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Abstract

We first give an overview of cross-validated smoothing spline methods
for the analysis of data from direct and indirect sensing experiments.
Then we summarize some results involving two particular applications of
the approach - (1) a deconvolution problem with nonnegativity
constraints on the solution; (2) estimation of horizontal divergence and
vorticity from discrete, scattered, global measurements of the upper air wind
field.

1. Overview of Cross Validated Spline Methods for Direct and Indirect
Sensing Experiments.

For several years, we have been developing data analysis techniques for a
fairly general class of (direct and indirect) sensing experiments. The model
may be described as follows: f is some unknown function of one or more
variables, which is assumed to be in a (Hilbert) space H of "smooth" functions,

and one observes {yi}

v = Lif 1 e Rl 228, 28, (1.1)

where the data functionals L1""’Ln are n bounded linear functionals on H
and the €; are independent, zero mean measurement errors, with variances

wioz, i=1,2,...,n. The parameter o may be unknown. Examples of L; are

(1) b, o)
(2) L;f = [K(P;,P)f(P)dP

(3) Lyf = Ja_(P.) (x



Example (1) corresponds to the "direct sensing" problem, example (2) to a
Fredhoim integral equation of the first kind given discrete, noisy data, and
example (3) corresponds to a partial differential equation. Example (2) is
pervasive in many problems in geophysics, meteorology and medicine.

Usually one desires to estimate f(P), for all Pe some set S. Sometimes only
moments fwi(P)f(P)dP are desired, in other applications derivatives of f may be

desired. Side information may frequently be available, such as

0, FLR] positivity

a(P) < f(P) < b(P) boundedness (1.2)
0 <f'(P) monotonicity
0 <f"(P) convexity

etc. More generally we have considered the case where feCCH, where C is any
closed convex set in H which is the intersection of a "smoothly varying" family of
hyperplanes. See [2]. H can be chosen so that there exists a C with the
requisite properties for each of the examples in (1.2}

The general approach to the estimation of f we have developed and tested
goes as follows: The estimate, call it fk’ is the solution to the minimization

problem: Find feH to minimize

(y_i-Lif)zlwi + Ad. (F)s (1.3)

m,§

S1—
ne-13

i=1

subject to feC. Here Jm 5 is a seminorm on H, or "penalty function"

indexed by the parameters m and &, (to be described in a monent), and A is the

bandwidth or smoothing parameter. Some examples of J are



(£M (p))2dp

Ot —

(1) 9(f) =

=°'H 2 2402 2 : : :
(2) Jz,é(f) 3LJL(fXX +26fxy +§ fyy )dxdy or, in d dimensions

5 e ) m! [ [( el )zdx ol
m o CTRE oc-I!oczl,,,ocd! 0 a 1 d
AT ax1 ...axd
(3) J(f) = [ (&")2dp
L sphere

where A is the Laplace-Beltrami operator on the sphere

.
cos?¢

Af =

1 . % is 3
fM + EBEE(COS¢f¢)¢ » A = longitude, ¢ = latitude,

Another example appears in Section 3 below, where the parameter & plays a
different role. The important bandwidth parameter A, and sometimes m and &,
can be estimatéd by the method of generalized cross validation (GCV). The
GCV method has recently been extended to cover problems where the
constraints feC are imposed [21,24]. In example (1), if the L.f are point
evaluation functionals, that is, Lif = f(P{), then fA is a polynomial smoothing
spline, in example (2) fA will be a thin plate spline [11,13] and in example
(3) fA will be a spline on the sphere [20].

fk can be shown to be a Bayes estimate, with a certain prior determined

by H and J ([1,6]). On the other hand, it can be shown that f. is a natural

A
generalization of the output of a low pass filter, see [7]. If the Lif's
are derivatives, and the 1imit is taken as X0, then spline collocation methods
for the solution to differential equations results [10].

Table 1 gives a 1ist of some of the problems involved in estimating f by

cross validated spline methods, and relevant references of the author, her

collaborators, and students. In Table 1, X is the GCV estimate of A.



Table 1
Probiems in the estimation of f, with references

Explicit representation of the minimizer of (1.3) in various contexts
[1,4,5,11,13,18,20,22].

Generalized cross validation methods for choosing A,m, and § [4,7,8,21,24].
Use of prior information to choose H and J [22,23].

