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ABSTRACT

We consider the model Y(ti) = g(ti) + eg, i =aT,2, 50050y ‘where
g(t), te[0,1] is a smooth function and.the {Ei} are independent N(0,02)
errors with o unknown. The cross validated smoothing spline will be
used to estimate g nonparametrically from observations on Y(ti), 15 ViZsoaasths
and the purpose of this paper is to study confidence intervals for this
estimate. First, properties of smoothing splines as Bayes estimates are
used to derive confidence intervals based on the posterior covariance
function of the estimate. To compute the confidence intervals it is necessary
to know or to estimate o2®. We estimate o2 here by the residual sum of
squares divided by the equivalent degrees of freedom, both of which are determined
using the generalized cross validation estimate of the smoothing parameter.
A Monte Carlo study is carried out to suggest by example to what extent
the resulting 95% confidence intervals can be expected to cover about 95%
of the true (but in practice unknown) values of g(ti), y B o O S T
Three smooth example functions, 5 values of g%, and n = 32, 64 and 128
were tried. Confidence intervals based on known o2 were extremely
reliable for all 3 n's, generally covering close to 95% of the true
{g(ti)}. Confidence intervals based on estimated o2's were also highly
reliable for all n = 128 and most n = 64 examples tried. Degraded
results were sometimes seen for n = 32. Failure of the method for small n
appears to be accompanied by estimates of o® off by orders of magnitude.
which would frequently be evident to an experimenter. The method was
also applied to one example of a two dimensional thin plate smoothing
spline with n = 169, and 162 or 95.8% of the true values were covered

by the 95% confidence intervals. An asymptotic theoretical argument is



presented to explain why the method can be expected to work on fixed
smooth functions (1ike those tried), which are "smoother" than the sample
functions from the prior distributions on which the confidence interval

theory is based.
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1. INTRODUCTION

Consider the model

YEE Gl 20 T T (1.1)

2

is unknown and g(-) is a fixed

where g = (EI,...,E It E N L)

n nxn
but unknown function with m-1 continuous derivatives and }(g(m)(t))zdt < o,
(Equivalently, g is in the Sobolev Hilbert space known as wzm, see Adams
(1975).) The smoothing spline estimate of g given Y(ti) W B R T
which we will call g ,, is the minimizer in W," of

1

(g(ty)-y;)® + A (g™ ()24t
1 0

Si—
e~

;
n
The parameter ) controls the tradeoff between the infidelity % Z

1 i
and the roughness f(gém%(t))zdt of the solution.
0 3

The smoothing spline gn,A is also a Bayes estimate of g if g is
assumed to be a sample function from a certain Gaussian prior (as
opposed to assuming gswzm). This property of smoothing spline estimates
was discussed in some detail in Wahba (1978), hereinafter referred to as W.
It is the purpose of this paper, which is a sequel to W, to use the
properties of gn,k as a Bayes estimate to derive confidence intervals

)!

to provide a Monte Carlo study demonstrating the effectiveness of the

about the estimate, based on the posterior variances of the 9 A(ti
resulting confidence intervals for several examples of g when g is a
fixed function in Wzm, and to provide a rough analytical argument why
these confidence intervals should "work", as well as they appear to in
the Monte Carlo study. Some type of analytical argument is needed,

because (as we shall see) under the prior for which 9 A is a posterijor



mean ,

We note that Gamber (1979a, Lucas (1978)) and Wecker and Ansley (1980)
have previously observed that the prior distribution for which the
posterior mean is a smoothing spline, can be used to obtain confidence
intervals via the posterior covariance function. The prior under discussion is:
g(t),te[0,1] has the same distribution as
o 1/2
X(t) = ) 6.4:(t) + b "°Z(t), te[0,1], (1.2)
g i=1 d°J
= 1 & = J_1 § - i i = i

where 6 (81,...,6m) N(O,EImxm), ¢j(t) /(-1 5 =1,...,n, b is
a fixed constant and Z(-) is the m-fold integrated Weiner process,

W(u) being the Weiner process, and £ + «». It is proved in W (see also
Kimeldorf and Wahba (1971)), that, upon setting A = o?/nb, the smoothing
spline satisfies

S 0/ t) = 1M Egla()|Yoy),
where Y = (Y(t1),...,Y(tn))', y = (y],...,yn)h Eg is expectation over
the posterior distribution of g(t) with the prior (1.2) (&»= corresponds
to a "partially improper" prior). We will, in this study, treat A as

an infidelity-roughness control parameter rather as the process parameter

defined by n\x = o?/b.



That the fixed function and sample function models are different
and that this affects the meaning of A, can be quickly illustrated in

the m = 1 case. In the fixed function case (gsw21)

n . . ] -]
vim & 3 In(a(E-g(INT7 = f(e"(£))2at (1.3)
nvo - §=1 0

whereas in the random function (or Bayesian) case it is easy to show that

2

))J] =nb Clad]

1
so that by any reasonable Timiting argument we cannot have E [(g'(t))%dt < =,
0

£ T In(e(P)-g(d

13

i=1

The comparison of (1.3) and (1.4) can be shown to extend tom = 2,3,... by

replacing first divided differences by mth

divided differences, and a similar
comparison can be made in the general case of Section 3 of W.

In the random function case, A can be estimated by the method of
maximum Tikelihood, first suggested by Anderssen and Bloomfield (1974),
see also Wahba (1977a). In the fixed function case, we estimate A by

estimating the minimizer of some suitable loss function, R(}A), for

example

R(A) =

==

He=-13
.

