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Abstract

A nonparametric estimate forv the posterior probabilities in the classification prob-
lem using multivariate thin plate splines is proposed. This method presents a non-
parametric alternative to logistic discrimination as well as to survival curvelestimétion.
The degree of smoothnes of the estimate is determined from the data using general-

ized crossvalidation.
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1. INTRODUCTION

Consider k populations 4;,....4, and a d-dimensional random vector X=X )
Assume that the probability distribution of X given that it comes from population 4; ,
j=1,...k is absolutely continuous with respect to Lebesgue measure and let fi(=z)

"denote the corresponding probability density function for j=1....k.

Suppose that a training sample X;;=z;;, i=1,...,n;, from the population A; is avail-
able for each j=1,...k. Given these training samples and the prior probabilities

gj. j=1.....k where 0 <g; < 1 forj=1,....k and

™

g;=1

j=1

we want to estimate the posterior probabilities
k 3 i
pi(z) = g;fjl=z 2 = P(4j|X=z) j=l..k

The estimates of these posterior probabilities have a clear application in Bayes
discriminant émalysis and we believe that they will be useful for exploring properties of

the data and for presenting the data in a way comprehensible to the layman.

In this paper we propose a class of optimization methods for estimating
pi(z).....pe(z), and for simplicity of notation we will consider the case where we have

only two populations since the extension for more than two is straight-forward.

There is a large amount of literature in the area of discriminant analysis. Since we
are proposmg here a nonparametric method, in §2 we will present a brief review of the
work in nonparametric discriminant analysis that is most ciosely related to our
api:_roach. ‘In §3 we estimate the log likelihoed ratio using th.m plate splines. In §4 we
proposé a solution to the problem of estimating the posterior probabilities using
smoothing thin plate splines; The results appear to provide a reasonable non-
parametric altérna.tive to logistic regression. In §5 we present some results of simula-

tions in one and two dimensions and an application of the method to some real data.



Finally, in §6 we discuss some of the future work that needs to be done.

2. PREVIOUS WORK IN NONPARAMETRIC DISCRIMINANT ANALYSIS

Most of the work in discriminant analysis (for continuous variables) is based on
.Normality assumptions, usually with equal covariance matrices. For a summary of the
work in discriminant analysis see Lachenbruch and Goldstein (1979). Here we will only

be concerned with nenparametric discriminant analysis.

Fix and Hodges (1951) are, to our knowledge, the first to consider the non-
parametric classification problem using a k-nearest neighbor approach. For turther

references related to this paper see Lachenbruch and Goldstein (1979).

During the last 10 years there has been a development of classification rules based
on density estimates. These kind of rules are important because of the extensive
research done in nonparametric density estimation. Another feature that makes these
kind of methods attractive is a result by Glick (1972) that says that an estimate of the
non-error rate of an arbitrary rule based on parametric or nonparametric density esti-

mators is, in some sense asymptotically optimal provided that:
-~ -~ p
g fi(z) » q.fi(z)

pointwise for almost all z in R®, i=1,... k, and

Kernel, maximum penalized likelihood and orthogonal series density estimates are
among the most popular methods. All these density estimation methods involve the
choice of a parameter that controls the degree of smoothing of the estimate. Several
methods have been proposed to choose the smoothing parameter, among these there
are three which are readily computable and objective. Two of these methods were sug-

gested by Wahba (1977 and 1981a)) and the third by Habbema, Hermans and Van den
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Broek (1974). In this last paper the authors estimate the densities for each population

using a kernel estimate. A complete description of kernel methods can be found in

Tapia and Thompson (1978).

The kernel estimate used in Habbema, Hermans and Van den Broek (1974) is of the

Fi(@)=(ngoP) " Y K[(i;z‘—’)—} (2.1)
i=1 J

for j=1,....k, where, as before d is the dimension of the vector x and k is the number of

form:

populations. K is a multivariate normal kernel and the smoothing parameters g; are
estimated by maximizing what might be called the "cross-validation likelihood func-

tion":
V(Gj)=ﬂf‘[k](zj‘)

where f J["] is an estimate of f; computed as in (2.1) but leaving out the pd'mt T For
a detailed description of the algorithm to carry out this kernel discriminant analysis

see Hermans and Habbema (1978).

Hermans and Habbema (1975) compare five methods for estimating posterior pro-
babilities using some medical data for which the true posterior probability function is
unknown. Four of these five methods are parametric and the fifth one is the kernel

method described above. The four parametric methods involve:
(1) Multinormal distributions, equal covariance matrices, estimated parameters.

