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Abstract

We consider an estimate of the log spectral density based on
smoothing the log periodogram with a smoothing snline. This estimate
is also a windowed estimate. We show that an unbiased estimate whyv
of the expected integrated mean square error can be obtained as a
function of the smoothing, or "bandwidth" parameter A. The smoothing
parameter is then chosen as that x which minimizes wayv. The
degree of the smoothing spline (equivalently, the "shape" parameter
of the zﬁsaorv can also be chosen this way. Results of moam.zo:ﬁm
Carlo experiments illustrating the effectiveness of the method are

given. .
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1. _Introduction

In this note we report a simple and noEUAmﬁmﬂ« objective
method for determining the appropriate amount of smoothing when
smoothing the log periodogram for the cc1vomm of estimating the
AWm spectral density. Our estimate of the log spectral density is
a smoothing spline fitted to the Tog periodogram. Smoothing splines
for this purpose were sugaested by Cogburn and Davis (1974) in the
context of smoothing the periodogram. The resulting estimate is
also a windowed estimate (see Parzen (1961)), and choosing the
degree of smoothing is equivalent to choosing the "bandwidth"
parameter, or window width. Engineers and scientists have been
routinely computing windowed spectral density estimates for at least
twenty years. For some applications see Bath (1974), Blackman and
Tukey (1958). Early theoretical work concentrated on obtaining )
"windows" with good "shape" v1¢um1ﬁ¢mm (see Blackman and Tukey (1958)),
but it is now part of the folklore that the choice of window width is
more important than the exact window shape. However, for at least
twenty years it appears that a completely objective method for
choosing window width has eluded researchers. An examination of
popular books from 1958 to 1978 discussing the subject of spectral
density estimation via smoothing the log periodogram or periodogram
(Blackman and Tukey (1958), Bloomfield (1976), Brillinger (1974),
Jenkins and Watts (1968), Koopmans (1974), Robinson and Silvia (1978},
see also Anderson (1977)) reveal only subjective methods, which
basically involve trying different values of the bandwidth parameter

until one finds a value that results in a (subjectively)

satisfactory estimate.

In this note we make the very simple observation: For the
smoothing spline log spectral density estimate, an essentially
unbiased estimate mﬁ»u of the expected integrated mean square
error ER(A) can be written down, as a function of the smoothing
or bandwidth parameter, A. The bandwidth parameter is then
choosen by finding the minimizer of wnyu. In Section 2 we present
the details of this argument, and in Section 3 we present the
results of some numerical experiments, which demonstrate how well
the method works on some synthetic data where the true spectral
density is known. In Section 4 we collect some miscellaneous

remarks concerning the relation of the present method to cross-

validation, to ridge estimates and Mallows nr, and to autoregressive

spectral estimates.

2. Optimally smoothed spline (0SS) log spectral density estimates.

Let Xx(t), t = ...-1,0,1,... be a zero mean stationary Gaussian

‘

time series with (theoretical) covariance
r(t) = EX(s)X(s+t), 1= ...-1,0,1,...

independent of s. The spectral density function f(w) of this process

flw) = T r(0)e®™9T,0 Ly2adre.
=~

It is desired to estimate g(w) = log f(w) from a record

X(1),X(2),...,X(2N) of ﬁ:m‘uwonmmm.



Define the periodogram
2

Iw) = Y X(x)e<TTY , -1/2<4<1/2
=1

a4 |
2N

|u.
L= *AQ\NZVCQ. where the Uj, J = 1,2,...,N-1 are independently

and let Hu = I(j/2N). Then Hu =1 ., and, to a good approximation

distributed as 1/2 times a chi-squared random variable, with two
degrees of freedom, and co and cz are distributed as chi-squared
with one amoﬂmm of freedom. See Walker (1965). Thus, while mu is
approximately an unbiased estimate for f(j/2N), its variance is a
constant independent of N, and a plot of I(w) or Tog I{w) will be
uselessly rdmaaz. (See Section 3 for some plots of log I(w)). We
propose here a technique for smoothing the log periodogram to
obtain an estimate of the log spectral density, where the optimum
degree of smoothing to minimize expected mean square error can cm

estimated from the data.

Let <u = Tlog I.+C

j , Where nu = y, the Euler Mascheroni constant,
+

J
= .57721 for j = £1,2,...,N-1, and C4 = Cy = (en2+y)/n. Then

«
.H . . .Hl l ... .H .+.a .
Y uﬁu\mzv+mu. 7 (N-1),...,N, and €5 = T0g Uy+Cy.  Using

Bateman (1954), vol.1, Sect.4.6, and the density of a chi-squared

random variable, it can be shown that mmu =0, j==(N-1)5...,N,

mmm = 12/6, j = +1,+2,...,+N-1. See also Davis and Jones (1968).

