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ABSTRACT
We discuss a number of topics related to the practical solution of i1l
posed problems given noisy data as it might arise in an experimental

situation. The model is B fK(ti,t)F(t)dt *e;, 1= 1,2,...,n, where
0

Q]

z = (z],...,zn)’ is the data vector, = = ( 1""’En)l is a vector of
independent zero mean random variables with common unknown variance, K is
known, and it is desired to estimate f given z. We first define the
1
intrinsic rank of the problem where fK(ti,t)F(t)dt is known exactly. This
0
definition is used to provide insight into the circumstances in which one
may expect to estimate f well, moderately well, or poorly. The sensitivity
of a regularized estimate of f to the noise is made explicit. After giving
the intrinsic rank of the examples of first and second derivative, Abel's
equation and Fujita's equation, it is argued that the first three are only
mildly 111 posed and f should be amenable to accurate estimation by the
method of rsgularization. The method of Generalized Cross Validation (GCV)
for choosing the regularization parameter is described and numerical
results for the estimation of first and second derivative from noisy data
are given. Two numerical algorithms for obtaining a regularized estimate
with GCV are detailed. The second uses a B-spline basis to allow the
handling of large data sets. Ths use of outside information in the estimation
of f is discussed. Three types of outside information are of interest.
1) Several values of continuous Tinear functionals on f are known aporoximately,
2) this same information is given exactly and 3) f is known to be in a
closed convex set, in particular f non-negative. The GCV estimate of the
reqularization parameter has to be modified in case 3) if the closed
convex set is not a linear manifold. To do this we develop the notion of
GCV for constrained problems. Next, we discuss the problem of checking
the validity of the "model" K, and provide a crude goodness-of-fit test.
Finally we end by describing the (known) result that the number k of
iterations in a Landweber iteration for solving large linear systems is
a form of regularization parameter. We then show how GCV can feasibly
be used to choose k in very large problems like those arising in computerized
tomography.
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1. Introduction

We first consider the model

]
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where z = (z1 .y zn)' is the data vector, = = (31,... sn)' is a vector of
independent, zero mean random variables with common unknown variance, K = K(s,t)
is a known function of two variables and it is desired to recover an estimate
of f given the data z. In Sections 2 and 3 f is assumed to be in an abstract
Hilbert space H, in Sections 4-7 we assume that H is a reproducing kernel
Hilbert space (r.k.h.s.) of functions with specified continuity properties.

An estimate of f in (1.1) will be obtained by the method of regularization,

by seeking feH to minimize

11—
He~—3

(KF)(ty)-2,)% + A[[F]]2 (1.2)

i=1
where ||.]| is a norm or seminorm in #. The smoothing parameter A will be.
chosen by the method of generalized cross validation (GCV), and we will consider
the insertion of various types of outside information into the minimization,

and several algorithmic strategies.

The first goal of this paper is to elucidate and quantify why some i11
posed problems can now be solved with "off the shelf" techniques and why others
are "impossible”. The real issue is, whether the data from the experiment
described in (1.1) provides sufficient information concerning f to meet the
experimenter's requirements. If so, then the problem can be "solved",
usually with the aid of sophisticated mathematical techniques and a powerful

computer, and we shall call such problems mildly 111 posed. If not, then

sophisticated techniques and powerful computers will not provide the missing



information (contrary to uninformed belief!). If the Tow information
content of the experiment can be recognized, then at least two routes

are available - a) a redesign of the experiment to provide more information
b) the incorporation of a priori or outside information into the solution.

In Section 2 we define the "intrinsic rank" of the experiment
described by (1.1). The intrinsic rank of an experiment is the number of
Tinearly independent pieces of information practically available in the data
vector z about the function f if there were no errors in the data and K
is known perfectly. Examination of the intrinsic rank of a problem can
provide valuable information concerning whether or not a satisfactory
solution is obtainable. It is computable for the problems we consider in
Sections 5 and 6 and should be done routinely.

In Section 3 we discuss the effect of noise on the solution. This
is most easily done in terms of what we shall call the canonical representers.
The estimated solution will always be in the span of the canonical representers,
and so knowledge of them can be a useful diagnostic tool if problems
appear. We note here that the intrinsic rank as well as the canonical
representers depend on H as well as n, K, and the location of the ti‘s.

In Section 4 we give the intrinsic rank, as a function of n, for the
examples of first derivative, kth derivative, Abel's equation and Fujita's
equation. It can be seen that first and second derivatives, and solutions
of Abel's equation should be usefully recoverable with reasonable data
sets, while estimation of f by solving Fujita's equation is hopeless in
the geometry that we considered.

~ In Section 5, we first briefly review the method of generalized cross

validation (GCY) for choosing i. We then note some successful experiments
in which first and second derivatives were well estimated from noisy data.

We propose a method for solving Abel's squation. We note that succassful



numerical experiments on Abel's equation have been carried out using a
somewhat different approach by Anderson and Jakeman (1975). MNext, we
describe a "general purpose" algorithm for solving mildly i11 posed problems
when n is around 25 or 30 up to around 100 or 125. This algorithm, which

nas its roots in Anselone and Laurent (1968) provides what appears

.

to be a good way of obtaining the minimizer of (1.2) with |[|f|[? = [(f"(u))?du
while simultaneously obtaining the GCV estimate of A. For n 1arger0than
around 130 or so, this algorithm appears difficult to implement on our
present system (Univac 1100). We are limited by the necessity to solve
nxn eigenvalue problems. We then borrow an idea from Locker and Prenter (1978a,b),
Klein (1979) to suggest that (1.2) be minimized in a B-spline subspace of H. GCV
is used to choose X after the dimension N of the subspace is fixed, and
it can also be used to decide between several different N. This approach
appears able to handle N up to about 100 with n larger. Algorithmic details
are provided.

When a problem is not mildly i11 posed, but moderately or severely i1l
posed, it is generally necessary to make use of outside information to
obtain a satisfactory solution. In Section 6 we consider three types of
outside information:
1) Values of ka, k =1,2,..., are known approximately, where the Lk
are continuous linear functionals, 2) values of the Lk are known exactly,
and 3) f is known to be in a given closed convex set in H. When H is
an r.k.h.s., then the set of f satisfying f(t) > 0, te[0,1] is closed
convex and this important case is included.

We discuss computing the minimizer of (1.2) using the information 1), 2)
or 3). In each case it is to be expected that the optimal A given the

information 1), 2) or 3) will be different than without it. We show how -

GCY should be applied in each case. In particular, if one minimizes (1.2)



subject to f in a convex set which is not a linear manifold, the solution is

not Tinear in z. It is then necessary to extend the usual GCV method to

cover this case. We do that here, and suggest in addition that this

extended version can deal with some other nonlinear and robust problems as well.

With the advent of sophisticated techniques for solving 111 posed
problems, errors in the model, that is, misspecification of X, will
incraasingly become evident. In Secticn 7 we make some comments on
the detection of serious misspecification in K and tentatively propose an
ad hoc goodness-of-fit test which may be used in conjunction with other
approaches for checking the model.

In Section 8 we leave Hilbert space and regularization in the form of
the minimization of (1.2) to consider extremely large n, say n > 10*, such
as occur in computerized tomography. It has been observed by Miller (1974),
Fleming (1977), Strand (1976), Bjorck and Zlden (1979) that, when a
Landweber iteration is used to solve a large linear system approximately,
the number of itsrations and the constant involved in the iteration nlay
the role of regularization parameters. e show how the number of iterations
and the aforementioned constant can be chosen by GCV at a computing

cost which is commensurate with the cost of the iteration.



2. The intrinsic rank of an i11 posed experimental problem

The intrinsic rank of an i11 posed experimental problem as we define

it here depends on the following:
i) the operator K.
ii) The number and location of the data points tI""’tn‘

iii) The space H in which the solution is sought.

iv) The minimum computer roundoff, & (i.e. § = 107 in double
precision. )

The intrinsic rank rt will be the useful number of linearly independent
pieces of information about f in the absence of measurement errors, errors
in K or cumulative roundoff beyond that in iv).

The effective rank will be less than r and will depend on the above
as well as

T oae
ii) errors in knowledge of K.
iii) roundoff errors beyond iv) abave.
Errors in knowledge of K can be an important source of trouble, we assume
K is known accurately until Section 7. We will assume that computer roundoff
(1ii) can be made negligible compared to experimental error (¢?) by the use
of high gquality quadrature formulae, and careful tailoring of the
numerical methods used to the intrinsic rank of the problem*. We shall

generally ignore it in the discussion. The effect of g% is discussed in

Section 3.

-
This means that one avoids division by very small numbers!



We now prepare to define the intrinsic rank rt of the problem (1.1).

