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1. Introduction

A theory of spline functions on the sphere is rapidly being developed,
see WAHBA (1981a), FREEDEN (1981a,b), SHURE, PARKER AND BACKUS (1981).

Dr. FREEDEN will be reporting on same of his results elsewhere in this
volume. Much of the rich theory surrounding univariate splines and

thin plate splines clearly is extendable to the theory of splines on the
sphere, via the use of reproducing kernels, n-widths, etc. In particular
convergence rates for smoothing splines on the sphere can be obtained

from the known rate of decay of the eigenvalues of the relevant reproducing
kernels, see e.g. MICCHELLI and WAHBA (1981), WAHBA (1977), UTRERAS (1981).

In this paper we propose a notion of vector splines on the sphere. It
is clear that interesting approximation theoretical properties of these
splines can be obtained. However, in this paper our focus will be on the
solution of certain practical problems which must be solved so that these
splines may be usefully applied to the analysis of meteorological data
from the upper air radiosonde network.

For the purpose of numerical weather prediction the global radiosonde
(weather balloon) network takes measurements every 12 hours of the
horizontal wind velocity vectors and other variables, at 9 standardized
vertical Tevels. From this data it is desired to estimate the horizontal
wind field and its vorticity and divergence (and other variables) at
a regular grid of points, for each Tevel. These estimates on a grid are
then merged with estimates of the same variables on the same grid, which
have been obtained from a forecast, to provide an estimate of the present
state of the atmosphere. This state estimate is then used as the initial
conditions to a numerical integration scheme which integrates a set of
differential equations describing the dynamics of the atmosphere, to
provide a new forecast. Numerical weather forecasts can be quite sensitive
to errors in the vorticity and divergence in the initial wind fields.
Unfortunately, horizontal wind vectors at, for example the 500 millibar
height, of the order of a few tens of meters per second, are measured
with an error standard deviation in each component of the order of
2-4 meters per second. Thus, it is not a trivial matter to obtain accurate
information concerning the vorticity and divergence from this data, even
in areas such as the continental U.S. where the radiosonde network is
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relatively dense. We belijeve that the appropriate derivatives of the vector
smoothing splines we propose have the potential for doing this relatively
well.

Speaking intuitively, the vector smoothing splines we propose will
behave like low pass filters. In the splines we propose there will be
two regularization or smoothing parameters to be chosen and two (sets of)
"shape" parameters. The first smoothing parameter to be chosen, may
be thought of as governing the overall half power point of the low
pass filter. The second parameter governs the relative distribution of
power between vorticity and divergence in the estimate. The choice of
the two sets of shape parameters correspond to the choice of Hilbert
space norms, but in an important practical sense they govern the rates
of decay of the energy spectrum of the solution, one "shape" for vorticity,
and one "shape" for divergence. It is well known from the theory and
practice of i11 posed problems that the appropriate choice of certain of
these parameters can affect the practical usefulness of the result.

In this paper we propose the use of generalized cross-validation (GCV)
for choosing the two smoothing parameters. GCV can also be used to
choose a small number of "shape" parameters (see CRAVEN and WAHBA (1979),
WAHBA and WENDELBERGER (1980)). However, in this paper we show how
historical meteorological data can be used to choose the "shape"
parameters, or Hilbert space norm. We discuss some numerical methods,
and we describe the results of some numerical experiments on synthetic
data which mimics actual 500 millibar horizontal wind fields over the U.S.
In our experiments we have observed that the accuracy in estimating both
vorticity and divergence can be quite sensitive to the relative distribution
of power allocated between them, (choice of second smoothing parameter) but
that GCV can be quite effective in estimating the correct relative power
distribution.

For the meteorological experts in the audience we remark that
estimating the present state of the atmosphere from current data is not
exactly the same problem as estimating the state of the atmosphere from a
combination of present data and a forecast of the present. This is so
because a data only estimate needs to take account of properties of the
atmosphere and measurement system while a data plus forecast estimate needs
to take into account the relative error of the data and the forecast. In
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this paper we are studying the data only prohlem., However, we believe that
this c1éss of techniques can be extended to the data plus forecast problem
and hope to do that in a subsequent paper.

In Section 2 we define the vector smoothing splines. In Section 3
we discuss the choice of Hilbert space norms. In Section 4 we describe
numerical methods and the cross validation estimate of the smoothing
parameter and in Section 5 we describe a Monte Carlo test of the method.