The estimate mﬁev for g{w) that we use is

o " . ;
b i Tl mm._:ce v
m v NamyAt” <m-hz-dv ﬁd+,ﬁm=¢vmsu

where

N
A |} -2wivk/2N
m¢|mz _nm m <

-(N-1) 5

s

and A and possibly m are to be chosen. We make a few remarks

concerning this estimate.

The m¢ are estimates of the fourier coefficients g, of glw)

QAEU s M mNﬂ.HCE g ,

% v
and it is implicitly being assumed that mﬁauAsu € hm. equivalently

2

ol

M (2n0)2M |g

The estimate mz.a.» is obtained by taking the sample fourier
coefficients of the log periodogram (i.e. the "cepstrum" of Tukey
(1962)), and damping the coefficient at frequency v by the “"filter
function" ¢(v) = 1/(1+A(2wv)?™). Figure 2.1 shows o(-) for m = 2,

B m. and m =4, = 107" and 107", It can be seen

A =10 and 107
that A controls the width of the filter, while m controls the
steepness of the roll-off. This filter function for the 0SS is the

classical Butterworth filter.

The estimate is a windowed estimate in the sense that

N ; .
g ot
az.s.y?,v = 2N xm-ﬁz-gv <x za.,ﬁe-x\mzu s

where the window za A is given by
N mmd._ce

W (o) = ’
msA ) ¢W-Az-dv MHMMMMHMME

It is also the lattice smoothing spline of Cogburn and Davis (1974)
and is, to a good approximation, the solution to the minimization

problem: Find g in the reproducing kernel Hilbert space of

<. (2.1)
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The filter function ¢(v)

Figure 2.1
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functions {g: m.m.....mﬁa-ﬁv abs. cont., ua<vnug\mw = mﬁ<vﬁﬁ\mv.

v=0,1,...,m1, m?; € __.N”_ to minimize

: 1/2
NECORRREEN (0™ (w))? du -, (2.2)
1 /2

o
2N Ly

Define the integrated mean square error wz?.av by
112

7 2
Ry(A,m) = C w)-q(w dw .
N (Asm) md\m L9y, m, (w)-a(w)]

By Parseval's Theorem, we have

Ry(A,m) = g - ———| *+ g l° .
N <M|Azudv. Voo 14a(2mv) L cmz | v
ve<={N-1)

Assuming (2.1) is true, the second term can easily be shown to be

negligible compared with the first, and we shall henceforth ignore it.

Now

ik m o~ 2rIVK/2N (1 oy

v 2 (N-1)

o mc

- 2 7.1 4

Elg,|” = 191" * o577 (2.3)
and so .

eRy(am) = 1 19,12 1- —1—m)®

y B § 14a(250) "

il ey L
[ va=(N-1) (14#ar(2nv) Evm

2
where = means we are ignoring the fact that mmw = mmm i $ﬂ , and

neglecting terms of order



2
. (2.5)
_m_wz 19,

The main theoretical result of this paper is the following

trivial but useful

Proposition:

Ignoring a factor (1+o(1)), an unbiased estimate of mmzﬁy.av«

is given by wzﬁ».av defined by

- N
R = = ._l
n(xsm) <W-Az-~uﬁ_u _ Vﬁ lwwwlmmmuwMIu
1 ﬂm N 1
v (5 1 = e ¢ (2.6)

-(N-1) (1#r(270)™)

Proof:

Using (2.3) the proof is immediate.

We remark that it is clear that the same argument can be
carried out for any estimate of the form

) ﬁ u H m N__.—._.CF.. ﬁ u)
@mE ﬂlnzmy 9@(..@{ .

where emﬂ.u is any filter function depending on a (low-dimentional)
parameter vector o. :m believe that one bandwidth and one shape
parameter are sufficient for practical ﬁcxvommm. Estimates based on
filter functions of the ﬁowaﬂema¢v ~\A~+_ M a5 W \_ m mxcx mv,

v >0, amﬁcw = emau¢v will have the same Amﬂmm sample u«oumwnﬁmm

as those based on ¢(v) = _\AH+>AN=<Vm3v. with m = p-g and

Amav-NSQU\mn. A Bayesian argument supporting the adequacy of

this two parameter family of filter functions can be found in Wahba (1978).

=g

3. Monte Carlo Experiments

A computer program was written to simulate autoregressive
moving average time series according to a known spectral density,

as follows. Let

p
X(t) = num_ muxﬂﬁ-uu + xwo Uumnwuuv s wo =1 (3.1)

where the ¢(j) are N(0,1), and the {as) and {b;} are given. Then

Pl ) m vummamsx_m\_ m 2 e2Ti0d|2
k=0 =0

J
Synthetic time series were generated by letting the e's be
pseudorandom normal numbers, using 0 for the p initial 'values of
X(t), and computing X(t) as in (3.1). The first 10p values of X
were then discarded so as to lessen the effects of the initial

conditions.

