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ABSTRACT

The thin plate volume matching and volume smoothing histo-
splines are described. These histosplines are suitable for
estimating densities or incidence rates as a function of position
on the plane when data is aggregated by area, for example by
county. We give a numerical algorithm for the volume matching
histospline and for the volume smoothing histospline using
generalized cross validation to estimate the smoothing parameter.
Some numerical experiments were performed using synthetic data,
population data and SMR's (standardized mortality ratios) aggre-
gated by county over the state of Wisconsin. The method turns
out to be not particularly suited for obtaining population
density maps where the population density can vary by two orders
of magnitude, because the histospline can be negative in
unpleasant ways. However the fitting of SMR's, which are all
about the same order of magnitude, results in some esthetically
pleasing pictures which may be used to search visually for
geographic patterns. A number of open questions remain.






1. INTRODUCTION

Tobler (1979), in a recent J.A.S.A. paper, considered the
problem of obtaining a smooth surface representing spatial density
from observations on average densities over irregularly shaped
geographical regions. He was interested in describing the
population density in an area Q given the average population

. . . n
density in each of n subareas {Qi}i=’ UQ. = Q. As an example,

j
Q is the union of the contiguous 48 states. The problem is to

obtain a smooth, non-negative function f with the volume match-
ing property:

1 :
m—é f(x,y)dxdy = g_i’ = ]’2,“_,”’
i

where [Q;| is the area of fi;, and g; 1is the observed average
value of f over Q.. Tobler suggests, (among other things),
seeking f to minimize
Qrey =
J1 (f) = é(fx2+fy2)dxdy
subject to

1 .
mslef(x,y)dxdy o, = 1,2,.0 0,
;
and

f(x:y) 2 0: (x:y)EQ.

See Tobler (1979) and the comments by Dyn, Wahba and Wong (1979).
Tobler proposed an iterative algorithm of finite difference type
for calculating an approximate solution to this and some related
problems, and presented two population density maps, the popu-
lation of Ann Arbor given census tract data, and the population
of the contiguous United States, given state data. Tobler's
work is one of two generalizations of the one dimensional histo-
spline given by Boneva, Kendall and Stevanov (BKS), (1971), and
later analyzed by Wahba (1975), and Tobler's J]Q above Teads to
the thin plate histospline, which we will be discussing further



in this paper. The thin plate histosplines are the solution of
the problem of ”1ogarithmic pbtentia] theory" mentioned by BKS on
p. 33 of their paper. The other two dimensional generalization
of the histospline, namely, the tensor product histospline, was
studied by Schoenberg (1973), and Kuhn (1975), for the special
case where the subareas result from a rectangular partition. We

will not discuss the tensor product histospline here.
There are a number of variations on the solutions proposed

by Tobler, of varying degrees of analytical and numerical complex-
ity. To place them in perspective, we shall describe some of them
here. We shall ultimately be concerned with a computationally
relatively simple member of this group. Some of the variations
generalize to the number of dimensions d greater than 2. (See
Dyn and Wahba (1979), Wahba and Wendelberger (1980), but we
shall only consider d = 2 here.

let 0 be a closed bounded region of the plane with a
sufficiently "nice" boundary 3Q and let Hm(Q) be the Sobolev
space (see Adams (1975)) of square integrable functions on @ with

Q L gl
I (f) = } (v)f(—m"g f(x,y))2dxdy < =.
v=0 ax” oy
M2 1i2s0 e

Q : . . _ ol
Jo (-) is a semi-norm on Hm(ﬁ) with null space the M = ( > )
dimensional space spanned by the polynomials (1,Xx,y,...) of total
degree <m - 1. Let f o be the so]ution to the volume matching
problem: Find feHm(ﬂ) to minimize J (f) subject to

1 ' <Tg
Tﬁ—ré f(x,y)dxdy = g5, 1 =1,2,...,n.