2. Helmholz Theorem and The Definition of Vector Smoothing Splines

We let P be a point on the sphere S, P = (\,$), where X = ]ongitude
(0<A<2m) and ¢ = latitude (-g§¢fg). V.= (U,V) is a (sufficiently regular)
horizontal vector field on the sphere, where U(P) is the eastward component
and V(P) is the northward component at P.

The vorticity ¢z and the divergence D of V are given by

= 3%5—(1)[- %(Ucoscb) * %;—’-] (2.1}
pand e 8.
pi= EEE§$£" T 3¢(Mcos¢)], (2:2)

where a is the radius of the sphere. Then there exists (by Helmoltz
Theorem) two functions ¥(P) and &(P), PeS, called the stream function and
the velocity potential respectively, with the following properties:

= 1o oY 1 3%
%zt 56 | C0S$ 3 ) b
.3a
snltude. OF . 5O
i 5(cos¢ 3 3¢)
C = qu (253b)
D= Ad

where A is the (horizontal) Laplacian on the sphere

1.

af= Lt
a? cos?¢

(cosof

1
AX b cos¢ ¢)¢

¥ and ¢ are uniquely determined up to a constant (which we will take to be
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determined by [¥(P)dP = [&(P)dP = 0, We are interested in defining Hilbert
S S

spaces of vector fields whose divergence and vorticity exists pointwise. We
will do this as follows. Let f(P) be a square integrable function on the
sphere which integrates to 0. Then f has an expansion in the normalized
spherical harmonics Y 3

2
I § *(P)
f(P) = e e o o
=1 s==2 a0
where
B TN
: eEscosslPi(51n¢) 0<s<q
Y, (X,9) = 6| E=diz...
: Sl s ,
egss1nsl%‘ (sing) -2<s<0,
_ o [20+1 (8=[s])!
Bgs = ve ITor (a+[s )1 s10
_ 2 2
"N dAm g=

and the Fourier Bessel coefficients f

fos = JF(P)Y,” (P)dP

s are given by

with

JE2(PYdP =Su ] ¥ 2,
2 0

Now YQS are the eigenfunctions of the Laplacian
g

AY.S = -2(241)Y£

L

Thus

Af = = 7Y a(a+1)f

s
W
s 558

Let Azs’ 2=1,2,...,5==,...,% be a set of nonnegative numbers with

A= max A, and



J22(2+1)2(2041)1 <o, (2.5)
g

Using the addition formula for spherical harmonics

Z v, 5(p)Y, 5(0) = 224 Lﬁtgp Q)

S==0

where y is the angle between P and Q, the Cauchy-Schwartz inequality and
the fact that PE(T) = 1 gives

f
tp) 25

|Af(P) ng £(£+'1)/A£s g

Ls

L
LA IDEA®) is jvs
L §=-2 L.8 “45

T22(2+1)2 (22+1)A J 2 S ﬁs y1/2
2 | 2,5

f 2

g

Thus {},}satisfying (2.5) and 7 < imply that Af(P) is well defined

(AL
and finite for all P.
Let H be the collection of all pairs (¥,8) on the sphere which integrate
to zero, are square integrable and

(1) = d e 2 .
T 2£1s=z.mm<m Ypo = JH(PIY(P)eP

s . & & Be "
317 (e) = Py Sjizi;;f%7<m 2, = fo(P)Y,S(P)dP

where {Als(l)} and‘{ARS(Z)} are sequences satisfying

Y 22(a+1)2(22+1)maxd, (i)<=, 1 =1,2.
2=1 s s

H is clearly a Hilbert space with square norm
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for any fixed § > 0 and both members of each pair possess Laplacians every-

where. It is easy to show that if Ags = [2(2+1)]"m, then

I(F) = [(8"%)2qp m even

(A(ITI-])/Z_F %

¢ (oS P0G\ L N TN
sin¢ §

(2.6}

R [2(2+1)]™, them m > 3 guarantees the pointwise existence of the

Laplacian.
The observations are assumed to be of the form

v

U, = U(P,) +'i'.e‘]3, Vi = V(P + ey, 1= 1,2,0.0n (2.7)

i i 12

where (U(Pi),V(Pi)) is the true (wind) vector at P, and sg,eg are

measurement errors. We propose estimating the stream function and velocity
potential (¥,®) associated with U and V by finding (¥,8)eH to minimize

g e 1 1) 2
n 21('5 EE{Pi) i acos¢, i Py)-Uy)

18 1 3y 130 2
¥ ﬁi£1(acos¢i AR L EE{pi)mvi) (2.8)