(g(ti)"gn’}\(ti))zs (1.5)

i
the predictive mean square error. In this paper we will be using the
generalized cross validation (GCV) estimate of X from Craven and Wahba
(1979) for our studies. This estimate is an estimate of the minimizer
of R(X), and does not require knowledge of o2. If o2 is known A can be
estimated by the method of unbiassed risk estimation, see Craven and

Wahba (1979). Code is available in IMSL (1980) for computing 92 for



m = 2 and estimating A by GCV. For gewzm, the predictive mean square

error with optimum X converges rapidly,

min R(x) = o(n~2m/(2me1)y

A

these rates agree with the best achieveable rates in Stone (1980). A
number of theoretical results, Monte Carlo experiments and applications
concerning smoothing splines with GCV are available, for example see
Merz (1978), Nogues and Sielken (1980), Utreras (1979a), Wegman and
Wright (1980) and references cited there.

Our approach in this work is as follows:

1. Use the model (1.2) to derive the posterior covariance matrix

for D v (gn,A(tI)""’gn,A(tn))" for fixed A and o2. Given

=~

A and ¢* this results in confidence intervals for each g(t.),
centered at gn,k(ti)°

2. Use the data to estimate the (optimum m.s.e.) X by GCV, and ¢? by
G2()) where

~ ~

a2(X) = RSS(X)/EDF(}A),

RSS is the residual sum of squares, EDF is the equivalent degrees of
freedom for error when K is used, and X is the GCV estimate of A.

3. Run a set of Monte Carlo experiments with several fixed function
models, several sample sizes and several values of o to collect
some evidence as to whether these confidence intervals can be
expected to have useful properties over some range of practical

situations.



4. Obtain an asymptotic argument why the 95% confidence intervals
obtained as in 1. and 2. should cover about 95% of the truel{g(ﬁi)}
values, when gswzm and A is a good estimate of the minimizer
of s R(3)s

In the Monte Carlo experiments we have taken three different smooth

functions with }|g(t)|dt =1and o = .0125, .025, .05, .1 and .2. We
considered on]yoti = i/n, and n = 128, 64 and 32. Thus there were

3 x5 x 3= 45 examples of all combinations of functions, o's and n's.
Data was generated for 10 replicates of each example via the model (1.1).
Confidence intervals were determined as in 1. and 2. (details are given
in Section 2) and the percentage of true g(ti) covered by the confidence
intervals was recorded. To determine sensitivity to the estimate

”~

G%(X) of o?, the confidence intervals derived in 1.with A estimated by

GCV but with 32(1) replaced by the true o?, were determined, and the
coverage percentages also recorded. We will call these "pseudo confidence
intervals", since it is necessary to know o? to compute them. For the 45
examples, the percent of true g(ti) covered by the pseudo confidence
intervals in the 10 replications varied from a very satisfactory 92% to
98% Qith a small within group variance. Nearly identical favorable results
were obtained using 32(2) instead of o® for all of the n = 128 examples,
for nearly all of the n = 64 and some of the n = 32 examples. For the
smaller n and o = .0125 and .025, there were occasional unreliable
estimates for o?, they tend to be too small as gn,k came very close to

interpolating the data. It is interesting to note in the results, however,

that if one has "some idea" about the size of o2, then the exceptional



(unreliable) cases can be readily spotted since the poor estimates for
o? tended to be around two orders of magnitude too low. That is, if 82(1)
was bad it was typically bad enough to be spotted as nonsense. Thus,
for moderately large sample sizes, (>32) if g is known a priori to be "smooth"
and some rough idea of the size of o? is known, it appears that the
proposed confidence intervals can be used in practice "with confidence".
The analytical result obtained in 4. is as follows. Let Sii(k)
be the posterior variance of .27 derived using the random function model.

m

Then, if gewz , n large and A* the minimizer of ER(A), we argue that,

for large n

1=

ER(A*) = rl]a

: sii(A*)(1+o(1)) (1.6)
3

1

where o is some number between (1 + ﬁ%)(] - é%) and 1.

The expression (1.6) says, that if gswzm, then asymptotically, the
average square bias plus variance is approximately equal to the expression
for the average of the posterior variances which are used in the confidence
intervals, provided A is taken as the minimizer of ER(}).

We note that the theoretical confidence interval results here
extend immediately to the generalized splines discussed in Section 3 of W.
For applications to splines on the plane and the sphere see Wahba (1981)
Wahba and Wendelberger (1980), and Wendelberger (1981). Following the
Monte Carlo study just described, we give an example of the confidence
intervals computed for a thin plate smoothing spline estimate of a
two dimensional surface with n = 169. In this first (and only) two

dimensional example tried, the confidence intervals covered 162 or 95.8%



of the true functional values. This example was calculated using some
improved numerical algorithms being developed for cross validated
splines in several dimensions by J. Wendelberger (1981).

Nogues and Sielken (1980) have proposed a jacknife technique to
obtain confidence intervals for the cross validated smoothing spline
estimate. Numerical results were not presented by them but we believe
that it would be very interesting to compare numerically the intervals
they propose with the ones given here. Knafl, Sacks and Ylvisaker (1981)
have also recently proposed confidence intervals for some nonparametric
estimates which are sometimes related to smoothing splines. For more
on nonparametric regression, see, for example, Agarwal and Studden (1980),
Gasser and Rosenblatt (1979), Knafl, Sacks and Ylvisaker (1981), Nogues
and Sielken (1980), Stone (1980), W, and references cited there. We
remark that our philosophy is is the spirit of one suggested by Berger
(1980), that is, derive confidence intervals based on some prior
distribution, then forget the prior and see how well the intervals

can be expected to perform on cases of interest.