We suppose that f is estimated by fn L the solution to the problem: Find

E)

feH to minimize

n
ST (24-fK(tg,8)F(s)ds)® + AL[F] ]2, (2.1)

where ||f|| is the norm of f in H. Later we will consider the (usual)
1
case where |[-|| is a seminorm (for example ||f|| = F[(f”(t))zdtj?/z),

0
however the exposition is considerably simplified with ||-|{| 2 norm.
It is required that H be a space in which the n functionals which map f
1
to jK(ti,s)f{s)ds, i=1,2,...,n, are continuous linear functions. If this

0
is the case, then by the Riesz representation theorem (Akhiezer and Glazman (1961)),

there axist n elements MyseesoNas in H called the representears, such that

1

1
[K(t:,s)f(s)ds = <n.,f> , feH, i = 1,2,...,n
0
where <.,.> is the inner product in H. For example if H = L2[0,T] then

for fixed 1,

ng(s) = K{ty,s) 1 =1,2,....0.

If H = Hq, the r.k.h.s. with r.k. R(s,t), then
1
n:(s) = fK(ti,u)R(s,u)du.
0
The reproducing kernel space results we use in this paper can be found

in Kimeldorf and Wahba (1971), see also Aronszajn (1950). If H is a finite

dimensional space, then each n; is a linear combination of basis functions.



The sclution Fn N to the minimization problem of (2.1) can be written

where z = (21,...,zn)'. Kn is the operator which maps H into En as follows:

1
[K(ty,s)f(s)ds
0

K* is the adjoint of K, in the sense that K*: E, > H, and Kh satisfies

~

) = .-*
(Z,an) <an,f> ;

where (-,-) is the Euclidean inner product. It can be verified that

K;z nas the representaticn

(%;z)(s) = 7z

: 1”1(5)'

1

| gt == }

KnKE: En - En is the operator of multiplication by the nxn matrix with jkth

entry TS This matrix is the Gram matrix of the representers of the
J

data functionals. IfH = Lz[o,l], then

1 1
- - P \
Nyny> = énj(S)nk(S)ds = é&(tj,S)K(tk,:,ds,
and, if H = HR’ then
11
<nyam> = géK(tj,s)R(s,t)K(tk,t)dsdt.

The matrix (KHK;) is symmetric non-negative definite, and hence has a

decomposition



(KHK;) = TDT! (2.2}

™

where I' is an nxn orthogonal matrix and D is a diagonal matrix with eigenvalues

(diagonal entries) A, >4, >...22 > 0.

v

n
We define the intrinsic rank rpas the number of eigenvalues A for

which A1/k1 > §=107"" (computer roundoff). Thus 1 is the effective number
of linearly independent data functionals in the experiment (1.1) in the
absence of experimental errors or errors in K.

We make several observations about re- Firstly, if # is a finite
dimensional space of dimension N, then rp S N. This is reasonable, since,
if f is known to be in H, then f is determined by N linearly independent
pieces of information, and the experiment (1.1) cannot deliver more.
Secondly, if H is a space of functions with several continuous derivatives,
then (other things being egqual), re will be Tess than if # is LZ‘ Again,
this is reasonable, since, loosely speaking, fK(ti,s)f(s)ds and jK(tj,s)f(s)ds
can be expected to be less Tinearly independent on smooth functions than on

arbitrary elements of LZ'
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Let T and A1,..

data vector y = (y1,--

Then

Since

we have

where

The effect of noise.

The canonical representers

» A be defined by (2.2). We define the canonical
,y_)' and the canonical representers Dpaeeesdy, by

y =T'z
£ \ f/ ;
2(s) "nq(s)
: ity .
\¢n(5) M (s)
<¢j,¢k> = kj, 3 k
=0 J=zk

.,N

= <q‘)j,
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and, if the €, are normally distributed, the 51 are independent, normally
distributed with mean 0 and variance o?. Since the experiment (1.1) provides
the equivalent data vy, one "knows" the inner product of f with the unit
yector ‘;'Jf = b.i//E from the data to an accuracy of, within, say 2 standard
deviations = 20//x;. That part of f not in the span of the first rt canonical

j
represaenters is not ‘seen" by the experiment, even in the absence of measurement

error.



L

4. The intrinsic rank of some examples

In these examples we suppose the ti are equally spaced, although no
doubt the results are true for m?x1t1+1-ti\/m}n|ti+]—t1| bounded.

4,1 The first derivative, H = HI

Let H = H], H] = {f: f abs. cont., F'5L2[0,1]}, and et
t
(KF)(t) = [f(s)ds,
Q

-4

thus, é%(KF){t) = £(t). Here X /Ay = 0(n”*). The rate 0(n”™") is obtained

as follows: A reproducing kernel for H] is

Resut) =0 % min{st):

Define

11
P(s,t) ééK(s,u)R(u,v)K(t,v)dudv

st
[[(1+min(s,t))dsdt.
00

~

Then KnK; is the operator of multiplication by the nxn matrix with jkth entry
P(tj’tk)' P is a Green's function for a 4th order linear differential
operator, thus the eigenvalues of the Hilbert Schmidt operator with

kernel P, are 0(n™"), i.a. inversely related to the eigenvalues of the
associated differential operator. An argument in Craven and Wahba (1979),
see also Wahba (1977, 1979¢) indicates that the eigenvalues of the matrix
obtained by discretizing P behave roughly like n times the eigenvalues of

P, giving J\n/I\.E = O(n'“). For a carefully developed argument which gives

similar results in a related problem, see Utreras (1979).
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If n = 10° then A /A, = 107'%, and for 3 = 107", say K K% is of full
intrinsic rank. Provided that the data are not too noisy, this indicates
that effective numerical differentiation is feasible if the true f is

reasonably "nice".

+
4.2 The k™" derivative, H = H"

Let H = H™, H™ = (f: £,f',....f

t
(k) (t) = [ L
0

-k
thus dk(Kf}(t} = f(t). Here A/Ay = 0

Ade
aL

For example, if k = 3, m = 2, then A /i, = a0, IF 8 - 1t =38,

14

then An/k1 ~ 107" and so the intrinsic rank of this problem will be around
25. If f is a very smooth function without much structures one might expect
to get a "good picture” of f with 25 pieces of information. More precisely,
if f is in the span of the first 25 canonical representers and ¢? is not too
big, then a useful estimate of f might be recoverable. Otherwise it probably
won't be. -

This indicates, however, that accurate estimation of seacond derivative
(k=2), with m=1 is feasible with good quality data, since in this case

A/A = 0(10"°) and an; will be of full affective rank for n as large as 150.
4,3 Abel's equations

These equations are of the form

(kF)(t) = [ K{EaSle(sygs



ke

where k(t,s) is continuous on 0 <s<land0<a< 1. They behave 1ike the equa-
tions in 4.2 with k = 1 - @, and so they are of higher intrinsic rank than
comparable problems involving numerical differentiation. If H = Hm, then

i -2(m+1-a)
,\n/.\I = 0(n }s
4.4 Fujita's equation and other severely 111 posed problems

Fujita's equation relates centrifuge data to particle mass distribution.

See Gehatia and Wiff (1970).

Smax Be-ast
(KF)(t) = f Siges e f(s)ds te[O,tmax].
0 1-e
With 3 = 4.25 and realistic values of Smax and tmax we found this innocuous

Tooking equation to be severely i11 posed. With n = 40 equally spaced
data points, and H = Hl, we computed the eigenvalues R1,...,Aa1. They turned

out to look roughly as in the following table

W ?\U Y i

ey ge2d s qorle
2 10735 954l R gy 't
1 167

¢ 7108

g5 fgt it

We concluded that eigenvalues 5 or 6 through 41 were "machine 0".
The intrinsic rank of this problem is between 4 and 5.

The GCV estimate of the optimal A &the GCV estimate is defined in the
next section) was around 10'11 and was a very good estimate of the optimal X

as measured by how close it came to minimizing
40 :

- ) RIS W 2
Tgitd = 5 1§](fn,x(41tmax) gt nax))



B,

in an experiment with synthetic data where f was known. The estimate Fn .

5/
may be written in terms of the canonical data and canonical representers of

-

Section 3 as

Yy

f —) .
?\1.4',\91

-3

n,A 1

i
Note that a x of 107" is completely negligible compared to eigenvalues 1-3,
and completely swamps eigenvaiues 5-41. We succeeded in obtaining excellent
solutions in some examples and nonsense results in others. See Wahba (7979c).
We came to the conclusion that the excellent solutions occurred when f was
aeffectivaly in the span of the first 4 canonical representers and the
lousy results occurred when it was not.

Numerical inversion of the Laplace transform can be expected to be
similarly nasty. The problem of inversion of radiance measurements (z)
to obtain temperature profiles (f) from satellite radiance measurements

in the NIMBUS & satellite and others also appears to be severely 111 posed.

See Smith and Wolfe (1976), Fritz et al (1972).



5. Solution methods for mildly i11 posed problems
5.1 The method of generalized cross validation (GCV) for choosing A

We review this method since it plays a role in the remainder of the
paper. The theary has been developed in Wahba (1977), Craven and Wahba
(1979) and Golub, Heath and Wahba (1979). We will refer to these last two
as CW and GHW respectively. Numerical results concerning the method are given
or mentioned in CW, GHW, Utreras (1979), Merz (1979), Welch (1979),
Bjorck and Elden (1979), Stutzle (1977), <£aolli Franzone et al (1979).

