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Abstract

We consider mesh-point optimization for certain collocation-
projection methods for solving boundary value problems (BVP) for

ordinary differential equations. Consider the BVP
(Lx)(t) = got), t e [0,1]

x(“)(O) = x(“’(1) = 0% s g iy

th order linear differential operator. We assume

where Lm is an m
conditions guaranteeing that there is a unique solution in a given
(reproducing kernel) Hilbert space fp» and that [(me)(t)|Ai M||xIJR,
0<t=<1, for all x ¢ Hp, and some M, where ||-}|R is the norm in
HR. For a given mesh TN = {th}$=], we let Xy» our approximate
solution to the BVP be that element in HR of minimal norm which
satisfies the boundary conditions and matches the data on TN’ that is
(meN)(tiN) = g(tiN)’ ; @ BV e XN is both a collocation and an
orthogonal projection approximation to x, and for certain HR
equivalent to the Sobolev space Wér), Xy is a snline approximant to x.

We are interested in choosing the mesh T, so that [1x=xy| [ is as
small as possible. The optimal mesh we are after depends on the
unknown x. Under certain circumstances a mesh behaving essentially
like an optimal mesh can be characterized by a cumulative distribution
function F* on [0,1], which depnends on x. A (nearly) optimal

mesh Tﬁ = {t?N} is determined by solving F*(t$N) = i/(N+1),

i=1,2,...,N. F* has been given by Sacks and Ylvisaker [7] and



Wahba [8,11,12], under various conditions. In this paper we show how
an estimate Fx of F* can be computed from data, starting with an
arbitrary (nice) mesh with n points. Once F; is obtained, then a
new mesh, say %N = {%iN}?=1 can be obtained as F:(%iN) = j/(N+1),
i=1,2,...,N, and the final approximate solution Xy computed using
the estimated approximately optimal mesh }N' From a different point
of view, if data points g(tiN) are obtained from an experiment and
are expensive to measure, this approach is that of the sequential
design of an experiment. Data at a preliminary uniform mesh (design)
are obtained, and this data is used to obtain an improved mesh
(design). These results apply to more general linear operator

equations.



1. Introduction and Preliminaries

Consider the boundary value problem (BVP)

(L)) = gt), £ e [0,1]
9 = ey 2 g, PR R (1.1)
th

where Lm is an m~ order differential operator with an m-dimensional
null space. e suppose that the domain of Lm is a reproducing
kernel Hilbert space (RKHS) which contains the null space of Lm'

Letting lI-[!Rbe the norm in HR’ we further suppose

a) [(Lx)(t)] < M||x[lps x etlp, t e [0,1]

g, 2T,

AY

b) lx(v)(i)l_i M[|x||R, X e HR’

¥t Ol

Conditions a) and b) are always satisfied, for example if HR is the

Sobolev space Wér),

wér) = {x: x;x',...,x(r"]) abs., cont., x(r) £ L2[0,1]} :

with r > m. Then by the Riesz representation theorem there exist

{nt, t = {0,1]}F; and {Riv’ 1i=0,1, %05 ,... . mf2-TF IR HR such that

(L) (8) =<ngx% 5 te [0,1]

x(\))(i) =-\/R-i.\)bx>R 9 -i = O:-ly = D,-!,...,m/z--t.

p B N N oo
Given a mesh TN = {tiN}1=1 £ {ti]i=1’ and data g(ti), i=1,2,...,N,
we take as an approximate solution, that element Xy in HR of minimal

HR norm satisfying the boundary conditions:



-<R1v,xN>h =0, i=20,1, v=0,1,...,m2-1

and matching the data on the given mesh

<T] :x> = g(t'i), i = 1,2,..°,N "

ba™™ R
i

We will assume

c) {ngs te (0,17, R: s i =0,1, v=~0,1,...,m/2-1} are linearly

independent and span HR}
Condition c) can be shown to be satisfied, if, e.q.
g m
L, = 1 a;(t) D {1.2)
j=0 !