2. THE POSTERIOR COVARIANCE OF 9, A(t) IN THE BAYES MODEL

Let

1 (s-u)™ 7 (g-u)™-?
Qs.t) = é T

let T be the nxm matrix with jvth entry ¢v(tj) and Tet Qn be the nxn
matrix with jkth entry Q(tj,tk). We always assume that the matrix T is

of rank m, for this it is sufficient that there be at least m distinct

t.'s. It will be convenient to use the influence matrix A()A) defined by

:
In,a = ADY

where G ™ (gn,A(t1)"“’gn,A(tn)) . In the Bayes model discussed
here we will substitute nx for o2/b, until further notice. A rather
involved formula for A()X) is given in W (p. 367), but it can easily be
seen, by substituting (4.2) of W into (4.4) of W that A()) has the

representation
A(A) = T - nx*(BQ B'+mI)”'B

where B is any n - m x n dimensional matrix whose n - m rows are

orthonormal, and orthogonal to the columns of T. For later use we note

that the ijth entry aij(k) of A()) satisfies
99 4 (t;)
ad. .()\) = _....r.]’k—.l
1] 55

Theorem 1. The posterior covariance matrix of 90 2 is
—_—— L]

cov(gn,A|Y(t1),...,Y(tn)) = g2A(2),(A=c?/nb).

{(2:1)



The proof will be given later. The diagonal entries czaii(h),
i=1,2,...,n, of the posterior covariance matrix o?A()\) are used to define

{individual) 95% (posterior) confidence intervals for g(ti) by

gn,k(ti) + 1.960¢hiitxi. (2.3)

These are the intervals that we will study, with A = i, the GCV estimate

of A. We remark that the formulae (2.1 and 2.2) as well as the results
below apply to the generalized splines in Section 3 of W, to thin plate
splines on the plane (see Wahba and Wendelberger (1980)) and on the sphere
(see Wahba (1981)). Formula (5) of Gamber (1979a) can be shown to be a
special case of (2.2). For completeness we will give the complete posterior
covariance function of gn,A(t)’ te[0,1], although we will not use it further

in this paper.

Theorem 2. Let 0 < t,,< o<t (so that Q, is invertible). The

E
posterior covariance function of 9, A(t), te[0,1] given (Y(tT)’°"’Y(tn))
is given by
cov(gy 1(s)sg  (£)[Y(ty)s...,¥(t,)) = covi(g(s),a(t))]alty),... g(t )}

% 02{(¢1(S),---,¢m(5))e'1T'Q;]+(Q(s,t1),..-,Q(s,tn))Pn} x

ACOLG o™ (09 (£)5- 0, (£0) + PLLQCESE),. . Q0 )

m

where

and



Cov{(g(s),g(t))[g(tq),..

We remark that b enters only if both s and t are not one of (tT,...

0

glt )} = b{(qa](s), b (s))8”! 3
- (Q(s,ty)5...5Q0s,t
- (Qtsty) e 5Q(t,t, )0 ' Te
© (Q(sstq)see 200558 ))P, [0

The proof of Theorems 1 and 2 proceed via

Lemma 1.

zero mean Gaussian g vector (all column vectors) with

Eee' =

Let nA = o®/b and A(X) = |

positive definite.

coulhh’ [y) = blT-TnoLoTgn) + o“TnglaA ) Iilgy -

Then

y=g+e,

-1
+nAl
ggtLgg™ M)

E(h|y) = Zhg(z

Let v, g and € be zero mean Gaussian n-vectors and h a

2 I = 1 = (B R i ow
021, Egg' = bzgg, Egh bzgh, Ehh bzhh, Ech' = 0, Eeg' = 0.

, and suppose that Zgg is strictly

g9

+nhI)'1y



-

In particular, setting h = g gives

E(gly) = Ay (2.7)
cov(g|y) = a®A()) (2.8)

Proof of Lemma. The proof follows by application of Anderson (1958)
and tedious but straightforward algebra.
To prove Theorems 1 and 2, set g = (g(t;),...,9(t )", £ =1, h = g(s)

and n = £/b. Then Xhh’ Zhg and zgg are determined, respectively by

m
Ea(s)9(t) = bIn } 0,(s)6,(£)40(s,t)], s, tel0,1] (2.9)
=

Eg(s)g = BINT( 81 (). .,8,(5)) " +(Q(s,t )5 ,00s,t )], se0,1]
(2.10)

Egg' = b[nT'T+Q_]. (2.11)

To complete the proof of Theorem 2, Zhh’ Zhg and zgg based on (2.9)-(2.11)
are substituted into (2.5)-(2.8) and the limits taken as n+w. These
limits may be found using the following results (2.12)-(2.14) all found

in W (equations (2.7)-(2.9)),

-'|_

“lon=Tiry =T0=11=T 41
o = e S e T (2.12)

(nTT+0,) " = q

-1
n

Tim nT* (nTT'+q )"
TT')(-'O

8T'qQ (2.13)

Tim (nTT'+q )7 =
oo

|
o

(2.14)

and also



.

Tim {nl__-nT'(QnTT") 1T'n} = 671, (2.15)

Moo
which can be obtained, after some manipulation by substituting (2.12)
into the left hand side, expanding powers of n and taking the Timit.
The author has learned that the anonymous referee who provided (2.12)-(2.14)
was B. Silverman.