The idea is as follows: Let fn Ek] be the minimizer of

((kE)(t5)-24)2 + A[|F][3,

T

1 —
H- 133

=]
ik
where ||-|| may be a norm or seminorm in H. If A is a good choice, then

(Kfnsgk])(tk)-zk, should, on average be small. This is measured by the

ordinary cross validation function VO(A) given by

Lke, Ky (g )-z, 1

]
Uokale n 1 n,\

0

W~

k

The following identity is proved in CW and GHW:

He~-13
=
>

=
(@]

—
el
—
Lt
= ]

—

where fn \ is the minimizer of
,/

((KE)(t,)-2,)% + A 1]]2

Si—
He-—133

]

—
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th

and akk(k) is the kk™" entry of the nxn matrix satisfying

/(Kf ,}\)(tﬂ\\

{ . 3 = A3}z,
: |

\iee, e

[t is shown in CW and GHW that, from the point of view of minimizing
predictive mean square error (defined later), Vo(k) should be replaced by

the generalized cross validation function (GCVF) V(i) given by

BEERE. oIt )-2, ]2
V(n) =% Ak kz w2 (1) (5.1.1)
i=1 (]'akk(}\))
where
i} 12
Wk()\) T (.l"akk(/\))/“'ﬁj%?aj-(f\))=

ca (1) = 2 ’ -
Note that akk(“) E azk(Kfn,A)(tk)’ and that if all the akk(ﬂ) are equal,

-

then V(A) = VO(R). Collapsing (5.1.1) results in

| (1-a00))zl |2
(3Tr(1-A(A))?

The GCV astimate A of A is the minimizer of (5.1.2). It
is shown in CW and GHW that the minimizer of V(A) estimates the minimizer

of the predictive mean square error T(1\),

KR ) (8)=(KF) (8))°

he-3

where f is the true answer in the model (1.1). There are other, possibly

more desirable optimality criteria for A, for example the minimization of
Tp
To(h) = [(f,  (£)-F(t))at,

see also Nashed (1979b). One can obtain estimates for A from the data



il

which in theory (approximately) minimize TD' Doiag this in itself
is however, an i11 posed problem. In our numerical experiments
with synthetic data we have generally found that the minimizers of TD(X)
and T()\) tend to be close, and K, the minimizer of V()\), is generally a
good estimate of the minimizer of T(X). For this reason we have not seriously
attempted to modify the optimality criteria. In a synthetic experiment,
the inefficiency of g can be measured by
T(i)/mlnT(A) (or TD(R)/minTD{A)).

5.2 Estimation of the first derivative
Here the model is
a2 1@ suraanil {(5:2.1)

where the z; are as before and gst. It is desired to estimate g'. We

let B 5 be the minimizer in H2 of
7 A 1
= 1 (g(ty)-25)2 + Af(g"(u))?du (5.2.2)
i=1 aQ

and estimate g' by 9, ?I’ where X is the minimizer of V(A) of (5.1.2).

g. , is the cubic polynomial smoothing spline discussed in Reinsch (1967)

n,A
and is differentiated analytically. Successful numerical results appear
in CW, Merz (1978), Utreras (1979), and elsewhers.

Transportable code is available from Merz (1978), Utreras (1979) and
Fleisher (1979). OQur experience with the method indicates that it will do
well for n > 20 or so, whenever g is "“smooth", there are at Teast 7 or 8

data points per local maximum in g' and when o is of the order of a fraction

of a percent to several percent of the range of g.
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5.3 Estimation of the second derivative. Numerical results

If g in (5.2.1) has a smooth second derivative, it can be estimated by
differentiating %3 twice. This should give good results in the interior
of [0,1], however gn:A(O) = gn:A(T) = 0, for any X\, so that cne cannot
estimate g"(t) for t in a small neighborhood of O or 1 unless a"(Q) = g"(1) = 0.

This problem at the baoundary can be eliminated by using

1 1
quintic splines, that is, by replacing [(g"(u))2du by [(g" (u))?du in (5.2.2}.
0 0

To my knowledge a quintic spline using GCV has not been implemented, but it
could be done in a relatively straightforward manner by specializing the
multidimensional results for general m in Wanba (197%a) and Wahba and
Wendelberger (1979).

A Monte Carlo example of the estimation of second derivative of a
periodic function in the presence of noisy data appears in Wahba (1979¢c),
and we reproducz the example. The results were fairly typical of a large
number of similar unpublished examples with nigh quality (Monte Carlo) data.

In this example

with

K(t,s) = %{[t-siz-Jt-sg+é}.

K(t,s) is a Green's function for the second derivative operator such that,
1

if g = Kf, then g is the solution to g" = f, [g(u)du
0

0, g(0) = q(1) = 0.
The solid line in Figure la is g and the cross marks are the data z; = g(tﬁ) * ey

where the =; were simulated normally distributed errors, with variance i
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- was about 1/300 of the range of g. f is estimated as fn ., the minimizer of

y 7/

1

W13

1
((KF)(t;)-z4)% + Aé(f'(u))zdu

=1

in the subspace of H1 satisfying the (periodic) conditions }f(u)du =0,

f(0) = f(1). The true f also satisfied these conditions. g was chosen

to minimize V(A). The calculation is that suggested in Wahba (1977),

where the fact that ||-|| is a norm on the periodic functions considerably
simplified the expressions. V(X) is plotted in 1b along with the mean square

errors T(\) and TD(R) defined by
and

[t can be seen that the minimizer of V(A) is a good estimate of the minimizer

of both T(A) and T~(A). The theory in CW and GHW says that V(A) should

ol
"track" T(x) and one can see that this does in fact happen. Figure Ic
compares the true and estimated second derivative. It can be seen that the
rasults are very good.

Interest in astimating the second derivative was motivated by the

following problem. The Lamm equation

%% = ; g%(rD%%-- sw?r2c) (Fadal)

where ¢ = ¢(r,t) is the solute concentration, D the diffusion coefficient,
s the sedimentation coefficient, and w the angular velocity, describes
the behavior of solution concentration in an ultracentrifuge. r is radial

distance from the centrifugal axis and t is time. See Dishon, Weiss and
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Yphatis (1966). w is known. c(r,t) is measured for a finely spaced set of
r's at a number of values of t. From this data, it is desired to estimate

D and s. The Lamm equation can be rewritten as

w il 98 o 9% 3¢
elitvti=dyle m+ =] gy ot
al®
where
e_l — D 3 92 = 1
2sw? 250w°
= B @cp 3¢ .
If i B and 3¢ can be estimated from the data, then 81 and 82 can be

3r?
estimated using regression techniques. The idea is to take an r slice

of the data for fixed t and use the smoothing spline technique with GCY
to estimate %% and %if , similarly with t slices of the data. Centrifuge
data is frequently ;? the quantity and quality similar to this example,
and it appears that estimating 61 and 92 is quite feasible, assuming that

the model 5.3.1 reasonably represents reality and sufficient data is available.
5.4 Abel's sguations

These equations have been studied by Anderssen (1976), Anderssen and
de Hoog (1979), Anderssen and Jakeman (1975) and Jakeman and Anderssen (1975a,b).
They have provided solution methods and a number of numerical results.
Anderssén and de Hoog (1979) have called these problems "weakly i11 posed".
Some of these equations have inversion formulae involving the first derivative.

For example (Anderssen (1976)) if



t
max
T R i T (5.4.1)
t (Sz_tz)wz
then
1 ma x e
Fls} = =3 £ a7 dt . (5.4.2)

In addition to the spectral differentiation - product integration methods
proposed by Anderssen and Jakeman (1975) the following procedure should be
quite effective, If z; = g(ti) * g; is observed for i = 1,2,...,n, then g

is estimated by g and g' is estimated by gﬁ as in Section 5.2. Since

n,A sA

g%,k is a polynomial of degree 2 in each interval [ti’ti+1]’ gA,K can be
substituted into (5.4.2) and the integration carried out analytically.
This is possible using formulas 129, 136, and 153 of Pierce-Foster (1956).
In some examples, g is a density and only observations K],...,Xn from this
density are available. See Jakeman and Anderssen (1975b). Using a spline
density estimate for g (see Wahba (1975, 1976)) would allow the analytical
integration of (5.4.2). These two spline methods do not however as yet
have associated with them automatic methods for choosing the optimal regulari-
zation parameter. Based on our experience with density estimates, we conjecture
that the following method will be effective. Use Wahba (1978) to obtain an
estimate for the density g from X1,...,Xn. This method has an optimal
integratad mean square error procedure for choosing the smoothing parameter
as part of the density estimation. The estimate so obtained is "close"
to a spline. Interpolate this density estimate with a cubic spline with
convenient knots, and use the spline interpolant to the density estimate in the
analytical integration of (5.4.2). (This last is, of course, a form of product
intagration!).