# AL (9) + 20,(0)]

Note that in the residual sum of squares above, U(Pi) and V(Pi) are
expressed in terms of ¥ and & via (2.3a). A unique minimizer (Tx,a=@x,a)
exists for each A > 0, § > 0 and the resulting wind field (Ul,ﬁ’vl,ﬁ)
constructed from (?K,S’QA,S) may be termed a vector spline field. Its
vorticity and divergence will be given by ons " AWA,S’ Dx,a = Awksdn
(Obviously, interpolating splines can be defined as minimizers of

J1(?) + %Jz(w) subject to the interpolating conditions, we will not discuss

these further.) Using WAHBA (1981a) or FREEDEN (1981a) it is straightforward
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to write an explicit (infinite series) expression for (UA N 6)°
: el s

3. on_the choice of 1) and 9‘?)

m ,
Let Azs =73 a.[(—i)(£+1)13[“2 and suppose that A, _ > 0 for
j:O‘] ES
2=1,2,...,5 = =2,...,8. It is not hard to see that
v = L fég n j
IF) =) ¥ 5= [(] aa°f)%dP (3.1)
' 2=1s=g oS j=0 Y

so that the choice of the Azs can then be reduced to the choice of m and
the'{aj}. LIF A\gg = 0 for one or more s, the minimization problem can

be handled by the methods described in KIMELDORF and WAHBA (1971), see
also FREEDEN (1981a). In principle m and possibly o , (with um=1)

can be chosen by cross validation (see WAHBA and WENDELBERGER (1980)), but
it is undesireable to attempt to choose toc many of these parameters from
the data, see WAHBA (1981c).

In this section we will use the duality theorem which relates
smoothing by splines to Bayesian estimation/Weiner filtering on stochastic
processes to suggest how the J's may be chosen based on historical
meteorological data. '

To give the duality theorem we need some background, which we will give
in a univariate context.

Let X(P), PeS be a (univariate) zero mean Gaussian stochastic process
on the sphere with covariance R(P,Q) defined by

R(P,Q) = EX(P)X(Q),

where E is mathematical expectation. Following PARZEN (1961), CRAMER and
LEADBETTER (1967) we can define the Hilbert space X spanned by X(P), PeS,
as all finite linear combinations of random variables (r.v.'s) of the form
M
Z, = jZ}gij(ij) (3.2}

and their quadratic mean (q.m.) limits. (A sequence Z],Zz,g.a, of r.v.'s

has a q.m. limit if Tim E(ZR_Zm)Z = 0). The inner product in X is
2 yMc0

-



<X(P),X(Q)> = EX(P)X(Q) = R(P,Q), and is extended by linearity to all r.v.'s

n
k
of the form Z, = } Eij(ij) and their q.m. limits. For example, letting
J=1
L be a Tinear functional, the r.v. LX = g%X(PO) will be in X if the sequence
of r.v.'s
y X(AU ,¢0+hk)-xr(l0 s¢0)
Toaam (3.3)
k hk

Then, it is not hard to

o : e
a¢X(P0) if and only if

has a q.m. limit, as hk+0, where (A0,¢0) = Poe
show that the sequence‘{Zk} will have a g.m. limit Z =

a¢a¢ R(PLP*)pprs =P (3.4)

is well defined and finite. Then the quantity in (3.4) is equal to

E(g%X(PO))Z, and furthermore
E( X(P ))X(Q) = 3%g R(PO,Q)

More generally, let HR be the reproducing kernel Hilbert space with
reproducing kernel R. Then each random variable of the form Z = LX can be
identified with the bounded Tinear functional L on HR, and vice versa. The
argument is as follows. If Z = LX is a r.v. in X it can be shown that
EZX(Q) = L(P)R(P,Q) = n(Q), say, where L(P) means the Tinear functional L

applied to R considered as a function of P. However, by the properties
of reproducing kernels, it can be shown that n(.) is the representer of L

in Ry that 1s Lf = <n,f>R, where < 50> is the inner product in H We

R
are now ready to state the

Duality Theorem (KIMELDORF and WAHBA (1970)).