The GCV estimate i of X used in the experiments below is the

minimizer of the GCV function V(X) defined by

L -am )2
(FTr(1-A()))?

V(x) = (2.16)

for further details, see Craven and Wahba (1979).
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3. THE MONTE CARLO EXPERIMENTS

The main Monte Carlo experiment consisted of a detailed study of

the three cases of functions given below

Case 1 g(t) = %510,5(t) 3 %57,7(t) if %85,10(t)
-6 4

Case 2 g(t) = 15 830,17(t) i TO'B3,I1(t)
ol ! ]

Case 3 g(t) = gszo’s(t) + 3812,]2(t) "+ 387’30(t)

where

B, gl = Fl(%%% P e B e e 1

A11 three cases are 1n_N2m for m = 2.

In addition two cases were chosen with discontinuities in the function
or its first derivative, and one two dimensional example is given.

An optimal m can be estimated from the data by cross validation. (See
Gamber (1979b), Wahba and Wendelberger (1980)) but we chose for simplicity
not to do that here. In all cases we fixed m = 2,

To simplify the computer programming and economize in computer time,

a periodic version of the smoothing spline estimate was actually implemented.
The general case can be handled by the program developed by WendeTberger
(1981). The test functions were deliberately chosen to satisfy the

periodic boundary conditions g(v)(o) = g(v)(1), v =0,1,2,3 SO ho new

source of error is being introduced. The results can be expected to be
similar to the general case provided g satisfies the Neumann boundary

conditions g"(0) = g" (0) = g"(1) = g" (1) which are always satisfied



Sl

by the smoothing spline with m = 2. Let n be even and let Fn be the

n-dimensional subspace of w22 spanned by

{1,sin 2mvt, v=1.2,...,n/2-1, cos 2mvt, v=1,2,...,n/2}.

In the Monte Carlo studies we let ti i/n, i =1,2,...,n, and

generated data y = (y1,...,yn) by

—
Il

2t
y-l ‘9(5)"'61 1,2,...,”

where the £ were pseudorandom normal deviates with mean 0 and variance

g?. Given y, the minimizer in Fo of

1n 2 } (m) 2
= 1 (g(ty)-y;)? + Af(g" 7 (t))%dt
i=1 0
is
n/2-1 a_cos 2mvt+b_sin 2mvt a_,, cosmnt
In A(t) - 9 k2 : v2m * L 2m (3.1)
4 v=1 [1+a(2m0)° ] [1+A(mn)"™]
where
1"
a == )y,
0 J-=-I J
1 B i
= J'Z](COS ZTr\)ﬁ)yj, ] a5 5 alF2
1 & '
b. == ¥ (sin 2md)y., v =1,2,...,n/2-1
v = nj

This is the estimate of g that is being used.



"

It is not hard to show that

g a A A
HAGIIZ=R5S0) = 2 T iz aimnd) + G—2eprmag
_ POk S n/z-1 Ay 1 An/2

aggld)=aa)i= gee g v§1 N P

where Ay# (Zﬂv)'zm. V(X) of (2.16) is computed from

1
ﬁRSS(A)

V(x) = ——
(1-a(:r))?

and \ is the minimizer of (3.3).

It is reasonable to consider p(A) as the equivalent degrees of freedom
for signal and n-p()A) the EDF for error. The estimated 95% confidence

intervals are given by

) + 1.960(n)va(R)

e R Y

gn,g(

i is found by a global search based on equally spaced increments of Tog \.

There is a conceptual question whether 1.96 or the .025 point of the t

distribution with EDF(X) degrees of freedom should be used. For the
n =128 and n

64 examples the EDF(X) was typically greater than 30 and

~

t.OZS(EDF(K)) ¥ 1.96. Forn = 32, the use of t ,,c(EDF(1)) instead of



6=

1.96 would most Tikely have improved the confidence intervals obtained
here somewhat. This point will be discussed further. We also examined

properties of the 95% pseudo confidence intervals given by

) + 1.960va(}) .

S

gn’;\(

Here ¢ is the standard deviation of the {e;} that is input to the Monte Carlo study.

We will first describe three examples, and then give a summary of the
Monte Carlo experiment. Figure 1 gives a plot of g(t) for case 1,
(continuous Tine), n = 128 simulated data points with o = .1 (circles)
and gn,i(t) (dashed Tine). Figure 2 gives a plot of g(t) and the same
data as Figure 1. For visual effect confidence "bands" have been

plotted in Figure 2, the upper and lower dashed lines are

9, 3(t) + 1.965()va(3)

and

9, 5(t) = 1.965(X)va(3). (3.5)

Strictly speaking in the absence of knowledge of b or a bound on

s i= 1,2,...,n.

S —.

j(g(m)(t))zdt these bands only have meaning at t =

-t

Considering the n = 128 intervals centered at g ), in this example

n,i(ﬁ
100% of them covered the true values of g(ti). It can be seen that the
bands are not unduly large, however. Figure 3 gives a plot of V())

and the predictive mean square error R()A) defined in (1.5).
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00

In this example, 1og]oi = -5.778,10g]OA* (the minimizer of R(A), was

-6.000, and the inefficiency ISUBV defined by

~

R(A

ISUBV = fri%

~

was 1.078. As a yardstick on the validity of Sz(k), we have also computed

VRATIO defined by

2
VRATIO = 010 S

which was 1.04 in this example. Note that in VRATIO, we are recording the
ability of 82(2) to estimate the mean square measurement error that
actually occurred, rather than the variance of the population from which
the errors were drawn.