Fymat and Mease (1973) have also studied first kind equations possessing

inversion formulae involving the derjvative of Kf.
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5.5 A "general purpose" algorithm for 25 < n < 100

In this section we slaborate on Wahba (1977) and give a "general
purpose" algorithmic approach for mildly i11 posed problems. (We say
"general purpose" advisedly.) The upper 1imit on n is determined by
lTimitations on computing the eigenvalue-eigenvector decomposition of an
nxn matrix. It is assumed that the errors in the data are relatively
small and random and that K is known correctly. Certain integrals helow
must aither be known analytically or amenable to accurate quadrature.

The approach is the "Eastern" route described by Nashed (1979) in
which discretization beyond that imposed by the data is done as late as
possible. In the approach we take, any required numerical quadrature is
isolated, and hopefully quadrature errors can be controlled so that they
are negligible compared to experimental errors in the data. (This may
not always be true, for examplie, with K such as found in scattering problems
1ike those considered in Fymat and Mease (1978)).

The algorithm is based on the following:

_ m =
Theorem: Let H = {f: f,f;...,f(m 1) abs. cont., f(m}aL2[0,1]}. Let

Wyse e e swy SPan the space of polynomials of degree m-T1, and suppose the

th

nxm matrix T with iv™" entry ET]iv given by

[T]iv = K(ti,s)mu(s)ds

Ot—— —

is of rank m. Then the solution to the problem: Find feHm to minimize

1
: (K (-2 + é(F(m (s))%ds (5.5.1)

Hi—3

i

is unique and is given by



where

and ¢ = {c1,...,c 11ed = (d1,...,dm}' are determined by

(Kn+nkl}c +Td =z

where Kn is the nxn matrix with jkth antry
11
E&n]jk = ééK(tj,u)R(u,v)K(tk,v)dudv.

A proof of this theorem may be found in Kimeldorf and Wahba (1971) Lemma
5.1 where a diffarent but equivalent system of equations is given for c
and d. See also Hilgers (1976).

We now turn to the computation of fn,i’ where i is the minimizer
of Y(x). It is desirable to formulate the calculations in terms of a

convenient nxn-m matrix U with the properties

U'u = I
N=Mxn=-m

R

n

0
n=mxn

Given such a matrix, it can be shown (see Anselone and Laurent (1968))

that
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1}

U(U'KnU+nAI)'TU'z

g = (T'T)“‘T'(Z-Knc)

and (Wahba (1979a))
[-A(X) = nAU(U‘KnU+nAI)']U'.

In Wahba (1979a) and Wahba and Wendelberger (1979), we have successfully
computed ¢,d and V(1) in some two dimensional spline problems which have
equations of the same structure, in the following manner, using double
precision EISPAC (B.T. Smith, et. al. (1976)). U is obtained with EISPACK
as the matrix whose n-m columns are the n-m eigenvectors of the rank
n-m projection matrix I - T(T'T)'1T‘ corresponding to the n-m unit eigenvalues.
These sigenvectors are not uniquely determined, any set spanning the space
perpendicular to the columns of T are allowed. Letting B be the n-m x n-m matrix

U'KnU, with eigenvalue deccomposition U'KnU = IDI'', with I and D again found

by EISPACK, then

¢ = UT(D+nal) 'ru 2

and
1” m (n}\}z 2
N 581 Edi+nA5§ Y
Ve n-m
(3 ] )
n 2y ditna
where
e = (.‘/-l, :yn_m)l = 'z
and D = diag(d ,d )

12 9m
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The calculation procseds by computing Kn by a high powered quadrature formula
and “i(s) also by quadrature, on a fine grid in s.

In the work on second derivative and Fujita's equation noted in Sections
4.4 and 5.3, we computed Kn and the n; by quadrature with great success
in the second derivative experiments and failure with Fyjita's equation.

The failure was not in the determination of K and di’ since in fact

A nti
axcallent solutions were obtained in certain "lucky" cases, see Wahba
(1979c), but the general failure is explainable by the severe i11 posedness,
as already noted.

The numerical gquadrature can be expensive, as far as computing goes,
since there is a lot of it, but we were able to perform it with sufficient
accuracy that quadrature error was not evident in the results. "Expensive”
of course is relative, because an "expensive" 520 comouter run is frequently
"cheap” comparesd to the cost of data collection.

These computations have also been successfully carried out in a multi-
dimensional smoothing context with n as large as 130. (Wahba (1979a),

Wahba and Wendelberger (1979), Wendelberger (1980). In these problems
K was the identity and n; and Kn are known analytically. We found that

double precision ZISPACK returned the 130 eigenvalues of I-T(T'T)‘1T',



(which are known to be 0 or 1) to seven or eight digits.

Thus, although the above procedure has not been implemented as a
whole, it appears promising for medium n, mildly i11 posed problems
where K is such that either Kn and n; are known analytically or computed

accurately by quadrature.
L (m) 1/2
5.6 Canonical form of fn \ using the seminorm ([(f'"/(u))2du)'’/“. Choice of m.
S 0

The solution fn N to the minimization problem of 5.5.1 can be written

in the form
fiaa (w5 "wm)(T(Kn+”AI)-]T}-1T(Kn+nkl)'1z
n- :
' 15: diyJ”* 5
where
§= (yT""’yn~m) =T'Y'z

and

(10 std = U (emy).

and T,U and D = diag{di} are as in Section 5.5. (Note that while U is
not uniquely determined, T'U' is (if the di are distinct). Here the

canonical representers are Wyseen o and (¢},...,¢

. ). The intrinsic

n-m
rank r of the experiment is m plus the intrinsic rank of D. Mote that

as A - = the solution tends to

f = (w]!"-swm)(T'T)-]TlZ,

n,x

the least squares regression of the data onto the span of the polynomials

of degree m-1 or less.
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In the above expressions dependence of T,Kn,U,r, and {6} on m has
been suppressed. As m increases, the number of "special" functions

SRR increases while the di will go to O faster. It is "customary" to use m=2Z,

however, a choice between competing m's can be made by comparing infvm(k),
A

for the different m's. This is done in Wahba and YWendelberger (1979), see

also Gamber (1979).

5.7 A "general purpose" algorithm for larger n. Regularization with a

8-spline basis

-3~

We now continue with the type of problem considered in 5.5 where n is
too large for the convenient solution of an nxn eigenvalue problem. Locker
and Prenter (1378a,b) have suggested solving regularization problems in N
dimensional subspaces of 7l spanned by splines, and have given some convergence
theorems. See also Klein (1979). We will take the suggestion and combine it with
GCV for choosing A to provide a "general purpose" algorithm for large n. The upper
Timit on n will no doubt be determined by storage requirements in storing Nxn
arrays.

We seek the minimizer of

n 1
LY (ke (t)-2,)2 + A (5™ (1)) 2
i=1 0
in HQ, the subspace of 4™ spanned by spline functions, which are piecewise
polynomials of degree 2m-1 in each interval [%,,%;l], i=0,1,...,N"-1,

joined together so as to have 2m-2 continuous derivatives. [t is well
known (Curry and Schoenberg (1966)), de Boor(1978) that this subsvace is
of dimension N=N'+2m-1, and it follows from the results of Curry and

Schoenberg that it is spanned by theB-sdines Bj(t), j=1,2,...,N, where,
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for te[0,1] the Bj are defined by

= 2m-jy . .
Bj(t) = Bzm(t-"%i)s " .|i29"'!N
1 -
Bzm(t) = E }T'-) B(xl t)
2m-1

3(t) = Tz L (M (-1 2", ¢ [0,2n]

1

0 otherwise

where (x)+ = X, x >0, =0 otherwise.

Figure 2 shows Bj(t) form=2and j =1,2,3,4,N-2,N-1,N.B-spline bases

of degree 2m-1 are well known to have good approximation properties in H™.

Given

one seeks ¢ = (CT""’Cn)I to minimize

1
ke (e + (5™ (1)) 2at

1]
Si1—
le:i

( 7 c.
=1 j=1 J 1

Let X be the nxN matrix with 15" entry

(x8) f& . (s)ds

th

and let | be the NxN matrix with jk-' entry
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Figure 2. Bj(t), form= 2



The ij for m = 2 are given in Table 1. It may be necessary to obtain
the entries of X by a high-quality quadrature routine. We must find c

to minimize

Lz = ¥g| 1% + ie'Je.

Si1—

This may be done as follows:

We first note § is of rank N - m. This follows since the Bya-otsBy

are linearly independent in H", however I,t,...,tm'1
= N

so Hhat oo = 0 3 .g1c
J:

- N
I . )
are in span LBJ}J=T

jBj(t) is a polynomial of degree m-1 or less.