The solution f M has been shown to exist uniquely provided the
nxM matrix T w1th Jvth entry T def1ned by

Tj\) t {Lq)\)(xs.y)dxdys J 3 ]92’-'°sn5 VYT ]$23"“’M (]‘1)

J



where {¢U}v§1 span the null space of Jmﬂ, is of rank M. anm has

been characterized as the solution to the_boundary value problem

n
m
ahf = Yopall
=1 8
subject to Neumann boundary conditions on 3Q. Here A is the

Laplacian operator (af=f + fyy) T(x,y) =1, (x,y)ef;, =0,

(x,y)¢ﬂi, and the'{ai} are constants determined by the data.
See Dyn and Wahba (1979), Dyn, Wahba and Wong (1979), Dyn and
Wong (1981), Wong (1980).

The results readily generalize to the volume smoothing
problem: Find feH (Q) to minimize

% Z T""T f £(x,y)dxdy)? + xa (f), (1.2}

where here the z; are supposed to be imperfectly measured esti-
mates of the average of f over Qi’ and A is a positive smoothing
parameter. See Dyn and Wahba (1980). For m > 2, Hm(Q) is a
reproducing kernel space (that is, the evaluation functionals are
bounded, see Adams (1975)), and so the set of non-negative
functions in Hm(n) is closed and convex. Existence and uniqueness
of a solution to the volume matching problem in Hm(ﬂ), s 2,
subject to the positivity constraints

fix.y) >0 2 (%,y)eQ, (1:3)

then follows because Jmﬂ(f) is strongly convex over the set of
functions satisfying the volume matching constraints (provided

T is of rank M), see Laurent (1980), Wong (1980). Similarly the
minimizer of (1.2) subject to the non-negativity constraints (1.3)
exists uniquely because (1.2) is a strongly convex functional on
Hm(Q) if T is of rank M. The problem of establishing the
existence and uniqueness of a solution to the volume matching or
volume smoothing problem with non-negativity constraints in
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in f, (p) is more difficult, since H1( Q) is not a reproducing
kernel space and the set of non- negative functions has to be
defined in the distributional sense. However Dyn and Wong (1981),
and Wong (1980) have established existence, uniqueness, and a
characterization of the non-negatively constrained volume
matching and volume smoothing histospline in H1(Q), and Wong has
proposed a class of algorithms for computing it.

The difficulties of solving a boundary value problem
numerically can be circumvented if one replaces JmQ(f) by Jm(f)
defined by

© o am A
Jm(f) = Z ( l;fL 5;;;;5:; f(x,y))?dxdy (1.4)

in the volume matching and volume smoothing problem, and replaces
H (Q) by H (Rz) where H (Rz) is the (Beppo Levi) space of
(Schwartz) d1str1but1ons whose partial derivatives (in the
distributional sense) of total order m are square integrable
on R?, see Meinguet (1978). For m > 1 the elements of Hm(Rz) are
functions in the ordinary sense.

In this paper we give an algorithm for and report on some
numerical experience with the solution to the volume matching
problem: Find szm(Rz) to minimize Jm(f) of (1.4) subject to

T ] FOoy)andy = gg = 1.2, (1.5)
10 Qs

and the volume smoothing problem: Find feHm(Rz) to minimize

lll:‘-/.I:

1 2

3 T—rf f(x,y)dxdy)? + AJ_(f). (1.6)

We consider m = 2,3,4, but most of the experimental work is with

m = 2. In this paper we do not impose positivity constraints.
With J & replaced by‘Jm, an explicit representation of

f and fn m,A° the solutions to the yolume matching and yolume
smooth1ng problems in H (Rz) can be given and are found in



-

Wahba and Wendelberger (1980), based on earlier work by

Duchon (1977) and Meinguet (1978). We give an algorithm here

for computing fn,m and fn,m,h’ The algorithm is sufficiently
simple so that in the volume smoothing problem X may be chosen

by the method of generalized cross validation (GCV), see Craven
and Wahba (1979), Wahba and Wendelberger (1980). The

basic design of the algorithm follows the approach of Wendelberger
(1981) who incorporated some suggestions of G. Golub. An earlier
algorithm is due to Paihua Montes (1978). The program was

coded by A. Kirsch, who benefited from some advice of D.