(2) Multinormal distributions, equal covariance matrices, bayesian or predictive

approach.
(3) Multinormal distributions, unequal covariance matrices, estimated parameters.

(4) Multinormal distributions, unequal covariance matrices, bayesian or predictive

approach.



The nonparame tric method is:
(5) Direct estimation of the density functions using a kernel method.

Later, Remme, Habbema and Hermans (1980) carry out a simulation study to com-
' pare the performances of methods 1,3 and 5 above. Their simulations show that the
performance of the kernel method was either better or as good as the performance of
other methods, except in the simulations with multinormal distributions with equal |
covariance matrices. It performed increasingly well with increasing sample sizes, how-
ever, the improvement was very slow in samples simulated from lognormal.distribu-

tions.

Another nonparametric classification method is given by Chi and Van Ryzin (1977).
Their procedure is based upon the idea of a histogram density estimator but bypasses

the direct density estimation calculations.

In most of the references listed above the approach has been to estimate each
density separately and from this form an estimate of the posterior probabilities. By
the Neyman-Pearson lemma, we know that if we want to classify an object as coming
from one of two populations with densities f; and f, we should base the classification
on the likelihood ratio f,/ f2 and hence it would be attractive to have a method to
estimate the likelihood ratio directly. Silverman (1978) considers the direct estima-
tion of the log likelihood ratio for one dimensional data. He assumes that
h=log (f,/ f2) is in Cy(I), where 1 is some interval containing all the observations. He
finds the conditional log-likelihood of h and penalizes it according to the smoothness of

h using f (h")? as the smoothing penalty functional. He estimates h by maximizing the
I

penalized log likelihood and shows that the estimate is a cubic spline. However, he

does not give a data-based method to choose the smoothing parameter.

In §3 we extend the result in Silverman (1978) to the d-dimensional case and show
how the search for a data-based method to choose the smoothing parameter motivated

us to consider the problem of estimating the posterior probabilities directly instead of



the likelihood ratio.

Anderson and Blair (1982) introduce penalized maximum likelihood estimates in
the context of logistic regression and discrimination. They obtain estimates of the
logistic parameters and a nonparametric spline estimate of the marginal distribution

of the regressor x.

3. MAXIMUM PENALIZED LOG LIKELIHOOD ESTIMATION

In this section we extend the result given by Silverman {1978) to the d-dimensional

case and describe a natural generalization to d dimensions of the one dimensional
2
penalty functional | Il:f {"‘)(z)] dr .
Let Y,,....¥,, n=n;+n; denote the combined samples from the two populations

and define

1itY; e4,
{ (3.1)

Z=0ifY cdg -

As before, let g, and g, be the prior probabilities and consider the estimation of

h = 113&(9]’1.)f 1/ qaf 2)

Following Siiverman (1978) it can be shown that the conditional log likelihood of h is
given by

mp)= 3

i=1

zih(.yi)—log[l + ezp(h (yi))H ‘ | (3.2)

where z; and y; are the observed values of Z; and ¥, so that a "maximum likelihood"
estimator of h would be obtained by maximizing (3.2). To avoid the undesirable solu-
tion:

oo ifZ«;=1
h(:) = |—w if 2, =0



we should use the underlying assumption that h is, in some sense, not too rough.

Therefore we must penalize the likelihood according to the roughness of h.

We will assume that . his in @ reproducing kernel Hilbert space H of real
valued “smooth” functions which map R® into R. More precisely, (see Wahba and Wen-.
~ delberger, 1980), H is the space of all Schwartz distributions for which all the partial
derivatives in the distributional sense, of total order m, are square integrable. A

“maximum penalized log likelihood'" estimator of h, is the function hpa€H that minim-

izes

© L(h) = =tn(h)+\Im (h) (3.3)
.where J, is given by

= m! 2

In(h)= 3 | T 107 e (3.4)

d i 8
where, e=(a,, ....aq), |a] = Y} o; and D®=[[———— For the special case d=2,

i=1 j=1 (azJ) 1

o

m=2,
\2

2: )? 2
Ja(h) = ff{[(ailll)z} +2{(3zla)(’;zz)J +

In Theorems 3.1 and 3.2 below we establish conditions for the existence and

e
(fiaa:g)z} ] e =

uniqueness of the minimizer of (3. 3) and characterize the solution as a thin plate spline
(polynomial spline when d=1). Because the proofs of these theorems are lengthy they

will not be siven, but will appear in Villalobos (1982). The proof of Theorem 3.2 follows
Wahba and Wendelberger(1980),

Theorem 3.1: The minimizer of (3.3) in H exists and is unique provided there is no
level curve of a polynomial of degree less than m that completely separates the sam-

ples from the two populations.