with = > a (t) > 0, and H, = wér), B 5

It is not hard to show (see [2]) that conditions a), b) and c)
guarantee a unique solution in HR to the BVP for any g e Lm(HR), and

that x, 15 uniquely determined for any mesh and data vector. XN is

N
both a collocation approximation and an orthogonal projection
approximation to x. Letting VN = span{nt1,...,ntu}, Sm =

span{Riv, 12 0,1 v= 0uleess mi2=]]), XN is the orthogonal
projection of x onto VN G9Sm. This type of approximate solution was

suggested in [5]. If the reproducing kernel for HR is taken, e.g. as

r-1 r-1
| ri1 S ?in(s,t) (s-u)y (t-u)y ) g
R(s,t) = + U, (1.
i%0 (51)° B [(r-1)17
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then HR is topologically equivalent to wé“). In this case the Riv
are polynomials, ”t.(') is a polynomial spline of degree 2r-1,
possessing 2r-m-2 c;ntinuous derivatives and a single knot at tis
and N is a polynomial spline of degree 2r-1 and continuity class
2r-m-2 with knots at the collocation points. To verify this last

assertion, let RS(-) = R(s,-) be the representer of the evaluation

functional at s in HR’ then

a(v)
R'i\)(s) =<R1V’RS>R =WR(S’t) (]4)
t=1
% E m-1 3(\)) |
nti(S) = \nt.i’RS>R = UZO av(ti) m R(S,t)lt=t- (-[5)

j
and it can be checked that the functions of s on the right have the

claimed properties. (Details may be found in [2]).

We would Tike to choose TN to minimize |]x—xN||R. We do not

know how to do this, but will do something very close, as follows:

Let V = span{nt, tee (041 kabBy &) HR =V ® S,- Now, S_ is
of dimension m. The codimension of V is also m, since Vl is of
dimension m. This follows since VL is the null space of Lm, since
<ht,x3ﬁ =0, t e [0,1] if and only if me = 0. Thus each x ¢ HR

has a unique decomposition
R (1.6)
with y e V and z ¢ Sm.

Letting P. and PV be the orthogonal projectors in HR onto

S
N
Sn](E VN and VN respectively, we have



A

[x-xyl g = |1x-Pex| I = |1 (y+2)-Pgly+2) [ I

| A

[1y-Peyl g + 112-Pgzl I

H‘Y'Psyl lR

| A

||y"PVNy|lR .

We will be able to choose TN with the goal of minimizing fly—PV YI|R.
i N

i

Let

where f > 0 and F(1) = 1, and let TN = TN(f) be determined by
N N
T = ypti=ys @S

F(tiN) = 1/(N+1), i=1,2,...,N. (1.7)

A uniform mesh corresponds to f(s) =1, s « [0,1]. It is

known from [7,8,121, that, under some further conditions

on y, the large N behavior of |!y—PVNy|lR can be described fairly
precisely as a function of the mesh cumulative distribution

function (c.d.f.) F appearing in (1.7). Furthermore the F, call

it F* which (loosely) minimizes []y~PVNy||R is known from [7,8,12],
and, it depends on the unknown y. In fhis paper we construct,
starting from an arbitrary (nice) mesh with n points, and the values
of g on this mesh, an approximation F: to F*. Once F: is obtained, a

new mesh ?N = {tiN}’ say, can be determined from

Fe(tyy) = 1/(N41), i=1,2,...,N.



Then this new mesh can be used to compute the final approximant Xy

This technique has a greater generality than BVP's, we indicate

its usefulness for more general Tinear operator equations at the end.

We now proceed to describe the results from [12] that we need.

Let Q(s,t) =<ngsni3p = (Lmnt)(s) = Lm(s)Lm(t)R(S’t)’ where Lm(s)
means Lm applied to a function of s. Let HQ be the RKHS with RK Q.
There exists an isometric isomorphism between V and HQ generated by

the correspondence

EV’\JQtEH

Tlt Q

where Q,(-) = Q(t,+) is the representer of evaluation at t in H,.
7 Q

To see this note that

<ngsnyZp = 0(s,t) =<0g,0 %

=Y @-Vi, where

1]

u. Since f

Furthermore y € V ~ U ¢ HQ TEf Lmy R
s i =
V™ is the null space of Lo Lm(HR) = Lm(V) = HQ' Let PTN be the
orthogonal projector in H, onto span{Q, ,....Q. }. Then if
Q t ty

¥ e Vv l.e HQ’ by the aforementioned isometric isomorphism,

||.V‘PVNY||R= HU“PTNUHQ . (1.8)

Consider a u ¢ HQ with a representation

1
u{g)" = é Q(t,s)p(s)ds {5

for some p € L. It is for u of the form (1.8) that ||u—PT u||Q
N



can be described in terms of the mesh c.d.f. We have y ¢ V ~ y of

(1.8) if
1
y(t) = é n.(s)e(s)ds , (1.10)
equivalently 1
(L.yl{E) = é Q(t,S)D(S)i% = u(t) . (1.11)

(We note that ut a unless S = V™.)
We will henceforth assume that y has a representation (1.10). If
h,(m"'ZCI) ”(Zr‘_m).