Bates.

After describing the numerical method, we then try the
method out on several sets of synthetic data as well as
population data and four sets of revised standardized mortality
ratios (SMR's) for different types of cancer, reported by county
in the State of Wisconsin. The method turns out to be
unsatisfactory for the population data because population density
in Wisconsin by county varies by over two orders of magnitude,
and the estimation goes negative here in an unpleasant way. The
SMR data, however varies much less, and the estimates are non-
negative or only négTigibly negative. It is hoped that the
resultant density maps can provide a useful visual picture of
relative SMR's which may be used to screen for possible geographic
patterns in the SMR's. Questions of significance of observed
"bumps", "ridges" and other patterns remains completely unresolved
here, and leads to a number of interesting open questions, some
of which are discussed at the end.

2. THE ALGORITHM FOR THE VOLUME

MATCHING\PROBLEMIINJHﬁ(sz.

The solution f X to the volume smoothing problem of (1.6)
is given by
n m
fn’m’l(x,y) = 1Z1ci£ E([t-s|)ds + 2Zldv%(t) (2.1)

.i
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(x,¥),

1£12M 2100 t], [t] = Jx2ty?

and the {¢v}v§1 are the M polynomials which span the null space

ofuﬂﬂ, for example, if m = 3, then M = 6 and
(1) =1 op(t) = x  o5(t)
py(t) = x* og(t) = xy  oglt)

where t

E(1t])

1]
n

Y

2

Y

and ¢ =(p1,...,cn)' and d = (d],...,dM)'are the (unique)
solutions to the equations

il

(K+nAl)c +TTd g, (2.2)
C=

where g = (g1,...,gn)', and K is the nxn matrix with jkth entry

Kjk = é. é Em([t-sl)dtds
ik

and T is as in (1.1). This result is a special case of Wahba
and Wendelberger (1980), see also Dyn and Wahba (1979).

The solution to the volume-matching problem of (1.5) is
obtained by setting A = 0 in (2.2).

We remark that since Em(|-|) is a fundamental solution of
the m-iterated Laplacian, we also have here

[
E|
-h
1
e~

I Sl ail

5
i Qi

1
for some {ai}.
The GCV estimate of X is the minimizer of

RSN
(1Tr(1-A(0))?

(2.3}

where A(A) is the nxn influence matrix satisfying
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\ Qn

\t J fn,m,;\(t)dt/

See Craven and Wahba (1979), Wahba (1977).
The matrix I-A()) has the representation

I - A(X) = naC(C'Ke+naI)~ e

where Gt is any matrix with n-M orthogonal columns which are
orthogona{ to the M columns of T, and

¢ = C(C'KC+nAI)'e'z

See Wahba (1979b). It can be shown (see Duchon (1975)) that the
n-Mxn-M matrix C'KC is positive definite even though K is not.
Analytical formulas for gi(t)= : Em(lt-s|)ds, 75, and Kjk
will not generally be available.! To preserve the positive
definiteness numerically, we discretize the problem at the data
functional stage rather than merely applying quadrature formulae
to obtain Ei(t)’ T and K. We believe that this is the correct
point to discretize, if discretization is necessary. (See, for
example, Chambless (1980)). A description of this discretization
follows.

Let {tk}k§1 be a fine rectangular grid of points

in Q. Figure 2.1 shows the arrangement of the

{t,} (dots) and the Q4 (squares), for the first
test case.