Let X(P), PeS be a zero mean Gaussian stochastic process with
covariance bR(P,Q), and Tlet HR be the reproducing kernel Hilbert space

with reproducing kernel H Let

R*

Yi = LiX + Bgs £ = Ta2yaenans



where Lix, i=1.2,ca:5n8aren r.v.'s. in X, and the Eys--09E, are
independent, 0 mean Gaussian r.v.'s, independent of X(P), PeS, with common
variance o?. Then the conditional expectation of X(Q), given

Y'l = yi, T = Telsvsi My

E{X(Q)[Y; = vy, 1 = 1,2,....0} (3.5)

is given by fA(Q), where f1(°) is the solution to the minimization problem:

Find feHR to minimize

:in-a
IIM:!
et

(LyF-y,)% + Al £ 2.
i

and A = o?/nb.

Proof: See KIMELDORF and WAHBA (1970,1971), WAHBA (1978). However, the
proof proceeds by direct calculation of fA(Q) and by using the facts that
E(L;X)X(Q) = n;(Q), where <n,,f>p = L.f.

Now let f be some atmospheric variable of interest. We will proceed
as though the different realizations of f were sample functions from a
zero mean Gaussian stochastic process with covariance R(:,-). If repeated
(independent!) observations on f were available, then various properties
of R could be estimated from this data. We will discuss both "frequency
domain" and "space domain" methods for doing this. Using the properties
of reproducing kernel spaces (see, e.g. NASHED and WAHBA (1974)) it is
1._.2
: _ _4s
not hard to show that if J(f) = } =

‘ o

space H, then the reproducing kernel R for H is given by

is the norm on a reproducing kernel

R(P) = a0 ()Y, (0). (3.6)

To simplify the discussion, in this paper we are considering only R's

whose eigenfunctions are the spherical harmonics. (Other eigenfunctions,
j.e. those associated with Laplace's tidal equations, may well be reasonable
in certain meteorological applications, see WAHBA (1981b)).
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If a stochastic process X(P), PeS, has covariance

Z Dos? L (PY5(Q)

then X may be modelled as a random linear combination of the spherical
harmonics (Karhumen-Loeve expansion)

KP) = TXpo Yy (P) (3.7)

where the ng are random variables with

EX .4 = X

L gan 75 = glgl, =0 A 2l

(To see this, compute EX(P)X(Q) from (3.7) to obtain (3.6).) We have

Xpe = [X(PIY,*(P)

and

Yy = EX e = E(/X(P)Y, S(P)dP)2.

1 K

If K independent observations, f ,...,f of a meteorological variable of

interest are available, this suggests choosing {&S} based on estimates

| 177

oo™ K (f

)2

where the sample Fourier-Bessel coefficients fﬂt” k= 1,2,:+-,K are igiven
by

£,5 = JE(PIY, S (P)dP.

Figure 1 gives a plot of February 1974 moﬁth1y
averages of some atmospheric mean square sample Fourier Bessel Coefficients

collected by STANFORD (1979) from Channels 2 and 4 of the Radiometer
on NIMBUS-5. The radiation received by Channels 2 and 4 respectively can be
used (crudely) to infer the temperature T(P), PeS in the upper and lower

stratosphere, respectively below the satellite, By piecing tooether data
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from several orbits, (approximations to) T fT P)Y *(P)dP can be
obtained. STANFORD has computed monthly mean square values ng 3
K
She 25€ ky2
(7 Gy RRZ](TQS) ¥

What has actually been plotted in Figure 1 is the "TEMP SPECTRAL POWER"
defined as
5

TEMP SPECTRAL POWER (&) = Z 2+J;J ’
The energy spectrum in Temperature fields is related to the energy spectrum
of other meteorological variables, i.e. wind and geopotential. We are not
concerned here with the exact details of these pictures but rather that
sequences {Ags} can be fitted to this kind of data to provide meteorologically
reasonable Hilbert Space norms. See KASAHARA (1976) for some plots of
sample Fourier-Bessel coefficients with respect to the eigenfunctions of
Laplace's Tidal equations for wind and geopotential. Figure 2 gives a
plot of an idealized sequence A, . = X, & = 1.,2,..., where A, was obtained
by fitting (by an ad hoc procedure), a function of the form

2 52
A,Q,S = !jzoajl:_zuﬂ )]

to some of the data behind Figure 1. If lﬁs does not depend on s,

lzs 2, then the covariance

R(P,Q) = Ms 5 (P)Y ()

reduces by the addition formula for spherical harmonics, to

R(P,Q) = °f 2041)3, P, (cost(P,0),

where y(P,Q) is the angle between P and Q. Figure 3 gives the function
p(y) defined by

ply) = 221(22+1)>\292(cosy)/2§1(22+1);\lpp'u(,coso)_
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which is associated with thel{kz} of Figure 2, Figure 4 gives an estimate
for p(y) for f(P) = the 500 millibar (geopotential) height obtained by
JULIAN and THIEBAUX (1975) from sample covariances from data from a network
of 51 North American weather stations for the winters of 1966 and 1967. In
estimating p(y), an isotropic covariance function was assumed. The

purpose of providing Figures 1 and 4 here is to convince the reader that
historical collected or collectable meteorological data may be used to
choose the normm on H, although the particular data sets exhibited here

may or may not be the most appropriate. In the numerical experiments

to be described we have taken the'{A25(1)}and‘{A£s(2)} both as in Figure 2.