Smoothing of multidimensional scattered data [11,13].

Smoothing splines on the sphere [20,22].

Numerical methods for computing fi with large data sets [14,21,25].
Quadrature methods tailored to specific integral equation problems [19,28].
Optimal design (choice of t]""’tn)[]0’17]‘

Convergence properties of f3 [3,4,7,12].

Convergence properties when the constraints are discretized [2].

Confidence intervals for fa [26].

Relation of fi to Bayes estimates and Weiner filtering [1,6].

Nonlinear data functionals [29].

Four expecially interesting areas of application are

(1) Smoothing of scattered, noisy data in two and higher dimensions
with tﬁin plate splines [11,13]. Transportable code is available
from the Madison, WI Academic Computing Center.

(2) Approximate solution of Abel's Integral Equations, as they occur in
stereology and computerized tomography [16,28]. These equations have
a singular kernel.

(3) Equations of radiative transfer as they occur, for example in the
estimation of vertical temperature profiles from satellite-observed
radiances [29]. These equations are mildly nonlinear.

(4) As an alternative to logistic regression [27].
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The integral equation methods have found use in a number of engineering
applications, for example in the determination of adsorption energy
distributions from an adsorption isotherm experiment [30] and in the recovery
of aerosol size distributions from Marple impactor data [31].

For Tack of space we have omitted explicit mention of recent related
work by others, in particular by Cox; Chow, Geman and Wu; Rosenblatt;

Lii; Silverman; Speckmans and Utreras.

In the remainder of this paper we briefly review recent numerical results
in two interesting areas: Section 2: Deconvolution with positivity constraints
and Section 3: Estimation of wind horizontal divergence and vorticityrfrom

scattered noisy wind vector measurements.

2. Deconvolution with Nonnegativity Constraints

We numerically studied the convolution equation

¥: = k(%-s)f(s)ds *tess i=1,2,...,n (2.1)

1

oY -

f(s) >0,0<s <1

sl _
with J(f) = [(f"(s))?ds. The results appear in [24]. The cross validated spline
0

method prescribes the estimate of the solution, call it fA, say, as the minimizer of

T 1
[k(3-5)F(s)ds + A[(f"(s))2ds (2.8}
0 0

=
He-~13

i=1
in the nonnegative quadrant of a certain Sobolev space N22, (which we will

not discuss further).

For n of moderate size (say 32-256) a good, readily computable approximation
to the minimizer fA of (2.2) may be found by approximating fA by a

trignometric polynomial of the form

n/2 n/2-1
fA(X) =y + E o COS2TVX + E B sin2mux
v=1 v=1
and finding the a's and B's to minimize (2.2) subject to the discretized

positivity constraints



For fixed A, a quadratic programming problem with n unknowns and n linear
inequality constraints results. GCV for constrained problems may be used
to choose }; for each trial value of X a q.p. must be solved, a good starting
guess can be obtained by applying GCV to the unconstrained problem. (Thus,
the method is not "cheap", however it can be very cheap compared to the
cost of some experiments.)

We give here a single numerical example, from [24]. Fig. 2.1 gives a
plot of the convolution kernel k(t) (assumed periodic). Fig. 2.2 gives

a plot of the (true) test solution f(x), 0 < x < 1, "exact" data gfx)y
1
a(x) = fk(x-s)f(s)ds 0 <x <1
0
and simulated measured data

= i e=
¥; g(n) e, =12,

for n = 64. The £; were independent normally distributed pseudorandom
variables with common standard deviation ¢ = .05. The fact that there are
two distinct peaks in the true f is not at all obvious from the measured data.
Fig. 2.3 gives the true f (again) and it gives fy, which is the crossvalidated
spline estimate of f obtained without imposing positivity constraints. Fig. 2.3
also gives fig, which is the estimate for f with the'nonnegativity constraints
imposed. XC is the GCV estimate of A for constrained problems.

The unconstrained cross-validated spline estimate is not bad, however,
spurious oscillations are clearly visible. The constrained solution not

only eliminates the spurious oscillations, it enhances the resolution of the

two peaks. This innocuous looking problem is illposed to a high degree.
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Figure 2.1. The convolution kernel k(t).
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If there were no measurement error, there would be only about 20 Tinearly
independent pieces of information in the 64 dimensional data vector recorded
to 8 significant figures. The nonnegativity constraints are-adding important
information. For further information concerning the retative degree of

illposedness, see [21]. Unsophisticated estimation methods will give garbage.