We next decompose c into a component in the null space of ] and a component

in the null space perpendicular of ] as follows. Letting

J e

-

where T' is the NxN-m matrix whose columns are the non zero aigenvectors of
J and S the N-mxN-m matrix of non zero eigenvalues of [, and A the Nxm
matrix whose columns are the zero eigenvectors of ], then ¢ has a unique

reprasentation as

¢ =75 /2y + pd (5
for some v = (Y1,...,YN_m)', d = (d1, .,dm)'
Letting
v = xrs™1/2 (5
T = XA (5.

and assuming that T is of rank m, we have

fc = Yy + Td (8

T:1)

oo

7.3)

7.4)
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N-3 N-2 N-1__N

213 8 60 1 0
| O

5108 1.0 -9 T& 8- -0 “5 " :
l ’ ’ E fon i
5 9 10 -9 16 . To get éBj(s)Bk(s),
: 0 1 0 divide Table ent
; 0 0 by 6.
% 0 1 0
| . . "
N-3 .o, 18 -9 0 1
N-2 ~ L. 0 9014 6 0
N-1 ~— 0 1 0'-6 8 -3
N o 110 -3 2
Table 1
chk , m= 2
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and v and d are obtained by minimizing

1
(KF) (£,)-2:)% + naf(F™ (u))2du = [|z-¥y=Td] |2 + niy'y.
0

HE~133

i=1

Differentiating with respect to v and d and setting the result equal to 0

gives the following equations for v and d:

(Y'Y+nal)y + Y'Td = Y'z (5.7.5)
d = (T'T)7 1T (z-¥y). | (5.7.6)
Defining
= 1T "I I
P 10T
W= (1B

and substituting (5.7.5) into (5.7.5) gives

1

y = (W'WnAI) W'z, (8.T.7)
Let
W'W = VDV
where Y is an N-mxN-m orthogonal matrix and D is diagonal. Then
v = V(0#AD) Tz (5.7.8)

and ¢ is obtained by substituting (5.7.8) and (5.7.6) into (5.7.1).

To obtain Y(A) we note that

(I-A(A))z = z - Xc

z - (Yy+Td) = 2 - (Yy+P(z-Yvy))

(I-P)z - (I-P)Yvy

(I-P)z-H(H'W+nAI)'Iw'z.



Thus
(I-A) = (I-P) =W (W'W+nal)™ 1"
and, Tletting d1""’dN-m be the diagonal entries of D, gives
N-m d.
Y e e [
Tr(I-A) =n =-m 2. T
#1 7]
Nem s
=n-N+ )
3=1 dj+nh

The intrinsic rank of this sexperiment is m + the intrinsic rank of D.

Finally,
|1 (1-A)z] 12 = || (I-P)z]]2 - 2z'W(W'W+nAl) ™ W'z
+ z'w(w'WMAIYIw'w(w'w+nAI)‘]W'z
N-m(2ni+d 3 )
il 2 _ ¢ 2
[[(I-P)z]] ji](ﬁxzagyr X3
wnere x = (Xl""’xﬂ-m}l = V'W'z. Thus
o N-m (2ni+d.)
1 (T |12, § 2
SUC L RS T RERS
V(ir) = T

-
ni 2
(n-N+ j£1 THX;HET)

The calculations are summarized in Table 2.
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Table 2

Summary of Calculations for
Regularization and GCV with a B-spline basis

J.= IS5 4
y = xrs™1/2

A T i = *
Let A satisfy 'a = Qy_ .o
Ti= %4
paT(T'T) I
W= (I-P)Y

b= YOV D S diagld) ... ody ) *

1

v = V(D+nAl) " 'Y'W'z

d = (TP )

2

c = FS'1/ v + Ad

N-m 2ni+d.
[ 2
|| (I-P)z]| L n}\-q-dj XJ‘

V(x) = NE;]

ni 3
(n-N+ j§1 TEX;HET—)

Note that T'T is mxm, S is well conditioned. The eigenvalue decompositions

at (*) can be done in double precision EISPACK for N up to 100 or more.
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The use of outside information. GCV in constrained regularization

(@)Y

Westwater (1979) and Jackson (1979) have described axperiments where
outside information has greatly improved the estimate of the solution.
For example Westwater described how external measurement of the temperature
inversion height aided in the determination of atmospheric temperature
profiles.

[n this section we consider first the situation when the values of
one or more continuous linear functionals of f are known, either approximately
or exactly.

Then we consider the situation where it is known that f is in a
given closed convex set in H. If H is a reproducing kernel space then the
important special case f(t) > 0, te[0,1] is included here. Chambless
(1979) has usaed positivity constraints in a form similar to that which we
discuss here. See also Wegman (198C). Sabatier (1977) considers positiyity
constraints from an entirely different point of viaw.

A third situation arises when detailed information concerning the
possible shapes of therso1ution is available, for sxample, as mentioned
in Section 4.4 when libraries of temperature profiles obtained from balloon
measurements ares available when attempting to estimate the temperature
profile from satellite radiance data (Smith and Woolf (1976)). It is
possible to add various constraints, do regularization, etc. in this context
but we will not discuss this situation further.

In this saction we assume that n is small enough that an nxn eigenvalue
problem can be solved, and we operate in the general context of Section 5.5,
with some simplifications. Everything can be carried over to the B-spline

basis approach in Section 5.7 but we omit the discussion.



6.1 Values of 2 continuous linear functions are known approximately

In this section we use the notation and methods of Section 5.5. It

is assumed that one observes

1
ZT‘ = fK(tI’S)'F(S)dS £ ge w12 120l (6.}.])
0 it}
as well as
5 = J-\“ += E i = e :

i . : : m
where the Nj are continuous Tinear functionals on H , and the I

are independent zero mean random variables with variance 3202, j = 1,2,...,2.

2
J
To assign appropriate weights to the data it is helpful to haye some idea

of the factor 6? Then one seeks Fn \ in /M to minimize
2 % 2 1 (m) 2
n+1( g [(KF)( 21J + .21(Njf—yj)-) + Aé(F (u))3du Gy
J:
where
s T
N, = =N, ¥, = —y. .
§es :
j J J OJ J

The minimization problem is now formally mathematically the same as that
of Section 5.5 with n replaced by n+ 2 It can be shown (see Kimeldorf

and Wahba (1971)) that the minimizer of (6.1.3) is

dw (s)

o
-
—
w
—te
He—1>
p— )
(]
ne-13

~

where the n; and w, are as in Section 5.5,

¢j(5) 2 NjR(s,-)

and b = (bl""’biy’ ¢ and d are given by
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L M } b | o | (y‘i

\ / Y L
(T' = T{(E) = 0

where the nx2, 2x% and 2xm matrices L, M and T] nave their fjth antries

given by

1
[L]ij = Nj(s)éK(ti,u)R(u,s)du

~
—
=
—
"

Ni(s)Nj(t)R(s’t)

1J = NJ!.L)1 ’

L} ]
-
—
| —
1

5) means the linear functional Nj applied to the argument expression

considered as a function of s. The calculation proceeds esxactly as in

where Ni(
<

Section 5.5 upon replacing Kn and T by

Note that

N = .
Njf ?(SJ)

oy . . . . .m .
is a perfectly legitimate continuous linear functional in H (but not in

If N.f =
LZ). If ij f(sj) then
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Frequently the values of f are known, say, at the endpoints, or other
selected points and this can be an important source of information.

The GCVF is computad as in Section 5.5 and now estimates A which minimizes

W=

n S
T(A) =-ﬁl—i{i;((Kfn’A)(ti)-(Kf)(ti))z BRRCE AL

J- -l J NyA

6.2 Values of 2 continuous linear functionals are known exactly

Next, we suppaose that the z; are given by (6.1.1) but that outside

information
Pl Nif, [ {6.2.0)

is known exactly, or at least with an error that is negligible compared to
the o We will assume here that 2 is small enough and the hi's are
sufficiently linearly independent that explicit accurate numerical
inversion of the 2x2 Gram matrix M appearing in (6.1.4) is possible. The
estimate fn A\ of f that we seek is then the solution to the problem: Find

2

feH™ to minimize

o
nHe—3

1
((KF)(ts)-z:)% + Af(f"(s5))%ds
i=1 0

subject to

[t can be shown (see Kimeldorf and Wahba (1971)), that if T is of rank m

and M is of rank 2, then the solution fn N to this minimization problem

)

is unique and has the representation

%

n
f . (s) = 7 bios(s) + ] c.ng
Nny,A j=1 i) j=
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where b = (bi""

f

[Kn + nal ; L

by )'s ¢ and d are determined by

(6.2.3)

Appropriate methods for solving (6.2.3) in such a way that A can be

separated out to ease the calculation of V(\) depend on whether T] is of

rank m, is 0, or is of rank between 1 and m.

To avoid tedious details, and

also to provide a more unified approach to constrained reqularization which

we can use in Section 6.3, we will replace the seminorm

1

0

2

on H= by the norm defined by

[0 (u)) 2du]'/®

(0)+f2(1)) +

I‘
J
0

(f"(u))3du (6.2.4)

wnich will simplify the argquments as well as the calculations considerably.