Silverman {personal c_:ommﬁnication) has previously conjectured Theorem 3.1 and
has also noted .a rather elegant property of the minirnizer of (3.3) as A=»ea, As Ao, hgy
tends to an element of the null space of J,,, so that for m=2 the estimated log likeli-

hood ratio will be linear and for m=3 it will be quadratic in z. Thus the parametric



estimate for multivariate normal densities is included as a limiting case. (Compare

Wahba, 1978).

Theorem 3.2:- The minimizer hna of (3.3) in H, if it exists, is of the form:

Rsx= Dieiln (yy=)+_§

i=1
where the function E,, is given by
En(s.t)=E(ls —t])
where

m | T|Z*8In| 7|, d even
E(lTD = mx,rizm—d‘ d odd

and

)d/2+l+m
b= D2m - lﬂd/Zrm_1)|(m_d/ 2); L
m I(d/2-m) i wid

oRm dfz('m.—l)! ’
Here # = [m +g—1] is the dimension of the space of polyncmials of degree less than m
in d-dimensional space, and [;al ..... 5ay] span this space. For example, if d=2, m=3,

‘then M=6 and ¢,(z'z?) =1, va(zlz?) = 2!, gg(zlz?) =22  @,(z'z%) = zlz?,
ps(z1,z%) = (z')? and pe(z' %) = (z9)%.
The vectors ¢ =(cy,...,.Cn)" and d=(d;,...,dy) are the solution to the optimization

problem:
minimize
[
-i; logl + exp EGJ (ya.y5) + E 05 (Ys)
i=

_z,-[ilcjﬁ’m(yi i) + Eld,-;aj (yi)} + Ac'Kc
= j=

subject to T'c = 0, where K is the nxn matrix with (i,j) entry En(%.y;) and T is the nxM



matrix with (i,j) entry ¢;(y;).

We computed the estimate using four cne dimensional simulated samples and in
some cases the estimation turned out to be very expensive. There is still the problem
of cﬁoosing the value of the smoothing parameter. Since the conditional distribution of
Z; given Y;=vy; is binomial(l,p,), where

P1=P(Z;=1|Y;=vy:)
then

[ ] exp[h (yz-)}
EZ; | Yi=y:| = -
1+EXP{h(yi)]

so that an (ordinary) cross validation (or "leaving out one") estimate of A would be the
value that minimizes

2
y exp{hﬁ] (yk)} ,
2

k=1

3|

-2 (3.5)
1 + expihrif! (’yic)}

where kX! is the estimate of h given A, -obtained by leaving out the k** observation.
Obviously this would be prohibitive to compute. But expression (3.5) suggests a
different way of approaching the problem, in fact, this is what motivated us te consider

- the direct estimation of the posterior probability instead of the likelihood ratio.

4. SPLINE ESTIMATE FOR THE POSTERIOR PROBABILITY

In this section we propose a class of optimization methods to estimate the poste-
rior probabilities p, and p,. Since p;+p,=1 we will only estimate p=p, and the esti-

mate for p; will be



Let
w; =ni/n j=1,2

where n=n,+n; and let Z;,j=1,...,n be defined as in (3.1). We propose to estimate

h) = my) = o2
jélefj(y)

We will assume that either h is in the reproducing kernel Hilbert space H or can be well

approximated by some function in H.

If i is an estimate of h then we can obtain an estimate of p=p; by

Boul = (g1/ ) Ey)
i‘,l.(q;-/ w;)h; (y)
Im .

where FL1=E. and ﬁe= 1-h.

We can think of the vector Z=(Zl....,Zn)'of zeroes and ones as noisy observations
on the values h{(yy),....h(yn). To see thi§ note that, if we draw an observation Y from
th.e density f; with probability wj, j=1.2, and Z is the random variable whichis 1 or 0

accbrding asjis.1or2, then
E(Z | Y=y) = h(y).