Figure 4 gives a plot of g(t) for case 3 (continuous line), simulated
data for n = 32, o = .1 (circles) and gn,i(t) (dashed line). Figure 5
gives the 95% confidence "bands" analogous to Figure 2. Here %%—or 100%
of the true values of g(%), i=1,2,...,n were within the bands, but again,

the bands are not unduly large. The percentage of points covered by

the "pseudo confidence intervals"

g, A(%) + 1.960va(R)

s A

was computed, where o is the standard deviation used in generating the Eils°

This percentage was 96.8%.
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| Figure 6-10 are analogous to figures 2 and 5 for Case 2, n = 64,
with differing o's. The data in the five figures 6-10 were simulated
using ¢ = .0125, .025, .05, .1 and .2 respectively. The percentages of
the true values of g(%) covered by the confidence bands in these 5
figures were 96.88, 95.31, 92.19, 100.00 and 96.88, respectively, with
a grand average of 96.25%.

The main part of the Monte Carlo experiment consisted of a study of
Cases 1, 2 and 3 for n = 32, 64 and 128, and ¢ = .0125, .025, 05,3701
and .2, giving 3 x 3 x 5 = 45 "examples". Each example was replicated
10 times and for each replication we recorded the inefficiency ISUBV,
the VRATIO, “CI 95" which is defined as the % of values of {g(1)}
covered by the interval gn,X(%) + 1.963(2)/a(i)? and "PCI 95", defined as
the % of values of {g(%)} covered by the interval gn,x(%)}t1.960ﬁh(2).

Table 1 gives ISUBV, VRATIO, PCI 95 and CI 95 for 10 replications
of Case 2, with n = 64 and o = .1. Over the 10 replications it can be
seen that the 95% confidence intervals covered between 89.06% and 100%
of the true va]ues; for a grand average, over the 10 replications, of
97.03%, that the inefficiency ISUBV was close to 1.0 in all cases and
that the estimate of 62 was quite good (VRATIO®1). The PCI's were

slightly better than the CI's, as to be expected.
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Figure 6.

g(t), data, and confidence bands, case 2.
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1SUBY
1,023
1,134
1,000
1,070
1,001
1,012
1,024
1,089
1,057
1,061

1,049

L0042

Table 1

Summary Data for 10 Replications of
Case 2, n =64, o

.

VRATIO

,90
.85
0 96
.31

1,03

bt d
i3

1,00

1.05

Rt

W09

96,808
95,31
95,31
100,00
90,635
96,80
100,00
100,00
96,88
65,31

96.72

2,75

et e

PCI 95

¢l 96
96,60 !
05,31 !
95,31 |
100,00
69,0061
100,001
100,00/
100,00]
94L,00;
96,308

97,03

3,24,

{
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Table 2 gives the sample means and standard deviations of ISUBV,
VRATIO, PCI 95 and CI 95 for n = 128, for o = .0125, .025, .05, .1 and .2
for each of the 3 cases, based on 10 replications of each case. Appendix 1 gives
the individual replicate data analogous to Table 1 for each of the 15 examples
with n = 128. Both the CI's and the PCI's come remarkably close to
covering 95% of the true values. 32(1) comes remarkably close to
estimating %_21512. A s1light tendency to systematically underestimate
%121512 is eigdent in VRATIO. Unfortunately it will be seen that this
tendency becomes more pronounced as n decreases.

Tables 3 and 4 give the corresponding summary data for n = 64 and
n = 32. DFSIGNAL, which is n - EDF(X), is also given for the n = 32
case. The pseudo confidence intervals continue to come remarkably
close to covering 95% of the true values. The performance of the CI's
appears to degrade for the smaller o's with some rather poor results

forn = 32, o = .0125. It can be seen that the poor confidence intervals

are associated with VRATIO's substantially less than 1.



ISUBY
MEAN S.D.

g = .0125

Case 1 1.063 .05

Case 2 1.036 .06

Case 3 1.086 .19
o= .025

Case 1 1.094 .13

Case 2 1.070 .14

Case 3 1.067 .08
g = .05

Case 1 1.061 .05

Case 2 1.025 .04

Case 3 1.070 .09
o= .1

Case 1 1.164 .25

Case 2 1.056 .08

Case 3 1.044 .07
g=.2

Case 1 1.500 1.20

Case 2 1.177 J23

Case 3 1.186 21

Zha

Table 2
n =128
VRATIO PCI 95
MEAN S.D. MEAN S
.99 .04 97.81 3
99 0470 97.779 12
.92 .07 96.72 1
.96 .04 97.27 3
.98 .06 97.03 2
.97 .08 96.95 3
.00 .02 97.42 2
.96 .05 96.95 1.
.95 .06 95.86
.98 .02 95.55 3
.97 .06 95.70 4
.98 .04 97.27 3
.98 .05 94.84 5.
.94 .05 95.47 3.
.97 .05 97.11 2

B

32
<19
.63

97

or.
.42
96.

96
.56
99.

94.
95.
97

94.
95,
96+

€l 85
MEAN

.42
.88
9.

09

11
72

64
16

92
55
27

14
86

5

—_ N B

—
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N wm
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ISUBY

MEAN

Case 1 1.073
Case 2 1.308
Case 3 1.101

Case 1 1.094
Case 2 1.332
Case 3 1.059

c= .05
Case 1 1.045
Case 2 1.164
Case 3 1.137
g=.1

Case 1 1.832
Case 2 1.049
Case 3 15215

1.324
1.062

5.0,

.09
.59
A2

« 10
705
<10

-29-

5.