4. Numerical Methods. The Generalized Cross-Validation Estimates of
A and §.

Given 1,8, {123(1), ARS(Z)} and the data {(Ui’vi)}’ an approximate
minimizer (¥,®) of (2.8) can be obtained in the form

N 2 .

Y = WL S=Z_£G'Q,SY£ (4.7)
N .

® = 221 S=_£BRSY2 (4.2)

where N is sufficiently large. For other numerical approaches to the
minimization of (2.8) see WAHBA (1980,1981a), WENDELBERGER (1982). Let

-~ N Rv
N= Y ] 1=N2-1and renumber the indices (£,s), s = -%,...,%
2=1 5=-2 _ .
2=1,...,N, as 1,2,...,N. Let X¢ be the nxN matrix with (i,2s)th entry
15,5
aaghe (P

and Xh be the nxN matrix with (i,2s)th entry

T 1 355
a cosps; dA 2 (Pi)

and let X be the anzﬁ matrix
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A% Bl
a0 (4.3)
X, x¢
Let Da_be the Zﬁxzﬁ matrix
D, 0
Dg = ( ) (4.4)
¢ D,

where Di is the NxN diagonal matrix with 2s,28th entry Aﬁs(i), T 1.2,
Letting z = (U],..u,Un,V1,...,Vn), Y = (a1"“’uN’Bl""’Bﬁ)’ it is seen
by substituting (4.1) into (2.8) that we have to find y which minimizes

n” Ilz § s
The minimizer 1is

o (X'X+nng])"1X'z, (4.5)

By the use of (2.3a) and (4.3), it follows that the estimated wind field

(UA,G’VK,G) at the data points satisfies
\
P o
e
et = A(A)z (4.6)
Yy ,s(Py)
\VA,tS(Pn)
where A()\) is the 2nx2n "influence" matrix
- | "'] ""1 1
Alx) = X(X X+nADs )k

The generalized cross validation (GCV) estimate of ()\.8) is the minimizer
of the cross validation function V(x,8) defined by

H1(1-a(08))2) |2
V(A,8) = 1 ‘ (4.7)
[ Trace(I-A(X,6))]?
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This method for estimating smoothing parameters in regularization problems
was proposed in CRAVEN and WAHBA (1979), GOLUB, HEATH and WAHBA (1979)

and WAHBA (1977b) and its numerical and theoretical properties have been
studied in various places, see for example UTRERAS (1981). Ue only note here
the useful property of the GCV estimate of A and §. Let the predictive

mean square error R(A,8), when A and & are used be defined by

(U
1

R(A,8) = (P;)-U(P,))?

P

o
ne~-13

.i

S50

n
PEUARGIEICANS (4.8)

where U(Pi), V(Pi) is the true (but unknown) wind vector, and suppose the
U

measurement errors e, and siv are independent identically distributed
zero mean normally distributed random variables. Then under rather
general conditions, for large n the minimizer (i,g) of V(A,8) provides
a good estimate of the minimizer of R(X,8). V is not guaranteed to
have a unique, or even a finite minimizer. Practical difficulties in
minimizing V though possible appear to be moderately rare when the
assumptions are reasonably well satisfied. Various diagnostic tools are
available in troublesome cases and will be discussed elsewhere.

The numerical experiment reported in Section 4 was performed on the
Amdahl at Goddard Space Flight Center, with 2n = 228, N = 15, N = 448.

xp /2

We outline the calculations used. Let W , and let the singular

value decomposition (SVD) of wa_be

6‘=

w6 = UDNV' (4.9)

where UU' = U'U =1 = V'V and Dw is a diagonal matrix with entries

2nxzn
byseeesby . U;{bi} and V' are computed using LINPACK. Letting
"
W= . =U'z,
¥2n

then
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2
LZ{Z n -_1_.2{ 1 b\) 2
2ngcyti a2V Ty 24
V(A,8) = r v (4.10)
(_l_ LG b\) 2
2n o 2
v=1 b “+ni
b
1 0
b. 2+n\
8 il
Y = Ds 'Y ‘ b Ww. (4.11)
0 2n
2
by tnA

For fixed G,K(G), the minimizer of (4.10), is easily found by a global
search in increments of logi. Then v(i(a),a) was plotted for 8 values of
§ chosen in powers of 1/6, and the minimum was readily evident. No doubt
more efficient and automatic search procedures can be found.