This particular method of augmenting the seminorm by

-

reflects a prior belief that the true f is near 0 at

is not
may be chosen.

and as 9 ~ » the solution tends to (6.2.2).

the case, then & should be chosen Tlarge, or a

adding %(fZ(o) + £2(1))
the boundaries, if this

different augmentation

As 3 = 0 the solution is forced to be 0 on the boundaries,
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A reproducing kernel Q(s,t) for H2 with the norm (6.2.4) is given by-ll

Q(s,t) = 8(st+(1-s)(1-t)) + %[-s3(1-t)+st(t-?)(t-2)], s <t

n

5(st+(1-5)(1-t)) + %[s3t-3sﬁt+s(2t+t3)-t3], s>t

Using this r.k., one obtains the following:
Theorem: The solution fn \ to the problem: Find szz to minimize

1

n
LT (KA ()20 % + ALH(F2(Q)+F2(1) )+ [ (£ (u)) 2du] (6.2.5)
i=1 0
subject to
Njf = yj, J= 15250550
is given by
2 n
fa,a(s) = Ibsos(s) + T cinyls) (6.2.6)
j= i=1
where naow
85(s) = Ny yQ(t.s)
1
nyksl = éK(t1,U)Q(u,S)du
and ¢ and b are given by
1] z

— To verify that this is a r.k. for H
2

with the norm of (6.2.4) one must establish
that Q(-+t)eH and <Q(.,s),f> = f(s) for any faHz, where <,> is the inner product
induced by (6.2.4). This verification is tedious but straightforward. R(s,t)

in preceeding sections is a reproducing kernel for a subspace of H2 of

codimension 2 (the polynomials having been subtracted out.)
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p +
where ln, L and M have their ij“h entries given by

11

[Knjij = ééK(ti,u)Q(u,v)K(tj,v)dudv (6.2:7]
1

[L]ij = Nj(s)éK(ti,u)Q(s,u)du (6.2.8)

D15 = M5 s)Ns(g)Qlsat). (6.2.9)

To obtain V(\A) we shall use a different representation for f than
(6.2.6). This representation and what follows is computationally useful
provided 2 is small and M is well conditioned. If M is not well conditioned,
then some of the "exact" data is redundant and should be eliminated. We

have
.(s) (6.2.10)
where

the vector £ = (Z,(s),...,& (s)) is given by
1 n

where n = (ﬂ1,..-,n 'y b= (¢1,...,®2}’ and ¢ satisfies
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where

~t
i

Kn = LM L

To obtain V(A) note that

K ()

1 ]

1]

z - (LM Ny) + R(RenaD) "V (2=t 1y

-1

(I-A(X) ) (z-LM" 'y) (62411

where

~

A(A) = R(Renal)~ !

Since LM'1y is known exactly, it is reasonable to view z - LM'1y as the
"data vector". Then the GCVF is

1 i

A [ [T=R0G (2LM i) ||

V(x) = 1 ; 16.2.72)
(3Tr(1-A(1)))?

Letting K = UDU' with D = diag(ki,...,kn) and x = (x},...,xn)* = U'(z-LM " 'y)
gives
e A
n 'Z](d.+nA)ZX12
V(x) = —— (6.2.13)
(1 5 L0y
N 35719704

Before using this approach the experimenter should verify that errors in
LM'1y are in fact entirely negligible compared to o2, and errors in
computing M'E are negligible. If this is the case, then the intrinsic

rank of the problem is 2 + the intrinsic rank of D.
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6.3 feC, a closed convex set in H
If H is an r.k.h.s. then
C = {f: f(t)>a(t), tel0,1]} (6.3.1)

is a closedconvex set in H for any continuous «(t), in particular, for

a(t) = 0. More generally sets of the form

(t)<e K (t), tefa,b]

[
]

{£: %

(£ (t)<p, (8, telc,d])

«
il

etc. are closed and convex in #ﬁEO,T] for k <m - 1. This type of information
is frequently known a priori. For example if f is a particle size distribution

then f(t) > 0.

Since
1 0
LT ((kF)(E)-2,)2 + Al F] ]2 (6.3.2)
i=]
with ||+]|% a norm is a strictly 2 convex functional in H, it always has

a unigue minimizer on any closed convext set C.

We will consider C as in (6.3.1) in some detail although much more
general cases can be treated similarly.
Intuitively, if H is a space of continuously differentiable functions,

the closed convex set of (6.3.1) can be replaced for practical purposes

by the closed, convex set Cr’

2 In 4™ with the seminorm }(F(m)(u))zdu it is sufficient that the matrix

0
T in Section 5.5 be of rank m. In what follows we are always assuming the
strict convexity of (£.3.2) and the analogous exprassion with the KEh term

in the sum omitted.
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Conm f a(sj)if(sj), i o

where $1s895--+,5 . 1s a sufficiently fine mesh in [0,1]. For related

r

convergence theory see Laurent and Martinet (1969), Wahba (1973).

The solution Fn A to the problem: find feHZ to minimize

L 1
! Pl ARF) (L e o k{é(f2(0)+f2 )+ [(£'(u))2du}

i=1 b

subject to
a(SJ) < ‘F(S ) j = ],2, ,T
is given by
%
fn,)\(s} = JZ] J S])S Z C

where b anc ¢ are solutions to the quadratic programming problem:

and ¢ to minimize
%{lLb+Knc~zi|2 + A(b'Mb+2b'Le+e 'K oc)

subject to

® +L'c>a,

(6. 3:3)

(6.3.4)

Find b

where ||-|| is the Euclidean norm,a = (a(sT),...,a(sr))', K, is given by

(6.2.7) and the ijth entries of L and M are given by

1
[Ljij = éK{ti,u)Q(u,sj)du
[Ml'i.j = Q(Si :SJ')-

(See Kimeldorf and Wahba (1971)).

¥ n+r is under around 150 the solutions b and ¢ to this problem can

usually be obtained numerically, for fixed A, from available library

quadratic programming routines (for example, Madison Academic Computing

Center (1977)).



We suggest the following procedure, provided that it is sufficient
to consider fairly small r. Here XA is fixed. Solve the unconstrained
oroblem. If the solution fn \ satisfies all the constraints

fn,k(sj) > a(sj), j=1,2,...,r, stop. Otherwise, find j = j; for which

fn X(Sj) - a(sj) is most negative. Minimize (6.3.2) subject to

’ (3q)

f(s: ) - a(s; ) > 0. If the solution, call it f_, !
J‘] J‘l s A (J'[)

constraints, stop. Otherwise find j2 such that fn

satisfies all the
: S.) - =3 1
\ ( J) a(sj) is

most negative. Minimize (6.3.2) subject to f(sj ) - a(sj ) >0, v=1,2.
WV W

If the solution satisfies all the constraints, sfop. Otherwise proceed
to add one (or possibly several)of the most violated constraint(s) until
a soiution satisfying all the constraints is found.

A much more elegant iterative procedure, where one only has to carry
along two linear combinations of active constraints,can be developed based
on Laurent and Martinet (1969) (personal communication, P.J. Laurent).

It is intended that this will appear separately.

[f the solution to the unconstrained problem with a good choice of )
satisfies the constraints, then of course, one is finished. If it is
necassary to impose constraints, then it is not necessarily true that one
wants the same i, since the imposition of constraints is in a sense a form
of reqularization. From this point of view, an optimal A for a problem
with active constraints is Tikely to be smaller. We discuss the choics

of A for constrained problems next.
5.4 Generalized cross-validation for constrained problems (GCVC)

We now discuss the establishement of a generalized cross-validation
function for constrained problems (GCVFC). Theoretical results for GCVC

have not been established, but we believe they can be. At the end we
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discuss some possible computational strategies. In the following discussion
we return to general H, where ||.|| may be a norm or a seminorm.
We believe the correct (first order) generalization of the GCVF is

the generalized cross validation function for constrained problems (GCVFC)

given by 5
% .z ((KFy \)(Eg)-2;)2
V(r) = *‘]1 - (6.4.1)
(I-ﬁ iZ]aii(A,Z))z
where
a;:(%,2) = 3?_1_(Kfn,k)(t1.)1Z (6.4.2)

and A should be chosen by minimizing (6.4.1)

The expression for Y()\) reduces to the GCVF in the unconstrained case.
In the unconstrained case (or in the case C is a linear manifold as in
Section 6.2) (Kfn,k)(tk) is a linear function of z, and akk(k,z) is the kk
entry of the appropriate matrix A(X). It will be shown later than when
C is determined by a finite number of linear inequality constraints,
akk(k,z) js piecewise constant in z, and, as a consequence, a relatively
straightforward algorithm for computing Y{)) can be established.

Let C be any convex set in H and let ngi be the minimizer in C of

LT (KR (t,)-2) % + Al F] [, (6.4.3)

—+- 13

i=1
izk

where either |[-|| is a norm or (6.4.3) is strictly convex for each k.