o kr) - o
HR =Wy s then (1.10) entails that x ¢ W = ¥,

It is supposed in [12] (loosley), that Q(s,t) has the continuity
properties of a Green's function of a self adjoint linear differential
operator of order 2qg, with

2q-1 2q-1

. ' @ .9
2im Q(s,t) - &im
s+t 352 -1 s+t 352q']

Q(s,t) = (-1)" a(t) (1.12)

with o and o' continuous. (More generally the hypotheses of the
theorem in [12, Section 2] are being assumed.) If Lm and HR are given

by (1.2) and (1.3) then q = r-m and a(t) = 1/a5(t). With these
(k)

assumptions, the linear functionals Nj v o tj) are continuous

in HQ for k = 0,1,...,9-1. Let Qt.,k be the representer of Nj,k in HQ,

and let Pq,T be the projection operator in HO onto Soan{QtJ,k}?=],k=Oq—]’
and Tet PT be the projection operator in HQ onto
span{QtJ -1 ¢ {Qtj,o}j=1' Then for u e HQ,
inf||u—P UH < 1nf||u Pr t|]q = 1nf||u P ] s s 41:13)
T Q= T @2 q,T,"' 0
qn qn n

where inf means the infimum is taken over all g-point desians. It is
known Iﬁat if g = 2, the right hand inequality becomes an equality.
See [8] for details. The reason for presenting these inequalities,
is, that an exact asymptotic expression is available for

u-P u , and is given by
q,T, 110



—Fu
Theorem [11,12]
t
Let f be a strictly positive density, F(t) = [ f(u)du, let p
0
and o be as in (1.10) and (1.12) and suppose p and o are strictly

positive, continuous and possess bounded first derivatives. Let

& o N g :
i TN(f) = {tin}j=1> N = 1,2,... be determined by

N

F(tiN) = i/(N+1), S o A

Then

2 1
ek ( ) 0% (s)als)
Tl = e e |y,

2P
 lu=Py .
(1.14)
where o(1) - 0 as N -~ ». Furthermore, by using a Holder inequality
1

and the fact that [ f(s)ds = 1, we have
0

Theorem [11,12]

i
[ Ewiél—k—l ds > [I [p%(s)als)]'/?9ds129*! (1.15)

and the Tower bound on the right of (1.15) is achieved if and only if

f = f* given by

2 1/(2q+1
fi(s) = qre-{slals)] il (1.16)
f[pZ(U)a(U)]1/(2q+1)du
0
that is
F*(t) = f[u s)a(s)]'/(2a+1) di/}[ ale) 3 R Ve q.17)

We remark that all the reaqularity conditions on p and « are

probably not necessary but are artifacts of earlier proofs.

The result of this paper is as follows. Given a uniform mesh

{tin}?=1’ we show how an approximation F; to F* may be obtained from



the data vector g(t1n),...,g(tnn),using coefficients which are an

intermediate step in the calculation of X+

In Section 2 we define F; and show that ﬁiﬂ F:(t) = F*(t),
0 <t< 1. In Section 3 we briefly mention some numerical results.
In Section 4 we note how the results apply to more general linear
operator equations. In Section 5 we note how the problem is formally

equivalent to an optimal quadrature problem and compare it to other

work.

2. The estimate Fg of F*

; ) o ] noo_ n
Given an arbitrary mesh Tn of distinct points {tin}i=1 = {ti}i=]’
then Xp s that element of minimal HR nom satisfying the boundary
conditions and (men)(ti) = g(ti), has a representation

m/2-1 n m/2-1
xn(t) - X dOvROv(t) B .Z 5 nt.(t) * Z d]lev(t) (2.1)
v=0) i=1 i v=0

where the {Riv} and Nt . have been given in (1.4) and (1.5).
i

Forcing Xn to satisfy the boundary conditions and the
differential equation at the mesh points Teads to the following

system of n+m equations in the c's and d's:

W2l () N ey e
vEO dOvRos (0) + iZO Ciﬂti (0) + vZO d]uRTv (0) =0,
w=20,1,...,m/2-1
m/2-1 n m/2-1
vZO dOv(LmROv)(tj) ! 121 Ci(Lmnti)(tj) * vz d1v(LmR1v)(tj) : g(tj)’
3= 15265 5saN
m/2-1 n m/2-1
: (n) (1) (1) 7y -
L GouRon )+ L S () e St P 1), = O



These equations are equivalent to (2.1) and

‘<xn,R =0y v 031w sasm/E=]

Ov'R
<Xn’”t1.>R = g(t;), 1 =Ty A
o e 9 =0 YaanS=1 5 (2.3)

The system resulting from (2.2) is not particularly well
suited for computation. When R is given by e.g. (1.3), the
solution can be expressed in terms of a B-spline basis, resulting
in a Tinear system involving band matrices. See [2] for details

of the calculation.