Table 3

n =64
VRATIO PCI 95

MEAN S.D. MEAN

.99 .10 96.09 3
75 - Ea39k~ . 9aueE 2
.76 .25 96.09 - 3
.98 09 -97:34 -2
»6b w36 95947 2
.80 .08 95.78 3
.97 .08 95.78 4
786 B23c 97466 2
82 p24e 96092 2
.86 .14 93.59 5
97 090 96u72 2
.83 .22 94,53 4
.99 .09 97.97 2
.01 .06 99.06 1
W87 2l7re 97684 -1

U,

wa7
=19
.14

.89
47D
.28

.94
.13
.36

.74
221

392
304
.98

CI

MEAN

95.
80.
.25

91

96.
.66
92.

95.
94.
82.

92

97

94
31

41
g7

16
06
66

.27
7.
=il

03

.03
98.
93.

91
12

.12
. 16
5]

ok
<52
71

.26
.24
73

.46
.14
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Table 4
n =32
ISUBV VRATIO PCI 95 CI 95 DFSIGNAL CIx
MEAN S.D. MEAN S.D. MEAN S.D. MEAN  S.D. MEAN

c =.0125

Case 1 1.141 .28 .79 .34 95,31 2.88 86.87 9.76 16.2 93

Case 2 1.242 21 .16 .22 92.50 4.68 31.56 39.04 30.9 <80

Case 3 1.449 .25 .06 .13 94.37 4.38 12.19 26.01 31.6 <80
g = .025

Case 1 1.331 .62 .92 .37 95.94 5.05 85.94 28.95 14.8 93

Case 2 1.272 .26 .45 .33 95.31 4.25 67.19 35.96 26.8 89

Case 3 1.134 .08 45 .31 95.00 2.07 74.06 21.92 26.8 90
g = .05

Case 1 1.950 1.08 .69 .44 92.19 6.13 74,06 29.91 16.0 93

Case 2 1.095 1 79 .42  93.44 5.13 82.81 28.10 21.0 92

Case 3 1.473 .62 .b3 .45 92.19 4.25 65.63 35.88 24.4 91
o=.1

Case 1 1.200 .20 .94 .22 98.44 3.76 96.56 6.9] 8.8 94

Case 2 1.070 07 .90 .24 95.44 3.44 92.19 6.88 17.4 93

Case 3 1.114 .10 .74 .30 96.88 2.80 87.81 12.22 18.6 93
g = .2

Case 1 1.402 .80 .97 .17 91.56 7.79 91.25 11.08 6.5 94

Case 2 1.066 .09 .77 .18 93.75 4.42 90.00 5.38 14.9 93

Case 3 2.017 2.57 .76 .36 97.19 4.06 82.19 29.08 16.5 93
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The replicate data for the 3Q examples summarized in Tables 3 and 4 is
also given in the Appendix (except for the DFSIGNAL numbers). By use
of the Appendix, it can be seen that the failure of the confidence
intervals to have the desired property is primarily traceable to a
failure to estimate o® accurately. In these very small o cases where this
happens the cross validation is coming close to choosing % to interpolate
the data. In these examples, it appears that o2 is either estimated
reasonably well, and the resulting confidence interval is quite satisfactory,
or 52(X) is way off. If the experimenter has some idea of the order of
magnitude of o then, these failure cases can be spotted in practice
by examinatior. of G(X). For example, inspection of the 10 replications
for the Case 2, n = 64, o = .025, reveals that replications number
1,2,3,5,6,8 and 9 gave satisfactory confidence intervals whereas in
replications 4 and 7 the smoothing spline very nearly interpolated the
data (erroneously). The confidence intervals were meaningless for
replicates 4 and 7 but this could easily have been detected with only a
crude knowledge of the true o?. This ability to detect gross failure
cases seems to be generally true in all the n = 64 and n = 32 cases
where the confidence intervals were unsatisfactory. A gross underestimate

of o will result in DFSIGNAL close to n, equivalently EDF(%) close to O.

For the typical n = 32 case, 1.96 is not a good approximation to
t.025(EDF(i)). The column labeled CIx in Table 4 gives the true size of
a confidence interval using 1.96 if the true distribution were t with
EDF(X) = n - DFSIGNAL degrees of freedom. From this, it appears that
the replacement of 1.96 by t.OZS(EDF(X)) would most probably have
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improved the overall results in the CI 95 column modestly. These
numerical results as well as the asymptotic theory presented later
suggests that the confidence interval results will only improve in similar
examples, as n becomes larger. Several n = 16 cases were tried and the
results were variable. The GCV method is recommended only with caution
for n as small as 16.

Figures 11 and 12 give the figures analogous to figures 1 and 2, for an
example of case 4. Case 4 is a triangular shaped hill function, and is not in
wg. None of the theory developed here necessarily applies to this case.
Only the four examples for all combinations of n = 64, n = 128, o = 0.05
and o = .1 were tried. A summary of the results of 10 replications
(analogous to TabTele, 3 and 4) appears in Table 5. The average VRATIOS
are about the same as for the smooth examples, but the variability is
larger. The results are better than we expected but suggest caution
in using the method on functions with discontinuous first derivative.

The asymptotic result of Section 4 below does not apply to this case, and
results could be worse for larger n.