The first example is an AR3 model, that is p = 3, g = 0, with

ay = -1.4256, a, = .7344 and ag = -0.1296.

The wiggly line in Figure 3.1 is the scaled log periodogram
(that mm,_<.:mm been subtracted), and the smooth curve is the true
log spectral density, g. The sample size N = 512. The dashed
lines in Figures 3.2(a), (b), (c), (d), are plots of wzﬁy.au as-a
function of A for m = 2,3,4, and 5. The solid Tines in Figures
3.2{(a), (b), (c), (d) are the observed integrated mean square

error xzh».au. computed as

Ry(aom) = w L3y m, (372M)-g(3728) T

-(N-1)
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The log periodogram, g, and mz.w,m for AR3 model, N=256 and 128. Figure 3.5

Figure 3.4
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and mz.”.a for m=2,3,4,5.
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Figure 3.8
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a, = -.9, ag = -.u..mgm = +.63.

It can be seen that the minimizer of wz is a good estimate of
the minimizer of mz and that for large sample sizes very good
estimates of the log spectral density obtain. Minimizing in m as
well as A can improve the estimate (over using m=2, say), but, at
least in these examples the effect is not large. The two leftmost
filter function "curves" in Figure 2.1 are typical of those obtaining
in these examples for N=128 whereas the two on the right are typical
of our examples for N=512. For the larger sample size then the Tog
spectral density estimate is a linear combination (roughly) of the
first 10-20 complex exponentials) where ﬁow,a:m smaller sample size
the estimate is a linear noacdzmndos of only, say the first 3-7
complex exponentials. Thus, one cannot expect to recover detailed .
structure of the log spectral density with a small sample size.

However good large sample estimates can be obtained completely

automatically.

4. Miscellaneous Remarks

In Wahba and Wold (1975), we suggested the use of cross
validation for choosing the smoothing parameter in the smoothing
spline log spectral density estimate, and showed that that method
would, asymptotically, estimate the minimizer of the expected
integrated mean square error ER(x). We believe (without having
carried out numerical tests) that the present method is better,
but probably not by very much. Basically in the present nozﬂmxﬁ.

the cross validation function V(A) which is minimized in Wahba and

18-

Wold satisfies EV{A)+constant = ER(x)(1+0(1)) where the o(1) may tend
to zero mm3m£:mﬁ slower »:m: N. (See also Craven and Wahba (1977).)
Here mmﬁ»u = ER(A)(1+0(1)) where the o(1) is very much smaller and

due essentially orﬁz to aliasing.

We note that the minimization problem (2.2) to which the
smoothing spline is the solution is formally similar to the
minimization problem in Euclidean p-space which is solved by m.wﬁacm
regression estimate. To see this consider the standard regression

problem

2
y = Xpte , e v N(0,6°1)

~

and the ridge estimate 8 = (xXx+m1)'xTy. 8, is the solution to:

? st e o 2 2
Find B e mu to minimize zégz-xm__z + y_mm“_v. where | .__2
w_.__u are norms in Euclidean N and p space respectively, and this

-

and

expression is to be compared with (2.2). Similarly, it can be seen
that our estimate of the optimal smoothing parameter bears a
similarity to Mallows (1973) nr method for choosing the ridge
parameter in a ridge regression estimate, see also Hudson (1974).
The reader interested in pursuing the relationship between smoothing
splines and ridge estimates can consult Wahba ﬁﬁmuuv where the

ridge regression geometry and smoothing spline geometry is discussed
in parallel. Similarly, as ridge estimates are Bayes estimates, the
same can be shown (roughly) for the smoothing splines, here. We
omit the details, but the argument is carried out for certain
analogous smoothed orthogonal series density estimates in Wahba

(1978). Thus, the present method may be viewed as an empirical
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Bayes method, while it is simultaneously in the tradition of non-
parametric .spectral density estimation. Within the past few years
it has been suggested that the spectral density be estimated by
fitting a low order autoregressive scheme to the time series and
then estimating the spectral density as the spectral density of

the estimated low order schemes (see Burg (1975), Parzen (1974) and
Akaike (1974)). The length of the autoregressive scheme plays the
role of the smoothing parameter, and Akaike (1974) and Parzen (1974)
have both given objective criteria for choosing it. This auto-
regressive method has, in fact, become popular in geophysical
applications. See Landers and Lacosse (1977), Griffiths and
Prieto-Diaz A_muuy“ We do not know how the two methods (0SS vs.
mcﬂo1m@1mmmﬂ<m‘mnmnﬂ1md estimation) compare in general. MWe
conjecture that the answer will very much depend on what the true
spectral density is as well as on the sample size. Our own very
preliminary experimentation, which is presently restricted to
simulated low order autoregressive moving average models, seems to

suggest this.

-20-
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