As an estimate F* of F* of (1.17) we take

t
Fatt) = [ [op(s) (s)]1/(ZQ+‘)d7/f[ )a(s)1"/ 29 e (2.4)

where Py is an estimate of the p appearing in (1.10). The function
Pn is formed from the vector (C]’Cz""’cn) appearing in (2.2) as the

piecewise Tinear function on [0,1] joining the points (9,0),

1

(t],c]/h), (tz,cz/h), e (tn,cn/h), (0,1), where h = 1/(n+1). Our

main result is:

Theorem. Let o« and p be strictly positive and continuous, and

(without loss of generality), let te FOMAH )T 92102, 0. Thed

Lim F;(t) = F*(t), t g°[0,1]

n-»ce



1D

Proof:

We first show

1 1
gim [ o (s)Q(t,s)ds = [ o(s)Q(t,s)ds = u(t), t e [0,1].
0

Neee
(2.5)

Using the trapezoidal rule in each interval on the integral on the

left hand side we have

1 n-1
[ on(s10(ts)ds = LI, (£)04 (8 )0, (8119 )0, (¢ )+ 0(h)]

n-1

n
2

= 1oey 0 (6) + T o(h%) (2.6)
i i=1 i=1

We will next show that || ) c; n. = Py y[[p > 0, where y is the

| i=1 i n
element in the decomposition
=y + z, YoenNs 2 & Sm

n
This will guarantee that || Z c; Q - P u[lO + 0 by the isometric
=] i

T
1somorph1sm, and, since ]|u -P u[[Q + 0, it will follow that
T
| Z c; Q -u||, = 0, and hence Z c. 0, (t) » u(t), and then
1 Q =] t;
(2.5) holds. Let R be an orthonormal basis for S_. We may write
ER e e
X= Y Cin, *68+ ] 8.vs (Pl )
i1 1Y j=1 1
where
n ~
Y €: my =Py ¥ (2.8)
oy 71 . iB ) v i
g = (I'pv )y
n
Also, we may write
n m
Xp = L Cimg * ) 8svs (2.9)
0 qay P g 9

where ¢ = (c],...,cn) is as in (2.1) and (2.2).



=

Letting Qn be the nxn matrix with ijth entry <ht Nt
;
th

J
and ) be the nxm matrix with ij

(2.1) and (2.2) are equivalent to

>y = (Lmnt)(t\])»
1

< ;
entry 'nti’YJ:ﬁ’ we have that

r 3N
'S ) <ix,nt13b
|
|
B ] :
Rt (n ] a N sYys- s Y ) | <X,n =
n H % 1 m I __j[Q
! ! < =
X i I X’Y] Q
X Py ;<x,Ymib._
Now, using (2.7), gives
XsN =
t1 Q
= Q.c + J6
<X,n >
t Q
=
\x,y1)b <§6,y]>h
= J'c+ 10+
<5, <
stm>Q 6:Ym>q

(2.10)

(2.11)

where ¢ = (c1,...,6n), 6 = (e],...,ém}, and I is the mxm identity.

Substituting (2.11) into (2.10) gives

0.y, +
; eJyJ P56

+
ne-—3

where PSG is the projection of & onto span (Vn($ Sm).

Since Sm may

not be orthogonal to Vn, Psé will have a decomposition PSG = 60+5]



-

where 60 g Sm and 6] £ Vn‘ Thus

and we want to show that ||61[[R + 0. But the angle between V_ and
Sm is bounded from below by the angle between V and Sm, and this entails
the existence of a constant good for all n such that |[51]1R “

const |[Pss||p < const ||y-Py Y[lg > 0. Thus we have completed the
TR

proof of (2.5).

Equation (2.5) says (pn,Qt)L2 - (p,Qt)Lz, all t  [0,1]. Since
Q is of full rank and HQ is dense in L2[0,1], this entails that

|lo,-oll, ~0. It remains to show that o o in L, entails that
2
t t
f[pﬁ(u)u(u)]]/(2q+1)du ¥ f[pz(u)a(u)]1/(2q+])du. Letting
0 0
p = p_+e_and using the fact that
n' °n

22 (229, (20020 2 (2a)y (220

n

and a Minkowski inequality gives the theorem.

We remark that we may compare the efficiency of a uniform mesh

1]

(f(t)
F*(t)

1l
—+H
*
—
w
e
o
wn
L
e
e
o
o
=~
=
=
‘0
fal]
+
P
=
D
=
o
+
—
o

1 1
L! [02(s)a(s)]"/ 2ds 729" (f)pz(s)u(s)ds .