For large n, N, and w5 poorly conditioned, computing the SVD
can be expensive, or it can fail to converge in a reasonable time. Some
shortcut methods which alleviate this problem somewhat and use tess storage
have been developed. (BATES and WAHBA, (1982) in preparation.)

5. A realistic Monte Carlo test of the method

A number of techniques for estimating divergence of the upper
atmosphere from radiosonde data have been proposed in the atmospheric
sciences literature. For example, see SCHMIDT and JOHNSON (1972). In an
attempt to determine how well the proposed method might work in practice
a Monte Carlo experiment simulating realistic measured wind data from
"model1" stream functions and velocity potentials has been coded, and
various experiments run. We describe one such experiment.

We obtained a model streamfunction and velocity potential of the form

% % :
o |
1 Il gust 25 2

Vo= C

(5507
Cf’fs
5 = b Y
2 gl gug B K
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by choosing a,_ and bzs as normally distributed pseudo-random numbers with

mean 0 and va&?ances lﬁs(1) = ARS(Z) = Azs given in Figure 2. C.| and C2
were scale factors chosen so that the simulated z = AY and D = A% had
magnitudes typical of real atmospheres.

(fz2ap) 172 <= § x 1073 ssec., (fp?dP)'/% = 1 x 107 /sec. Model wind vectors
(U(Pi),V(Pi)) were computed from the model (¥,8) of (5.1) for {Pi}
corresponding to n = 114 North American radiosonde stations. The data

& i U 2 v
L= (U=Is=oc,Un’ V],O..,Vn), Wher‘e Ui i U(Pi) + S_E 5 Vi & V(P_-I-) + Es 5

were constructed by adding the measurement errors e, eiv as norm;11y
distributed pseudo random numbers with mean 0 and standard deviation
g = 2.5 meters/sec., a realistic value for the measurement error
standard deviation. Since the ability to estimate divergence will
depend on the signal to noise ratio, it is necessary that the values
of "signal" and "noise" be chosen realistically. The results reported
here can be expected to be rosier than that obtainable in practice,
however, primarily to the extent that wave numbers £ > N occur in practice
but are not simulated here, and (secondarily) because in practice J(1) and
J(z) cannot be so precisely matched to the "truth" as they are in this
experiment.

Figure 5 shows the simulated wind vectors. Figure 6 shows the
estimate of the true wind field, plotted on a 5° x 5° grid in latitude
and longitude. Figures 7 and 8 show the model and estimated vorticity
and divergence, respectively. Figure 9 shows V(K(G),S) and R(X(S),S),
(of 4.8) plotted as a function of 6. In Figures 6 - 8. 8 = 1/36 was used.
It can be seen that the minimizer of V(X(S),S) was a good estimate of
the minimizer of R(K(G),G). Figure 10 gives MSE(z. ) and MSE(D. )

and their sum, where A(8),6 A(8) .6

K = ]
1 2
MSE(Z, s) = g kg](cksé(Pk)-c(Pk))
e )
MSE(D}\’S) o kZ-I(DMG(Pk)'D(Pk)) -

The {P } constitute a regular grid inside the U.S. It can be seen from

Figure 10 that if § is taken as too small (i,e; divergence 1is suppressed)
then the mean square error in the estimated vorticity becomes large,
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An estimate G2 for the variance of the measurement error is available as

5238y = LLI-AGL8) |17
: Tr(I-A(r,6))

since the numerator is the residual sum of squares and the denominator

is the equivalent degrees of freedom for error. In this example 3 was
2.58m/sec., very close to the "true" value of 2.5 meters/sec. In those
occasional sticky cases encountered in practice where V(\,8) has multiple
minima, if the order of magnitude of o is known apriori, the examination
of o can usually be used to resolve ambiguity. See WAHBA (1981d),
WENDELBERGER (1982). Bayesian confidence intervals are also available
for these estimates, see Wahba (1981d).

We have concluded that this approach has much promise for applications.
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