In an attempt to defeat the method soundly we considered a function
with a large discontinuity. Ordinarily one would not attempt to estimate
such a function with a cubic spline, which has a continuous second
derivative. Figures 13 and 14 are analogous to figures 1 and 2 for Case 5
with n = 64, o=.1. Case 5 has a jump of 12 at t = .5. Table 5 gives
summary data for Case 5 with n = 64 and 128, ¢ = .05 and .1. Here ¢ is
overestimated by a factor between around 30 and 300. Overshoot (or "Gibbs

effect") 1in 9, .3 near t = .55 is clearly visible. However in the n = 64

examples exactly 62 (=96.88%)and in the n = 128 case examples exactly 126 (98.44%)

true values of g were covered by the confidence intervals in each replication.
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Figure 11. g(t), simulated data, and 9, X(t) for an example of Case 4.
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225
.18

. 138
21

.091
.78

.48
4.96

.22
6.39

sl
2168

=-37-

Table 5
VRATIO
MEAN S.D.
= 64
1.08 5]
298.8 51.3
97 .46
70.81 14.83
= 128
.92 30
131.02 11.38
.92 .12
32.25 6.00

PCI 95
MEAN S.D.
93.91 3.98
84.2 2415
43.91 3.86
87.81 2.40
95.47 1.91
92.66 - 1.4
95.70 - 2.]6
92.81 ' 1.84

CI 95
MEAN S.D.
84.69 28.55

96.88 0
83.59 28.41
96.88 0
91.64 1}
98.44 0
94.45 2e3d
98.44 0
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It would be nice to have a better estimate of o¢® 1in the small n
case. It can be shown that the maximum likelihood estimate of o?, given

A, is
o3 () = T y' (1-AQ))y

which becomes, in the equally spaced periodic case

n/2-1
82 (A) = 2 z A (a2+b2) £ 1 ,__>\_ a2
ML N L= e B Rn/2+k n/2
s B P LS.
We computed G2(A) and VRATIOy = OML(K)/E-121 e}, for 10 replicates of

several of the examples with worst VRATIO. In most of these cases a2 (X)
tended to be too big by roughly the same factor as SQL(f) was too small,
and has a higher variance. This very brief study was by no means definitive,

however and further study may be warranted.
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Finally, we give a bivariate example, kindly provided to us by
J. Wendelberger, using the computer program developed in his forthcoming
thesis (Wendelberger (1981). Figure 15 depicts Franke's "Principal test

function"

f(x,y) = .75exp [- (9x—2)zz(9y-2)2 ]
+ .75exp [- (9"4’;)2- 95%1 ]
+ .5 exp [- (9X-7)22(9y-3)2 ]

.2 exp [- (9x-4)%-(9y-7)2],

which Franke (1979) used in an extensive comparison of different interpolation

methods. Data were generated by the model

2y Blitalplt g

with

] L
with Re™ ~mrrs ¥

with N = 13, giving n = N? = 169 data points. The peak height of f was
approximately 1.2 and o was taken as .03. f was estimated as the so called
"thin plate smoothing spline" which is the minimizer (in an appropriate

space) of

ne-13

1 X 2 - ;
IR e s

2
Seg )dxdy.

=00 =00 y

.i

It is not required in this method that a regular grid (xi,y.) be chosen.

J
A regular grid was selected here so that we could plot cross-sections
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easily. Details of the theory, the cross-validation estimate of A and

a computational scheme are given in Wahba and Wendelberger (1980).

An improved computational algorithm is given in Wendelberger (1981).
Figure 16 gives the resulting thin plate smoothing spline estimate of f.
Figure 17 gives 7 selected cross sections for 7 fixed values of x,

x=(2i+1)/N for i = 1,3,5,7,9,11,13. In each cross-section is plotted

1]

f((2i+1)/N,y), 0 < ¥y < 1, (solid line), f X((21+1)/N,y) Bxy< )

where fn 3 is the thin plate smoothing spline, (dashed line) the data

zij’ j=1,2,...,13, for i fixed, and confidence bars, which extend
between
fn,i((21+])/N’yj) + 1.960(A)Vaij§j(k)
agn )\(XT SyJ) . .
where aij 1.J.{?\) = ,az . Of the 196 confidence intervals, 162
L) .IJ

or 95.85% covered the corresponding true value of f(xi,yj). This example

was not "cooked" but was in fact the only example run by J. Wendelberger.
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Figure 17 continued
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2 n
4. ON THE RELATION BETWEEN ER(A*) AND - 7T a,.(A*)
Ny 1

s N
The following Theorem describes a relationship between ER(A*) and %;— ) aii(k*)
21
Theorem:
Let gewg, let g, and R(X) be as in Section 1 and let t, = i,
3 1 n
1=1,2,...,n. Let X* be the minimizer of ER(A). Then, as n » =,
g2 0
ER(A*) = o= I aii(k*)(1+0(1)) (4.1)
i=1
for some ae[ (1+ =) (1= o), 1]
4m 25 e

Argument:

We must consider the case g(-)swm_I (polynomials of degree < m-1),
and g¢m_ . separately. If gem ., then A* = «, A(=) is the orthogonal
projection operator onto the discretized polynomials (columns of T defined in Sect. 2)
A(%) = A%(=) and ER(=) = &= TrA(=), so (4.1) holds with o = 1.

Suppose gem 1 We have
, .
ER(A) = b2(A) + %T-TrAz(k) , (4.2)
where

b2(x) = ~||(I-A(X))gl]?.