Figure 2.1

Next we approximate the linear functional Li defined by



L.f = [ f(x,y)dxdy
£

by the linear functional Ei defined by

o eyl |
iV N z f(t) £ 17 1,260
i tkaQ
The solution to the problem: Minimize
-I 4 T 2
!le (L_if-Z_i) + }\Jm(f)
i=1
is
- M owns
fmalt) = 1.21‘:1&1 > ): d,9,(t)
where
11 nei= gy
Ei(t) = ET ) En (]t-t, ]
1 tksﬂk
~ _ o ,
and ¢ (c], ,c.)'and d (d1 M) satisfy
K+nal)c + Td = z
Tic=0

where K is the nxn matrix with jkth entry Rjk:

121 9]
R.o=d 1k ;
Kk =W W, L Eflt Tl
tmEQk
and T is the nxM matrix with T Eh entry
92|
Nq ) ¢

J 2EQJ

s ol s

(2.4)

(2.5)

(2.7)

(2.9a)
(2.9b)

(2.10)

(2.11)
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Now K and T can be evaluated to a high degree of accuracy, and
it can be shown that, if C is any nxn-M matrix with n-M
orthogonal columns all orthogonal to the columns of T, then
C'KC will be positive definite. The cross validation function
V(7) appropriate to this problem is now

M (1A )z ] |2

V() = - (2.12)
(Tr(1-(1))?

where

.

I-A(A) s (2.13)

nAC(CKC+nAl)
We now show how V(a), ¢ and d may be computed. In what follows
we will drop all the ".", it being understood that the compu-
tations use (2.7) - (2.13).

1. Use the Q-R decomposition in LINPACK (Dongarra et al.

(1979)), to obtain

Tan % ananXM

where Q is orthogonal and R is zero except in the top nxM block.

! {R, |
Q={0Q Qlfin R= 1--‘..*}
: \ 0 {in-M
—_— e ’_
M n-M e

Remark: The columns of 02 are orthogonal to the columns of T
and C is taken as Qé.

235 FeR B =N K0



=10~

By, }M

I
B = ..__-..:.._.._
1
B : 322 } n-M

and find the eigenvector-eigenvalue decomposition of B,, using
EISPACK (Smith et al. (1976))

21

b] 0 \
Bpp = T | &
0 bn-M
Remark: 822 is positive definite.
3. Let
w = f'Q22= (2.14)

Then V(A), ¢ and d are obtained from:
n-M wiz n-M 1 2
V() = n_z —_— ) — (2.15)
i=1 (b1.+n>\) i=1 (b1.+nl)

A is chosen as the minimizer of V(2).

/b1+nA 0
c = Qéfl ! ) w
O )i PR
, b-l+n}\ 0 \']
R'Id = Qiz 3121‘( : | w
I
0 bn_M+nA;

To avoid over and under flow, distance units should be taken so
that Q sits snugly inside the unit square centered at (0,0),
and Em(lti'tj|) should be set equal to 0 for i = j (rather than
attempting to compute it!)
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It is noted that the expensive part of this program depends
on m and the Qi, but not the data. In the cancer data examples
below, where SMR's for various types of cancer are obtained for
each of 72 counties (n=72) in Wisconsin (=q), K, f,r'Qz,

‘{bi}, Ry 01' and B12F are computed only once and stored.
Once these are given, evaluation of V()A), ¢ and d for different
data is cheap.

3. NUMERICAL RESULTS

To see what the thin plate histospline will do on synthetic

as well as real data several types of solutions were computed.
n
Given @ = U Q; one may define the ith "deltaspline" 6; as
i=1
the solution to the problem: Find feH (R?) to minimize J(F)
subject to

1. k=4

1
f(x,y)dxd
T gl detede B4

k

1]