3. Vector Fields on The Sphere

In meteorology and geophysics measurements of vector fields are made
at discrete locations around the world and it is desired to estimate the
global vector field. In meteorology, for example, the wind field at the
500 millibar height (height at which the pressure is 500 millibars) and other
heights, is measured at the worldwide radiosonde network. It is desired to
estimate the vorticity (curl) z and the divergence D of this wind field on
a regular grid, to be used as initial conditions.for the differential
equations of numerical weather forecasting. The following is abstracted
from [22].

Letting U(P) and V(P) be the east and north wind respectively at

P=(Ar,0), the data are

U, = U(P.) + &5, V. =V(Pi)+€¥, t3.1)

1 1 1 1

U ey X :
where €; and eg are measurement errors, and it is desired to estimate z and

D on a regular grid. ¢ and D are related to U and V by

.
acoso

[- 2o{Ucosg) + 551 D =

acls(b[ &+ 2veoss)], (3.2)

i 5, 90

where a is the radius of the earth. There exists (by Helmoltz Theorem)
two functions ¥(P) and &(P), called the stream function and the velocity

potential respectively, with the following properties:



S8, 1 ey, 11 a¥, 80
U= 2055+ cosg 500 alcose 9% * 30 (3.3)
r =AY, D =40, (3.4)

We estimate ¢ and D from Ui and Vs by solving a minimization

problem of the form: Find ¥ and ¢ in an appropriate function space to

minimize
U FRRC TR | TSN [ T TR
e Ll Sy Y ACo0Shy ANV HH n,%.'acosg, 9A‘ i a g i i
i=1 i i=1 i
+aMew + 1)) (3.5)

and then obtaining ¢ and D analytically as AY and A®. The parameter ) is
the usual bandwidth parameter and the paramefer § controls the relative
amount of energy in the divergent and nondivergent part of the wind. An
approximation to the minimizer of (3.5) may be obtained by first approximating
¥ and ® as a finite number of spherical harmonics
N % g N L 5

¥ =7£§] SEERQQSYR’ b = 221 SELQBRSYR' [3.6)

The spherical harmonics {Yz} are the eigenfunctions of the Laplace-Beltrami

operator A,

N s
AY2 = £(2+1)Y2,

and approximating ¥ and & this way is analogous to the approximation of

f in Section 2 by a finite number of sines and cosines. It can be shown that

2)

if J(]) and J( are isotropic seminorms (isotropic = unchanged under arbitrary

rotations of the coordinate system) then for ¥ and ¢ of (3.6),
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N L B .2 N 2 B, 2
(1) 25 (2) 25
S =0 RN Rbel @) w0 2] oy (3.7)
2=1 s=-¢ ;\,,” p=1 s=og A\2
5 2s
for some {Aggl),xég)}. For more details, and in particular for a discussion

concerning the choice of the {&s} from historical data, see [22].
| By substituting (3.7) into (3.5), for fixed X,§, the minimization
problem reduces to finding the {ags’szs} which minimize a quadrétic form.
The parameters A and & are estimated by GCV.

To see how well this method may be expected to do on real meteorological
data, realistic "true" 500 millibar stream function-velocity potential
pairs (¥,®) were generated and the "true" wind fields at 114 North American
weather stations determined using (3.3). Realistic measurement errors
(s.d. in each component of 2.5 meters/sec) were added. Fig. 3.1 gives the
simulated wind data, and Fig. 3.2 gives the estimated wind field, which is
obtained by using (3.3) in conjunction with the estimated (¥,%). Figs.
3.3 and 3.4 give the "true" and estimated vorticity and divergence
respectively. The results appear to be exce11ent when compafed to previous
estimation methods. One of the results of this experiment was that the
estimates were sensitive to changes in & as well as A and, the GCV method
gives a good estimate of an optimal § as well as A. In a problem Tike this,
it can be very important to parameterize J in a physically meaningful way,
as well as in a mathematically well posed way. Methods for doing this are

discussed in [22], see also [15].
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