The "ordinary" cross validation function or "leaving out one" function V°(2))

may be simply defined as



48~

However V?(x) will be prohibitive to compute in most cases, and it reduces,

in the unconstrained case, to a procadurs which can have inferior properties

to the GCVF. See GHW, CW.
The rationale behind (6.4.1) is a consequence of the following lemma
which generalizes Lemma 3.7 in CW.

Lemma: Let C be any closed convex set in H and Tlet fn N and fn Ek] be

the minimizers of (6.3.2) and (5.4.3) and respectively in C. To indicate

emphasis on z, write fn K(t,z) = f

, n,k(t) . Then

£ (tawe) = 7 K,

where & = (O,...,O,dk,O,...,O), 8y is in the kth position, and

v o i (k]
B (Kfn,h )(tk) - Zy -

~

. (k] [k] -
Proof: Denote Fn \ by h and Kfn,k (tk) by z, . Then

9/

[T (kn)(£5)-29)% + ((Kn)(t,)-2,))2] + Al [ [?

S5
[ SRy
—A- W13
A

(k) (t4)-2,)2 + Al [n] 2

S1—

—#H 13
N —d

Ca.Ca,

e ]

)(tj)-zj)2 + A||f||?, for any feC other than h

Can G,
—t= N~
N —a
—
—_
-~
~h

A
31—
m

J

- -1
o
—
—
7~
“h

[ SR S

J(£g)-2,))% + ((KENE)-2,)2T *+ A[[F112. (5.4.

n
(ke KTix, 3oz )% . (6.4.4)
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Thus h = fn Ek] is the minimizer of (6.4.5), which is also minimized uniquely

by Fn J\(t,z+6).

3

It follows that

[k
K, & Iit,) =

(Kfn,k + [(K k’2+3) - Kfn,x(tk’z)]' (6.4.8)

Assuming that (Kfn \)(tk,z+6) is twice continuously differentiable in 8y

in the neighborhood of ék = 0, expanding the second term on the right in

(6.4.68) in a Taylor series in 8 gives
(k] E: 2
R 3 ci8 ) = 0 L HE ), az s KFL ) (t2) + 0(8))

ke T )+ (ke Ek] k)-zk)-ggi(Kfn,A)(tk,z) +0(82).

Setting O(ﬁﬁ) = 0 some algebra results in the expression

Ek 5 (Kf ’}\)(t| )-Zk
T ](tk)'zk g (WTakk(Afz)) )

giving a first order approximation to the ordinary cross-validation function

of (6.4.4)
R G T
VO(K) ::):[-i Z n,A K < (647)
Provided that the map A(A): E = E which maps z + ((Kf ,A)( By s o (KEL (8 e

is locally nearly linear and the ék are small, the same reasoning which led
the substitution of VO(A) by V(A) in the unconstrained case should work
here. (See Wahba (1977), CW, GHW). For that reason, and because V(A) is
much easier to compute, we adopt it here.

We now study the behavior of Kf (tk,z+d) as a function of 5k’ whera

n,i

§ = (0,.. ,O,Sk,O,...,O). Suppose fn N is the minimizer of (6.3.2) in Cr
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and it is found that the constraints fn \(sj) > a(sj) are active for

j= j1,...,j%. Then fn,A is also the solution to the minimization

problem: Find f to minimize (6.3.2) subject to the equality constraints

Thus, except in the neighborhood of some critical points z where the

constraints "just" become active, the dependence of Kf tk,z+6) on 5k

n,A(
is linear, as can be seen by examining the results of Section 6.2, eguation
(6.2.2) where 2 Tinear equality constraints are imposed.

The following artificial example with H = EN s i1luminating. For

this example z, k = (kqs....k )", f = (F(1),...,fn))" and @ = (a(1),...,a(n))"

are n vectors. The minimizer F\ = (fk(1)""’f

n n
- % 2 ™ 21
p (kif(1)'zi) + _l F2(1 3
i=1 i=1
subject to
f(i) > a(i), 1 =7 .2 By
is given by
kK k.
f(1) = ——z., ——z_ > a(i)
4 K240 1 kLA
i
Ky
= r"l(" Z <,_1(1)
K240 T

Thus,



BT

ki K,
: i) = - 2. = el
Tl el et b ik
1 1
K
= k.a(i) , z; < ali)
kq.-’-+,\.

Thus, ford = 1,2,...,%

k.
; d : -1 1
A::0A52) = 5=— k.f. (i)=k.2(,. 2 ; o
i3 (%.2) dz. iF2(1)=k, (kg®a) ", < 2 z; > afi)
=0 Lz, < gD
k.,2+) 1
i
ks
undefined Z: = a(i)
kats,

See Figure 3 for a plot of f, (1) and %, (1) as a function of Z;.
/ 'I /

n
For fixed z, the denominator {1-% J aﬁ(,\,z))2 in the GCVFC, can be a
i=1

discontinuous function of A as constraints become active or inactive with

varying A, that is, as A satisfies

z
ki +A

[t can be conjectured that if n is large that this will not be a serious
practical problem, but no numerical evidence is available at this time.

The GCVF of (6.4.7) for fixed A is obtained as follows. For concreteness
we suppose H = HZ, with the norm ||-|| given by (6.2.4). For given )
suppose the solution fn,k to the constrained minimization problem with

constraints f(sj) > a(sj), J =1,2,...,r has been obtained and the &



f (1)

al(l)

1

kq2+A

all)

(b) a%- kifk(1} as a function of Z

1

Figure 3
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constraints corresponding to j = ji,...,j2 have found to be active. Hopefully
2 will not be too large. Then applying the results of Section 6.2,

equations (6.2.11) and (6.2.12) give

= A (z-M o) + g

~

K(K+nal)™!

= ‘ o
Kn - LM

I=
—_
-~ >~
~—
1] 1]

L!

where Kn is given by (6.2.7) and L and M ara nx2 and 2x2 matrices with

antries given by

1
[L1;, = [K(t5,u)Quss; )du
0 v
s L o0
5 Vs el e )
and
[M] = Q(S :S' ) U,\) = ‘lr-w :vzr
Y e
Therefore, by (6.2.12)
1 S
HI-A0) (-0 ||

V(r) = 1 (6.4.8)
(Tr(1-A(A)))?

and it can be computed as in (6.2.13), provided & is not too large.



One could define the intrinsic rank of this problem {(now depending on z)

as was done following (6.2.13), however, the meaning is now somewhat blurred.

An outline of the numerical determination of V(X) follows. It is

clear that there is room for the development of an efficient overall

strategy.

19

;

Minimize V(A) for the unconstrained problem. If the solution to the
unconstrained problem satisfies the constraints, stop. If not, let

A be the minimizer of the (unconstrained) GCVF, V(\).

Solve the constrained problem with A = kO' Determine the active
constraint indices j1""’j1’ for RO and compute the GCVFC V(AO)
according to (6.4.8).

Repeat 2) with A = AT‘:AD.

If V(k]) % V(AO), continue to decrement ) and repeat 2) until a (globall)
minimum if found. If V(kT) > V(AO}, increment X and repeat 2) until

a minimum if found.

It is possible that the discontinuities in V(i) and the fact that the

GCVF involves first order approximations may lead to meaningless local

minima, particularly for small n. We remark that, since the set of active

constraints is likely to vary slowly with i, it is desireable to build this

into the computational strategy. We have found it convenient to work in

units of log X.



6.5 Other generalizations of the GCVFC

The definition of the GCVFC extends to other problems where (Kfn \(tk)
is not linear in the data.

There has been recent interest in robust smoothing, which is appropriate
if the errors cannot be considered to have normal distributions, but may
nave outliers. For example, a robust smoothing spline is defined as the

solution to: Find feH™ to minimize
17 (m)
= § BlR(Ec)mz.) & ALEE00)) %y (6.5.1)

where o(-) is a suitably chosen convex functional. Once can define the
GCVFN (Generalized cross-validation function for non linear problems)

exactly as in (6.4.7), or as

where aii(k,z) is as in (6.4.1). See Huber (1979), Lenth (1979). When
iterative methods are used to minimize (6.5.7) A(X,z) may be available at
the last step of the iteration. The definition (6.4.1) of V(X) is likely
to be useful in some cases where K is a (mildly) nonlinear operator,

but the state of the art of nonlinear i11 posed problems appears not

very advanced at this time.



7. Checking the model

With the advent of sophisticated techniques for recovering f from z,
accurate specification of the "model”, i.e. of K becomes increasingly more
important. Frequently K is established from physical principlas where
simplifications, approximations and possibly erroneous assumptions have been
made.

In the past it has been commonplace to blame an inabiiity to recover
a reasonable f from z on the failure of the mathematical techniques used.
With better techniques this "excuse" is no Tonger available.

