. /1975), The predictive sample reuse method with
applications, JASA, 70, 350, 320-328.

Golub, G., Heath, M, and Wahba, G. (1975), Cross-validation
and optimum ridge regression,abstract in Abstracts of Papers to
be presented at the SIAM-SIGUM 1975 Fall meeting, December 3,
4,5, 1975, San Francisco.

Good, I.]. and Gaskins, R. A, (1971), Nonparametric roughness
penalties for probability densities, Biometrika 58, 255-277.
Goodman, N. R. (1963), Statistical analysis based on a certain

multivariate complex Gaussian distribution, Ann. Math. Statist.

34 ;152177
Héjek, Jaroslav (1962), On linear statistical problems in stochas-

tic processes, Czech. Math, J., 12 (87), 404-444.

Hudson, H.M. (1974), Empirical Bayes estimation, Technical
Report #58, Stanford University Dept. of Statistics, Stanford,

California.

Kimeldorf, George and Wahba, Grace (1971), Some results on

Tchebycheffian spline functions, J. Math. Anal. Appl. 33, 82-95,



20.

21,

24,

23,
24,

25.

26,
2l

28,

29.
30.

<1 9

=Bl

Kronmal, R. and Tarter, M, (1968), The estimation of probability
densities and cumulatives by Fourier series mehtods, J. Amer,

Statist, “Assoc. B3, 925-952,

Lii, K. -S. and Rosenblatt, M. (1974), Asymptotic behavior of a
spline estimate of a density function, manuscript, University of
California, San Diego.

Loftsgarten, D. O, and Quesenberry, C. P. (1965), Anon-
parametric estimate of a multivariate density functien, Ann, Math,

Statist. 36 , 1049-105l.

Naimark, M. A. (1968), Linear differential operators, Part II,

Ungar, New York.
Parzen, E. (1962), On the estimation of a probability density
function and mode, Ann. Math. Statist. 33, 1065-1076.

Parzen, E. (1973), Relations between methods of non parametric
probability density estimation, State University of N.Y., Buffalo,

manuscript,

Riesz, F. and Sz.-Nagy, B. (1955), Functional Analysis, Unger,

New York.
Rosenblatt, M. (1956), Remarkson some non-parametric estimates

of a density function, Ann, Math, Statist. 27, 832-837.

Root, W,L, (1962), Singular Gaussian measures in detection

theory. Time Series Analysis, Proceedings of a Symposium held

at Brown University, ed. M. Rosenblatt, Wiley, New York,
292-314.
Stone, M. (1974), Cross-validatory choice and assessment of

statistical prediction, JRSS, Series B, 36, 2, 111-147.

Van Ryzin, J. (1966), Bayes risk consistency of classification

procedures using density estimation, Sankhya, Ser. A 28, 261-270,

Van Ryzin, J. (1973), A histogram method of density estimation,

Commun. Statist, 12, 493-506.

e




32,

34,

35,

36.

37

38,

39.

40,

4],

42,

=I5

Wahba, Grace (1971), A polynomial algorithm for density estima-
tion, Am. Math. Statist, 42, 1870-1886.

Wahba, G. (1974), Regression design for some equivalence

classes of kernels, Ann. Statist, 2, 5, 925-934,

Wahba, Grace (1975), Optimal convergence properties of vari-
able knot kernel, and orthogonal series methods for density esti-

mation,; Ak, Statist, 34 15-29

Wahba, G. (1975), Interpolating spline methods for density
estimation I. Equi-spaced knots, Ann. Stat. 3, 1, 30-48,
Wahba, G. (1975), A canonical form for the problem of estima-
ting smooth surfaces, Univ. of Wisconsin-Madison, Department
of Statistics, Technical Report #420.

Wahba, G. (1975), Practical approximate solutions to linear
operator equations when the data are noisy, University of
Wisconsin-Madison, Department of Statistics, Technical Report

#430, to appear, SIAM J. Num,. Anal.

Wahba, G. (1975), Smoothing noisy data by spline functions,
Numer, Math, 24, 303-394,

Wahba, G. (1976), Histosplines with knots which are order

statistics, J. Roy. Stat. Soc, Series B. 38, 2, 140-151,
Wahba, G and Wold, S. (1975), A completely automatic French
curve: Fitting spline functions by cross-validation. Comm,
Statist. 4. (1), 1-17.

Wahba, G. and Wold, S. (1975), Periodic splines for spectral

density estimation: The use of cross-validation for determining

the degree of smoothing, Comm, Statist. 4, 2, (125-141.
Walter, G. and Blum, J. (1976), Probability density estimation
using delta-sequences, manuscript, University of Wisconsin-

Milwaukee,



43,

44,

45,

46,

47,

48.

-36=

Watson, G.S. and Leadbetter, M. R. (1963), On the estimation
of the probability density I, Ann. Math. Statist. 34, 480-49l,

Watson, G. S. (1969), Density estimation by orthogonal series,

Ann. Math. Statist. 40, 1496-1498,
Wegman, E. (1972), Nonparametric probability density estima-

tion I, a survey of available methods, Technometrics.

Wegman, E. (1972), Nonparametric probability density estima-
tion II. A comparison of density estimation methods, J. Statist,

Comput. Simul, 1, 225-245,

Whittle, P, (1958). On the smoothing of probability density

functibng ; J- R. Statist, Sog., B. 20, 334-343,

" Woodroofe, M, (1970). On choosing a delta-sequence, Ann.

Math, Statist,, 41, 166-171.

Tarter, M. E., and Kronmal, R, A. (19v6), An introduction to the
implementation and theory of nonparametric density estimation,

The American Statistician, 30, 3, 105-112.

Supported by the United States Air Force under Grant No.
AFOSR 72-2363-C,

Department of Statistics
University of Wisconsin-Madison
Madison, Wisconsin 53706