Finally, following the approach of Wahba (1980 and 1981k), we suggest estimating h by,

minimizing:

i=1

.
1

3 [H
g

2
p‘(%)f zi} + AN (R) ‘. (4.1)

subject to



phfs) =1, f=ieal (4.2)

where Jy, is given by (3.4), and s;,....5 is a fine regular grid of points in R%, chosen so
that a smooth function which satisfies all the constraints at this points will appear to

satisfy them over all of S, where S is a subset of R? such that
jiwjf,-(y) >e>0
=1

for every y€S.

The smoothing parameter lambda will be chosen by the method of generalized

cross-validation for constrained problems as described by Wahba ( 1980,1981h)

It can be shown that the quadratic form (4.1) is strongly convex for any z provided
that the n by M matrix T; with (i,j) entry ¢;(3;) is of rank M. Then (4.1) will have a
- minimizer in any closed convex set in H, in particular, the minimizer of (4.1) exists in

the set:
CL={h €H:0<h(s;)) =1, i=1,...,L}.

Note that to extend this to more than two populations we also need to enforce the con-

straint that
1
=1

Following Kimeldorf and Wahba (1971) and Wahba and Wendelberger (1980) the

minimizer of (4.1) can be shown to be of the form:
n L M
haa(y) = 2 i Em(y.3i) + kE b Em (y S) + 2, die;(y)
i=1 =1 i=1. i

where the vectors ¢ =(c,.....65)", b=(by,...b ;) and d=(d,,....dy) are determined as the

solution to the following optimization problem:
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minimize
i 5
1, el d L el Arzijc 3
'TTHz K{b] Tyd|lf + Ae":¥] 21 Kzz||b W)
subject to
Kn Ke T|f| g
~Kz1 —Kzz —T2 [‘; <l (4-4)
and
/4 [g] =0 (4.5)

where K={K11:K12], T= {TI' : Tz'] and the description of K, K12, Kza. T1 and Tz is given
in table 4.1. A

In order to be able to use a quadratic programming routine to solve the problem
for a fixed value of A we should eliminate the equality constraint (4.5). To do this we
want to find a matrix S of dimension n+L by n+L-M such that for some n+L-M dimen-

~ sional vector e we have .
[g = Se.

To do this consider the Q-R decomposition of T'. There exist matrices &; (n+L X M)

and @ (n+L X n+L—M) such that
|, _Ir
5] -1 («8)

where R is an M by M upper triangular matrix. Now, condition (4.5) implies that e'S'T=0-

Table 4.1
Matrix | Dimension (i.j)element
K4 nxn Em(wy;) i=1..n j=l..n
Kig nxL Em (iS5 i=1,....n j=1,....L
Koz LxL | Ep(sps;)  i=1..L j=1..L
T, nxM @5 (i) i= 10 i=16M
Tz LxM gaj(sl-) 1=1....,L j=1.. B.M
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so that by (4.6) we should take S=@; , then minimizing (4.3) subject to (4.4) and (4.5)
is equivalent to minimizing

(1/n) || z—KSe—T,d | + e'S'KSe
subject to

(Ko | K22lS  Ta
—[Kazy | K22lS —To

] <o

A program to compute this estimate choosing the smoothing parameter by gen-

eralized crosswalidatioh is not available yet. However, a program to find hp, to minim-
ize
2
1 & [h(y‘l.) S Z-,‘_]

N A 4 Mm(h), (4-?)

2
n oy o{

where o;'s i=1,...,n are specified weights, and choose A by generalized cross validation
has been developed by J. Wendelberger (1981) and is available through the Madison
" Academic Computing Center (1981). In the next section we use this program to give

some examples without the constraints (4.2).

5. EXAMPLES
Two spline estimates are presented. The first estimate (E.V., for equal variances),
is the minimizer A of (4.7) with ¢f = 1, and A=A, the generalized cross-validation esti-

mate of . The second estimate {U.V., for unequal variances), is the minimizer h of
(4.7) where the weights o? are estimates of the variances of the Z;'s. These variance
estimates are

of = VG.TIZ‘- |:.r.;] = ﬁ(zi)[l-ﬁ(zi)], i=1...n
In the U. V. estimate of h, the generalized cross-_validation estimate of A is obtained by
viewing z;/ 0; as the data (more details may be found in Wendelberger, 1981). Assum-

ing the wusual notation for the univariate Normal distribution and usmg

© Na(pi1.42,011,022.012) for the bivariate Normal, six simulated samples were generated as
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shown in table 5.1.