Merz (1979) and Colli Franzone et al (1979) both discovered serious
inadequacies in their model after satisfactorily testing the validity of
their regularization programs on simulated data. We feel this testing
procedure is an obvious and important step in the analysis of data from
any experiment. The experimenter should be able to construct cne or saveral
test f's that could reasonably represent the major features of f's that might
in fact be present. One then simulates "data" by computing (Kf)(tj) using
the K that will be used in the numerical inversion formula, and simulating
measurement or instrument errors in a realistic manner by Honte Carlo
methods. One then applies the numerical algorithm to the simulated data
and detarmines how well the (known) f is recovered. Aside from easing
the (non trivial!) task of the debugging of the computar program this gives
the experimenter a "feel" for how well f can be recovered from the experiment
assuming that the model K is accurate. At this point inadequacies in the
number and placement of tI""’tn éan sometimes be identified.

We always print out the sigenvalues di’ from this the intrinsic rank

rocan te determined by inspection. In problem cases, it is also a useful



diagnostic tool to print out the canonical representers which are associated
with the largest eigenvalues. Chambliess (1979) in a regqularization method
invalving the "Western" route, or discretization first was able to explain
poor performance of a certain quadrature rule compared to another, by comparing
the associated canonical representers. Once this testing with a "mathematical"”
K and synthetic data has been successfully carried out it is very desirable
to run an experiment on the real apparatus with known f. This cption is
not always available, but if it is, it can be very valuable, because if f
has been successfully recovered in a synthetic experiment and the same f
cannot be recovered from "real" data, the source of the problem is
pinpointed in an inadequate representation of K or inadequate understanding
of the experimental error.

[t would be nice to have a "goodness-of-fit" test for the model X
(more precisely, for ;n). Goodness-of-fit tests of the classical statistical
form cannot be rigorously derived in the context of most i11 posed problems
because there are no degrees of freedom for error. However, we will describe

a loose approximation to a goodness-of-fit test, based on an analogy with

regression.
To describe the regression situation, let K be an nxp matrix,

P <n, of rank p, and f be a p vector. The classical regression model is
Z = Kf +e.
e is as before.

The Gauss-Markov estimate of f is f,

1

£ e (k) TRz



The data vector z is partitioned into "signal" Kf

KF = Az, A = K(K'K)" ¢!

~

and noise e,
e = (I-A)z.

[f K is the correct model, then o? given by

~o o [ (I-A)z| ]2 _ [I(I-
g n-p T

is an estimate of o? and ¥2 = (n-p)o2/g? has the chi-squared distribution
with n-p degrees of freedom. Assuming o is known, then x? can be compared

s

to the upper 99% point, say of the y? distribution with n-p degrees of

freedom. Since (I-A)K = 0, (I-A)z = (I-A)e assuming K is the correct model,
and if the true model is actually K* with (I-A)K* # 0, then ;2/02 will tend
to be too large.

By analogy in the regularization case (and reverting to the notation of

earlier sections) the data vector z is partitioned into signal

At ) = ANz,

((Kf iy 2t e

() aee o (KF
and noise

e s (I-A(N))z,

where i is the minimizer of V{(A). Then

~

ce o L1(I-A())z] |
Tr(I-A(}))
is an estimate for g2. Letting Kn: H - En be the operator defined in

~ ~

Section 2, it can be seen that some "signal" creeps into =, since (I-A(A))K f 3

n

=

0
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even if gn is the correct model. However, [[(I-A(i))inf[} should be small
compared to ]l(I-A(X))eH2 for large n. Usually the experimenter has some
idea about the size of o%. Then y* = Tr(I—A(;\))a"'/c2 can be compared to
the upper tail of a y* distribution with approximately Tr(I-A(i)) degrees
of freedom. If Sz/c2 is very much too large this may be some evidence that
the En is inaccurate. If g2/¢? is too small, the GCVF may be erroneously
attempting to intarpolate the data. Results of any such tests should be
taken with a grain of salt until the properties of the test have been
verified on synthetic data. We also remind the reader that sparse poor
quality data will support or fail to reject a bigger class of models than

plentiful, good data.
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8. Regularization in extremely larce problems. The Landweber iteration and GCV

In computerized tomography (CT) and related indirect sensing problems
the number of data points can be in the many thousands. The computerized
X-Ray tomography problem is actually very mildly i11 posed, and there
exist inversion formulae similar to Abel inversion formulae in two dimensions.
See Herman and Naparstek (1977). It is fortunate that the problem is only
mildly 111 posed, since this allows the reconstruction of complex images.
The 1979 Nobel Prize in Physiology or Medicine was awarded for work in CT,
see deChiro and Brooks (1979).

Most recent computerized CT systems use transform methods and the
amount of regqularization is chosen at the design stage by trial and error
with real or "phantom" data. This choice typically involves both subjective
and objective evaluation of the resulting picture. (Artzy, Elfving and
Herman (1979), Naparstek, personal communication).

The first commercial machines discretized the problem at the start
and solved the resultant large linear system aporoximately by Kaczmarz
iteration, also known as "ART". In this Section we discuss only the
Landweber iteration although it appears that similar results can be
obtained for other iterative methods. It has been observed by Miller
(1974), Strand (1576), Fleming (1977), Bjorck and Elden (1979) that the
number of iterations in a Landweber itaration for solving a Tinear system
plays the role of a regularization parameter. We will elaborate on some of
the ideas in those papers and show how GCV can be used to choose the number
of iterations and other regularization parameters in such a technique
without actually solving an eigenvalue problem.

In this section, Nashed's "Western route" has been taken and the
operator K is assumed to have been discratized to an nxr matrix, say, where

G s . r
r<n, and n and r are very large. K is consideresd as an operator from £
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to E", feE", and the model is

RN e

Let Q be a given strictly positive definite rxr matrix with symmetric

square root Q1/2, and let the singular value decomposition of KQ1/2 agf K
be
kQ'/2 = upvr,
where D is rxr with diagonal entries di and Tlet Upseeesly, and Viseea¥ be the r

columns of U and V respectively. The u; are n-vectors and the v; are r vectors.
Not to worry, we are not actually going to compute U,D or V. The Q-generalized
inverse solution ng of the equation z = Kf is defined as that element f in

Ep which minimizes f'Q']f subject to Kf = z, where z is the orthogonal projection

of z onto the range of K. KEZ is given by

ng = QK'(KQK')E = QI/ZQ'(EE')+Z
(zsug)
A __d__J__Ql/ZV_
o G {

where "+" denotes the usual Moore-Penrose generalized inverse.

Now consider the generalized Landweber iteration

k=1 5 ok Lz-F5" 1), k= 1527

—
1}

.F

(1-80K'K)F1 + 20K’z

with f° = 0.

It is necessary that 8 satisfies 8 < 2/d12. Then
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= Q-T/ka.

k= kq!/2.

Then

-1

oo (1-gR DT 4 gk (8.2)

and for this (ordinary) Landweber iteration it is not hard to show, using
the identity

[1+(1-B)+...+(1-8)*" 118 = 1 - (1-8)K,

for symmetric matrices (see Miller (1974)) that

(s )

*e 7 - h—2 v,
jed;>0 J i
nence
‘ i} o (z,us)
a1 (1-00-8d.2)H)—=E Ay, (8.3)
j:d 0 J i J

+ t 3 2 i 5
To get fk from KQZ, the component of K5; in the direction of Q1/2vj is

"damped" by the factor (1-(1-8dj2)K'1), which decreases to 0 as dj2
decreases and clearly provides a useful form of reqularization. For

comparison, the minimizer of

;1|z S KF||2 + AF'QTF

is

£ =g B e L 1
Mad §1d20 Ta/dt S
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so that in the Landweber iteration the "damping factor" (I-(I-ijz)k'])
replaces the "damping factor" 1/(1+nk/dj2} which occurs in regularization

in the form in which we have been studying it earlier.

-~

)
One can obtain the GCVF for < without solving for the dj or u;
explicitly as follows: Since KQ1/2V1 = diui’ we have

KESs wmedoul Toll-Bde 2 52 o i (8.4)

o A 374
J.dj>0
This equation (8.4) defines the nxn matrix A(k,3) which plays the role of

A(X) in the GCVF. Here A(k,B) = UAU', where A is the rxr diagonal matrix

with 330 entry (1—(1-8dj2}k_}). Thus, the GCVF Y(k,3) is given by

1
V(k,3) = ?

Assuming that (I-3KOK') can be multipled by itself k-1 times, the GCVF can be
computed for large problems of this type. One computes V(1,3), Y(2,3),...
until a minimum is found. The choice of Q is made, if possible, based on

the belief that the true but unknown f has the property that £'Q°f is
relatively small. This is compietely analogous to choosing an r.k.h.s.

with r.k. Q(s,t) with the belief that }\F\[é is small, where |[:|]| is the

norm induced by Q.
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the intrinsic rank of the examples of first and second derivative, Abel's
equation and Fujita's equation, it is argued that the first three are only
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with GCV are detailed. The second uses a B-spline basis to allow the
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a torm of regularization parameter. We then show how GCV can feasibly

be used to choose k in very large problems like those arising in computerize
tc..ography.
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