Clearly, if p2(s)u(5) = const, this ratio is one, and the uniform mesh

is optimum. The greater the difference between the "geometric" mean



"

and the arithmetic mean of pz(s)a(s), the greater the benefit of

obtaining an optimum mesh.

The iterative determination of the mesh may be repeated any
number of times, but the tradeoff between the cost of iteration and
increased accuracy will depend on the problem. If data are
determined experimentally and are costly to obtain then a multistage

procedure becomes more attractive.

3. Numerical Results

Numerical results appear in [2]. For solving the problem the
second time with the new mesh, an equivalent B-spline basis is used
for S. See [2,3]. The details of the B-spline formulation,
considerations in the selection of HR as well as other computational
parameters and certain numerical comparisons may be found in [2]. A

summary of numerical results for the problem

(-n2410t) sinnt

x"(t) + 10t x(t)

x(0) = x(1) =0

is given in Table 1. Since the actual solution x(t) = sin 7 t is
known the maximum error using the optimized as well as a uniform

mesh can be computed and are tabulated in Table 1.



=5

=14~

TABLE 1

COMPARISON OF ERROR USING UNIFORM
AND APPROXIMATELY OPTIMUM MESH FOR THE TEST PROBLEM

APPROXIMATELY
OPTIMUM UNIFORM
Ay N MESH-ERROR MESH-ERROR
10 15 .35-5 .31-4
25 .23-6 .28-5
35 .50-7 .57-6
45 .13-7 .16-6
20 15 .63-6 .31-4
25 .78-7 .28-5
35 12-7 .57-6
45 .87-7 .16-6
10 15 .23-6 .22-5
25 .67-8 .91-7
20 15 .80-7 | .22-5

25 A7-7 .91-7
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4. Application to Design of Experiments for More General Linear

Operator Equations

The iterative, or sequential procedure for choosing a mesh
clearly has more general application than to the solution of BVP's.

Consider for example the Fredholm integral equation of the first kind
1

gltd) = [ Klt.s)x{s)ds (4.1)
0

arising in manylixperimenta1 situations. If x ¢ HR’ then y ¢ HQ

where Q(s,t) = [[K(t,u)R(u,v)K(s,v)dudv. (See [9]). If Xy is that
element of minigST Hp norm satisfying (KxN)(t) = g(t) for t eTN, and K is of
full rank, then [|x-xNHR=]|g-PTng||Q and the procedure for choosing Ty
proceeds as before. However first kind equations are better solved

by e.g. regularization than by collocation for reasons noted by

many people (see [13] for details). Provided that K is not "too"
compact (as an operator from L2 to L2) and data points are expensive

to obtain (as frequently happens in this context) an iterative
procedure for choosing additional points may well turn out to be
important. For a discussion of the experimental design problem when

g is observed with noise, and regularization is used to solve (4.1),

see [14].

5. Remarks

We note that the approach here contrasts with that of deBoor and
Swartz [4]. They suppose x has 2g+m continuous derivatives (their k
is our q), they use local piecewise polynomial approximating
functions of degree m+q-1 to approximate x by collocation and obtain

pointwise O(N'Zq) convergence rates at certain special points when
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certain collocation points are zeroes of the qth Legendre polynomial
in subintervals. The approximations to x here are piecewise
polynomials of degree 2r-1 = 2g+2m-1. Here pointwise convergence
rates of O(N'zq) hold uniformly over [0,1] for any mesh determined by
a nice F and y satisfies (1.11), which is equivalent to x e w(2q+m)
and x satisfies some further boundary conditions. The convergence
proof has been given in [10, Theorem 3]. The proof in [10] essentially
uses |x(t)—xN(t = [ <x=xypRe-Ren 3Rl < [1x-xylIg [[R=Reyl 1 where
Riy 1s the projection of R, onto S @ Vy, and [[x-xy||p and [|R.-Riyl|p
are each 0(N"9).

We note that this optimal mesh problem is formally an optimal

quadrature problem, as follows. If

g{t) = [ Q(t,s)p(s)ds

o

then g is a representer of weighted integration in Hq,

1
<g,u>= [ p(s)u(s)ds, ue HQ
0

N

Letting PT g= ) Wiqt then a quadrature formula is obtained since

N i=1 i

N
<PT g,u>-= Z W.i <Qtsu>ﬂ Z W U(t
N i=1 i
An error bound is
1 N

|£ p(s)u(s)ds - 121 Wiu(ti)| = k<g-PTNg,u>bg

| A

||9‘PTN9!lQ [|u||Q .
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