Then the solution fn
Jm(f) subject to

1 to the problem; find feHp(R ) to minimize

o sfz By dedy ®igy o 16 Tayssisin
1 5
5

is given by

51(X=Y)gi-

nhe~3

fo,m{xsy) =

i=1

Two sets of q, {91}121 {tk}kg] were considered. For the first

set, Q is the unit squaré,'n = 25,'{91} is a 5x5 square partition,
and the {tk} are a 15x15 square array as in Figure 2.1. For

the second set @ is the State of Wisconsin, {Qi} are the 72
counties and {tk} were obtained by laying out a rectangular

85x90 grid of points equally spaced in x and y just covering

Q and taking that subset féiTing inside Q.
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Figure 3.1 plots the "data" for the deltaspline corresponding

to the central square in the 5x5 partition. It is a function whose

value is 1 on the central square and 0 elsewhere. Figures
3.2, 335 and 3.4 give the deltaspline for this "data" for
m=2, 3and 4. It can be seen that as m increases the
minimum value taken on by the deltaspline becomes increasingly
Jarge negative. Large m is probably not appropriate when n
is small, as it is here. The remaining experiments use m = 2.

Figure 3.5 is a map of the State of Wisconsin with
superimposed contours for the surface formed by the sum of
two deltasplines, for Oneida and Columbia counties. (Oneida
contains the northern peak and Columbia the southern.) The
height of the Oneida and Columbia input values were .00090
and .00129 respectively. It can be seen that the heights of
the two peaks of the two-deltaspline surface are slightly
above .0012 and .0016, respectively. South of Oneida county
there is a negative valley of a depth about one ejghth of the
peak height over Oneida.

Figure 3.6 gives a map of the State of Wisconsin with the
1970 population density.gi, in people/square mile,
indicated for each county. (The data has been rounded to the
nearest integer for the plot but all available figures were
used in the program.) Figure 3.7 gives a contour plot of the
volume matching histospline which minimizes Jz(f) subject to

L § f(t) = ggs L PP, 8 (3.1)

N.
1 tkEQ_i
where the left side of (3.1) is the (quadrature) approximation to
1_T1 [ f(x,y)dxdy
Qi Q. ’ .
;

It can be seen that this contour map has a sharp peak at the
edge of Milwaukee county greater than 6000 people/square mile and
a negative valley of maximum depth around 500 people/square mile
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The "Data" for the Deltspline

Figure 3.1.

T

The Deltaspline, m = 2.

Figure 3.2.
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Figure 3.3. The Deltaspline, m = 3.

Figure 3.4. The Deltaspline, m = 4.






-16-

;ffa s

2,
BAYFIELD ]
DOUGLAS N
ASHLAND
IRON
34 8 i
VILAS ~—s
WASHBURN SAWTER 9
BURNETT 13 =\ .
13 8 PRIGE - FLORENCE
= ONEIDA "' 7
12 22 8 uARmTTE
BARRON RUSK k
LINGOLN
39 16 LANGLADE 23 w‘
29 L TATLOR 26 p—
CHIPPEWA
ST. CROIX i T .17 22
47 34 47 MARATHON MENOMINEE
7 26
i 61 SHAWATO—\._
PIERCE J €AU CLAIRE 95 36 Dol o.{;]_

45 éEPm { 104 woQoD PORTAGE WAUPACA BROWN KE WAUNE
BUFFALOD OUTAGAMIE /
19 JACKSOM 81 59 50 105 &5
32 15

CALUMET]
TREMPEALEAU JUNEAU ADAMS | WAUSHARA | maniTowoe
MONROE ! 24
LA CROSSE
MARQUETTE | GREEN
. .35 24 14 LAKE
178
19 48

86 | 139

SHEBOTGAN

VERMON 191
SAUK COLUMBIA DODGE i
- ZAUKEE
RICHLAND
CRAWFORD 46 78 149 ’jﬂB

LASHIHGWN

\
JEFFERSON WAUKESHA MILWAUKEE
.