In figures 1-6 we give the data, the true h and the spline (E.V.) estimates. For sam-
ples 1-3 the Normal theory h is also given and for samples 1,4,5 and 8 the spline (U.V.)
estimates are shown. In each of these examples m was taken as 2. The normal theory

estimates were obtained using the population sample means and variances. '

In figure 3, the constraint h(z)<1 is grossly vioclated. However, if one imagines the
spline (E.V.) curve as a thin rod and one pushes down on it so that the constraint is
satisfied, one can imagine that a rather good estimate will result when the constraints
are imposed. Although the variances of the Z;'s are actually unequal it is apparent
from the plots shown that we do not get a significant improvement by estimating the
variances first. In fact, in some cases, for example, for samples 1 and 6 the weighted
estimate looks worse tha_n the unweighted one. This might be because in weighting the
observations, we are forcing the épline (UV.) esti:;'nate to be very close to the data
where h is very close to zero or one, and this happens at regions where the observa-

tions are very sparse and far from their corresponding groups.

Pty

However, judging from the plots, the estimate using equal weights does a decent
job in most cases. It is close to the true function in the regions where the actual poste-
rior probabilities are close to 0.5. It does not do well (nor is it expected to) in the

regions where there is almost no data.

Table 5.1
Sample f fo T, Mo
1 N(0,1) N{1,5.1) 60 72
2 SN(-1,1)+.5N(1,1) N(0,1) 60 72
3 4N (0,0.25) +.6Cauchy N(0,0.25) 60 72
4 N2{0,0.0.25,0.25.D) N2(1.1.0.25,0.25,0) 516] 80
5 . Nz(0 0,0.25,0.25,0.01) : Ng(1.5.1._5,0.5,0.5.0.25) BO 80
5] .6Ng(-1.—1,0.25.0.25.0) N»(0,0,0,0.25,0.25,0) 175 | 175
+.4Ng(1,1,1,0 5.0.5) '
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In figure 7 we give the data and the estimated h corresponding to a set of medical
data, very kindly provided by W. J. Raynor, director of the Statistical Laboratory at the
University of Wisconsin. The variables measured are diastolic blood pressure (in mm
Hg) and serum cholesterol (in mm/dl). Sample 1 corresponds to people that died from
heart disease. Here n;=175 and nz=200. The observations were scaled dividing by their
respective standard deviations. The value of m was 3 and the value of A obtained by
generalized cross validation was A==, so that the spline estimate (E.V.) is the least
squares polynomial of degree 2 e_md the spline estimate (U.V.) is a weighted least
squares polynomial. In the data rich areas these curves appear to be quite descriptive

of the data.
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It can be seen that this method presents a nonparametric alternative to logistic
discrimination as well as to survival curve estimation. In logistic regression h(x) is

modeled as the logistic function

: " :
eXP[Oto"'E oz -
i=1
1 + explag + Za.;z«l
i=1
where z=(z%,....z.9 and the parameters ag, ... .04 are estimated, e.g. by maximum

likelihood. See for example, Cox (1966), Day and Kerridge (1967), Anderson (1972), and
Anderson and Blair {1982). Here the discriminant functions will be hyperplanes. In
survival curve estimation suppose z is a "dose” and A(z) is the probability that a sub-
ject survives given a "dose” z. One "observes" that subject i has "dose" z;, and then
one observes a response, which is ;=1 if the subject survives and 2;=0 if the subject
dies. In logistic survival curve estimation, a function of the form (5.1) is fitted to the
data (2z;.z;), however it is clear that the (possibly constrained) spline estimate will pro-

vide a nonparametric alternative.

8. FUTURE WORK

Since the lack of constraints does not seem to affect the estimate in the regions
where it is hard to discriminate visually, the unconstrained estimate might be good
enough for the classiﬁcz;tion ;;roblem. However, we think that it will be useful to
develop and implement an efficient algorithm to compute the estimate using general-
ized cross-validation for constrained problems, as outlined by Wahba (198ib:;). Such an
algorithm would have application not only to this problem but to many other problems

like the ones mentioned in Wahba (1981b).

A simulation study should be done to compare this method of estimating posterior
probabilities with the method given in Habbema, Hermans and Van den Broek (1974)

and with the usual parametric methods.
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Finally, it is important to try to establish some properties of the estimate. We

believe that convergence rates may be established using the results in Wahba (1979).
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