!

n

Let (y. ,nb ), v =1,2,...,n-m be the eigenvectors and eigenvalues of
Y AV

BQnB'. These are independent of the choice of B, but do depend on n, that

is, ¥, = Yo bv = bvn' Let g = (g,yv)‘ Then
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]T AZ(A) .Inim ( b\) )2 1 nim 1 (4 4)
-Tr =i s - .

] E a (7\.) >~ ITY‘A(}\) = lnim -(_.H'.l—b)_ . (4 5)
B gy 11 n n,=q A/b,,

Utreras (1979b,1980) has shown (for t. =1i/m, m=2,3,..., and also

more generally for m = 2), that there exist C1,C2, off C1 < C2 < =, independent

of n such that C,v™2" 2= sz'zm, VR 1,20 eashem, n = 1,2.8800 -

1
(For an earlier, heuristic argument, see Craven and Wahba (1979.)

)

Thus, there exists some C satisfying C1 < sz < C2 such that

s Gl 0 cﬁm
=TrA<(\) = —5—, =TrA(}\) = ——5— ,
n nA]/Zm n n}\1/2m
provided nk1/2m + =, where
¥t wd O (949
= [ Syt
L AT o AL WP
It is shown in Craven and Wahba (1979) that
b2(X) < Md_(g) (4.6)

where
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((4.6) actually holds for all the seminorms considered in section 3 of

W, whether or not the {ti} are equally spaced). More generally, if

=m g
g ;— < Jmp(g)’

v

A

where Jmp is independent of n, and 1 < p < 2, then clearly

b2(2) < APy (g) .
For p = 2, if g¢wm_1 then it can be seen that
-m 9
X — < J, (g)
VET b2 2m
entails that

b2(x) = A*J,(g) (1+0(1))

as A - 0, n >, It appears that, if the {ti} are approximately equally

spaced then it is sufficient for (4.7) that g has a representation of

the form

1 m-1
g(t) = éQ(t,S) o(s)ds + ] 8 ¢ (s)

=1V

where p(=g(2m)) is some sufficiently regular function. See Wahba

(1979) for a heuristic argument in the thin plate spline case, also

Wahba (1977a).

(g) = g_, we have

ing J
Letting mp o

ag?CL

RO < (g, + —p7) (o (1)
n

as x =+ 0, nA]/Zm

for p =2, if g < . The minimizer of the right hand side of (4.8) is

(4.8)

+ », for each pe[1,2] for which gp is finite, with equality
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2m
A* = (i%ﬂ 1)2mp+1
p g. 2mp n
P
and, letting 6 = 2mp/(2mp+1) gives
o?Ce © q_q
*
R(A%5) < (g ) 9 (2mp+1) (4.9)
2Ce_ 6
i = a2 M (1-g) 2m
N TY‘A(}\;) = (2mpn) gp (Zmp)(zm_'l) (4.10)

where we have used Em/lm = (2m)/(2m-1). Arguing heuristically that
equality in (4.9) must hold for some p between 1 and 2 gives

R(A*

(%)

= (BB 28]y (140(1))

2
g
= TY‘A()\;)

for some pe[1,2]. Since this quantity is between (1+ é%J(T- é%) and

(1+ E%ﬂ(1- é%), the result follows.

We remark that this argument can be repeated in the generaf context
of W whenever the rate of decay of the eigenvalues {bv} and the generalized
fourier coefficients {gv} are known and some summability conditions on
the {bvn} are satisfied. Thus by using the conjectures concerning the
{bv} in Wahba (1979), our arguments can no doubt extend to the thin plate

spline. See Wahba (1977b).
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APPENDIX

Tables of ISUBV, VRATIO, PCI 95 and CI 95 for 10 replications each of
Cases 1, 24 and=3s o ==:0125, .025, 05, .1 and .2, n:= 1285 64,32
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ABSTRACT

We consider the model Y(ti) = glt:) * €35 1 = 1,250 .15 where

i %
g(t), te[0,1] is a smooth function and the {e.} are independent N(0,0?)
errors with o? unknown. The cross validated smoothing spline will be
used to estimate g nonparametrically from observations on Y(ti), IR [ A ,
and the purpoée of this paper is to study confidence intervals for this
estimate. First, properties of smoothing splines as Bayes estimates are
used to derive confidence intervals based on the posterior covariance
function of the estimate. To compute the confidence intervals it is necessary
to know or to estimate o?. We estimate o? here by the residual sum of
squares divided by the equivalent degrees of freedom, both of which are determined
using the generalized cross validation estimate of the smoothing parameter.
A Monte Carlo study is carried out to suggest by example to what extent
the resulting 95% confidence intervals can be expected to cover about 95%
of the true (but in practice unknown) values of g(ti), i=1,2,...,0.
Three smooth example functions, 5 values of g2, and n = 32, 64 and 128
were tried. Confidence intervals based on known g2 were extremely
reliable for all 3 n's, generally covering close to 95% of the true
{g(t;)}. Confidence intervals based on estimated o?'s were also highly
reliable for all n = 128 and most n = 64 examples tried. Degraded
results were sometimes seen for n = 32. Failure of the method for small n
appears to be accompanied by estimates of o? off by orders of magnitude.
which would frequently be evident to an experimenter. The method was
also applied to one example of a two dimensional thin plate smoothing
spline with n = 169, and 162 or 95.8% of the true values were covered
by the 95% confidence intervals. An asymptotic theoretical argument is
presented to explain why the method can be expected to work on fixed
smooth functions (like those tried), which are "smoother" than the sanple

functions from the prior distributions on which the confidence interval

theory is based.