106 | 417 ,448

RACINE

507

KRENOSHA

434

WALWORTH

LA FAYETTE

27 46 183 114

Figure 3.6. 1970 Wisconsin Population Density by County, People/Sq. Mi.
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\ N AND

Figure 3.7. Contour Plot for the Volume Matchlng—Hlstospllne 1970 Wisconsin
Population Density, People/Sq. Mi. Contour Levels: 6,000, 5000,
2000, 1000, 500, 200, 100, 50, 25, 0, -100, -=500.
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to the west and slightly south of Milwaukee county. Wisconsin
is a mostly rural state with (1970 figures) 1,054,000 people in
Milwaukee county with a population density of 4,447.5 people/
square mile. The next two most populous counties are Racine with
506.9 people/square mile, just south of Milwaukee and Kenosha
(433.4 people/square mile) just south of Racine. West of Racine
and Kenosha is found Green county with a population density of
only 45 people/square mile. Based on the depth of the valleys
of the deltasplines in Figure 3.5, it is not surprising to see
negative valleys in the volume matching histospline when the
population density varies by over a factor of ten from the
densest to the second most dense county, and overall by over
2 orders of magnitude.

We next experimented with synthetic inexact data, observed
according to the model

|Q1.|z_I = é f(x,y)dxdy + €s (3.2)
i
where the €. are i.i.d. m(0,0%), to see how the smoothing thin
plate histospline might look. Contour plots of the test function,
which is the sum of two bivariate normal curves, appears in
Figure 3.8. Three sets of data were generated according to
the model (3.2) with o = 0, 500, and 2250. The Tlargest value
of [ f(x,y)dxdy was about 20,000. (The county areas are between
s
200 ;nd 1100 square miles.)

Figure 3.9 gives the volume matching surface, for error free
(0=0) data. The two "ridges" have been flattened out and a
negative valley appears to the northwest of their intersection.
Figures 3.10 and 3.11 give the volume smoothing thin plate histo-
spline for the two data sets with o > 0. The smoothing parameter
A has been chosen as the minimizer, X of V(A) in each case.

Figure 3.12 gives the cross validation functions V(}) which go
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with Figures 3.10 and 3.11. Also plotted is the predictive
mean square error R(A) defined by

R(A) =

nes--13

S=—

_ ([ f(x,y)dxdy - i fn 5 A(x,y)dxdy)z .
i=1 Q. Q. °

i i
The GCV estimate 1 is an estimate of the X which minimizes
R(») and it can be seen that % is a reasonably good estimate of
the minimizer of R(A). It can be seen that as o increases,
the sharp peaks flatten out. However, for the o = 500 case
the two major ridges are evident, although with a negative
valley to the northwest of their intersection. It appears,
however, that the major loss of information occurs at the
aggregation stage, going from Figure 3.8 to Figure 3.9.

The original motivation for this study was to see whether
the method could provide useful visual pictures of cancer
mortality rates, which are available by type of cancer, age,
sex and county in Wisconsin.

The data plotted below are 1970-1975 "revised SMR's"
(standardized mortality ratios) by county, for a fixed cancer
sit, and sex, as obtained from Dahlberg (1980). These SMR's
were computed by Dahlberg using the procedure in Breslow and
Day (1975). For fixed cancer site and sex, let N1.j be the
number of individuals at risk in the ith county in the jth age
group. Let Dij be the observed number of cause-specific deaths.
Breslow and Day assume the model: D1.j a Poisson random

variable with EDi = Ay:N:oy and Ay = ei¢j, 0 being a county

o 13 i

effect and ¢j an age effect. (Cancer incidence rates are
highly age-dependent.) The model 1is over parameterized, since
ei¢j = (aei)(&j¢). 0 and ¢j may be uniquely determined by
requiring §¢jN_j =D, where N ;= %Nij and D = ;%Dij'

Dahlberg estimates the @i} and @j} by maximum likelihood.
A1l 6; = 1 would indicate no county effect. Various hypothesis



-25-

test concerning the e1 were conducted by Dahlberg, who found
significant differences between counties for several data sets.
Here we consider that the revised SMR's represent estimates of

a county wide average SMR, and compute fn as the minimizer of

sMy A

n
J‘m Z (8- 191—1( gf}.f(xay)dxdy)ﬂ M, (f).
1

If A =0, then f 1is the minimizer of J,(f) subject to
1 i 1)
TEEYATdY & 8.5 1 2 1:38yussshs (3:3)
1 B :

(Numerically the left hand side of (3.3) is replaced by

N]—i PREAR
i

Figure 3.13 gives the 1970-1975 female lung cancer revised
SMR's by county from Dahlberg (1980). Fiqgure 3.14 gives the volume
matching histospline for the data of Figure 3.13. Figure 3.15
gives the volume smoothing histospline for the data of Figure
3.14. The smoothing parameter A has been selected by the GCV
method. Figure 3.16 gives the revised SMR's for 1970-1975 Male
Rectal Cancer, and Figure 3.17 gives the volume matching
histospline. For this data, GCV estimate of A was essentially
zero, so that only the volume matching histospline is given.
Figures 3.18 and 3.19 give the volume matching histosplines
for male lung cancer and male pancreatic cancer respectively.
In both the cases the GCV estimate of A was also 0.

We do not, at the present time have specific recommendations
as to how to interpret the disease incidence contour plots.
The difficulties concerning the interpretation of the individual
revised SMR's themselves, considering the variables involved
in collecting data of this type are formidable. See Dahlberg
(1980). However, we believe that these maps have the potential
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Figure 3.76.
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for use in "fishing expeditions" where the analyst may be
seeking similar geographic patterns for variables that may,

or may not be correlated. For example, contour maps made from
point values of, for instance rainfall acidity, atmospheric

or drinking water pollutants or soil components can be
visually compared with revised SMR maps. For contour maps from
point data, see Wahba and Wendelberger (1980). Variables that
are aggregated differently can also be reduced to contour

maps which can be compared. Maps for many variables could be
screened visually and if common patterns are suspected, then
possible relations between variables could be studied further,
by more rigorous methods.

It is important to note that, while the calculation of
one map can be very expensive, the calculations that depend on
the data are the solution of equations (2.9), for ¢ and d,
the calculation of w via (2.14) and the minimization of V of
(2.15). Other ingredients as noted at the end of section 2 are
computed only once and stored. We originally evaluated
¥n,m,k(t) from (2.7) on a 41x41 grid for input to the contour
map subroutine used to make the plots. This size grid turned
out to be sometimes esthetically unsatisfactory and was replaced
by an 81x81 grid. Repeated evaluation of the Ei on Ehis grid
was expensive. For repeated use, the values of the 51 on an
adequate grid should be done once and stored. Repeated use
is then quite cheap.

For data from a non-negative source which may vary over
several orders of magnitude (i.e. Wisconsin population data)
the approach given here can be unsatisfactory since large
negative estimates can occur. Nonnegatively constrained
estimates are probably more appropriate. (See Dyn and Wong (1980),
Wong (1980)). For data similar to the revised SMR's, however,

the results can be quite reasonable. This remark is not intended
to support methods which aggregate data before the analysis,



-34-

because as can be seen from the synthetic data, much resolution
can be lost in the aggregation process. However, much medical
data is not readily available in disaggregated form.

We have not discussed any theoretical properties of this
estimate andin fact none are known to this author, other than
those which can be inferred from the theoretical results known
for the general class of nonparametric methods of which this
is a member as discussed in, for example Wahba (1977a,b,1978).
Also, the error structure of revised SMR's does not fit into
the error structure commonly assumed to justify the volume
smoothing used here. Significance tests for spatial differences
and geographic correlations between different variables (some
of which might be aggregated in different ways!) remains to be
developed in the present context and we feel that it is
necessary to do this before considering the above methods as
more than a graphical tool.
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