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ABSTRACT

An overview of cross validated spline methods for smoothing noisy
data in the plane, in Euclidean d-space, and on the sphere 1is given.
Cross validated thin plate smoothing splines are reviewed and an efficient
numerical algorithm for computing them for problems with up to several hundred
data points is described, Seme numerical results for a two
dimensional example are given. A theory of vector splines for smoothing
noisy vector data on the sphere is given. The use of genefalized
cross validation to estimate both the smoothing parameter as well as
the relative energy to be assigned to the divergent and nondivergent
part of the smoothed vector field is described and tested numerically

on simulated upper air horizontal wind fields.
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1. Introduction; An Overview of Cross Validated Smoothing Splines

It is assumed that data y = (y],...,yn)' arise according to the model

where PieS, some index set (e.g. Euclidean d-space, the sphere, torus,
etc.). f is assumed to be a smooth function in some reproducing kernel
(r.k.) Hilbert space X of real-valued or vector-valued functions on

S, the {Ei} are independent zero mean measurement errors with common
unknown variance, and it is desired to recover an estimate of f

given y = (y1,...,y )'. The estimate fy of £ will be taken as the

n

minimizer in X of

=]
BT

(y;-F(P.))2 + A3(), (1.1)
1

& |
where J(f) is a seminorm on X with M < n dimensional null space,
spanned by ¢1""’¢M' Here J]/Z{f) can be taken as the norm of the
orthogonal projection of f onto X] where X] is the orthocompliement of
the span of the {¢U} in X. If the nxM matrix T with 1yth entry
¢v(PT) is of rank M then the minimizer of (1.1) exists uniquely and

always has a representation of the form

M

n
fk(P) = E e & (P} # vg]dv¢v(P)’ PeS, (1.2)

where the 51 can be determined from an r.k. or semikernel for X with
. 142 2 , = , .
seminorm J /%5 and ¢ = (CI,...,Cn) and d = (d},...,dM)»sat1sfy a system
of n+M linear equations. For more details, see Kimeldorf and Wahba (1971),

Wahba (1978) and Section 2 below and references cited there.



The most famous special case of J is surely

1
IF) = g(f(m)(x))zdx, (1.3)

1)

which for m = 2 Teads to the celebrated cubic smoothing splines—~ In
this paper we will primarily be considering generalizations of J of

(1.3) to Euclidean d-space of the form (for d = 2)

@ M Il 2
IF) = [ T (—E ) axjax

(1.4)
L m-

o

which lead to the thin plate splines, and to the sphere of the form (for m

even)

J(F) = [(a™%f)2qp (1.5)
5

where A is the Laplacian on the sphere.
The parameter X controls the tradeoff between the "roughness"

of the solution as measured by J(f), and the infidelity of the solution
n

to the data, as measured by % Y (yi-f(Pi))z. The visual appearance of
i=1

f, can be quite sensitive to the choice of A, and estimates of derivatives

A

of f obtained by differentiating fA even more sensitive. The value
A* of A which minimizes the predictive mean square error defined by

(f
.

generalized cross validation (GCV). The GCV estimate X of A is the

A(Pi)'f(Pi))z can be estimated from the data by the method of

I~—>

.i
minimizer of the cross validation function V(A) given by

lehich are generally not computed using (1.2) due to the existence of
a Tocal support basis for the span of the {€;} in the special case of (1.3).



For n moderate to large, i so obtained is known to be a good estimate
of A*. For a discussion of the method and its properties, see
Wahba (1977), Utreras (1978), Craven and Wahba (1979), Golub, Heath and
Wahba (1979), Speckman (1982).

In general, to find fk for given A requires the solution of
a linear system of the order of the number, n, of data points, and to
find the minimizer of V(}) entails the solution of an eigenvector
eigenvalue problem of size n-M x n-M {see Section 2 below). For n very
Targe then, it has been proposed (Wahba 1980a,1980b) that (1.1) be

(

minimized in the span X B}CX of p suitably chosen basis functions, where
p is chosen large enough so that A (and not p) is the smoothing
parameter. More specifically one wants the minimizer of (1.1) in X(p)

to be a good approximation to the minimizer of (1.1) in X if f is a
"smooth" function. Natural choices of these basis functions are sines

and cosines if X is a space of periodic functions on the ¢ircle, and

1
B-splines (deBoor (1978)) of degree 2m-1 if J{f) = I(f(m)(x))zdx. Basis
0

(1.6)



functions which are a generalization of B-splines to Euclidean d-space
(Ed) have been suggested in Wahba (1980a), see also Dyn and Levin (1981).

The cross validation function V() is still defined by (1.6)

and (1.7) but now A(XA) will depend on the basis functions used. In

this case an n - M x p singular value decomposition can be used to

determine R instead of ann - M x n - M eigenvalue-eigenvector

decomposition, see Section 3 below. Bates and Wahba (1982) give

efficient methods for computing ; and f. when n is very large and

M < p < n basis functions are used, inc?uding an efficient truncation

procedure for the singular value decomposition.

In Section 2 'we describe an efficient algorithm from J. Wendelberger's
thesis (1982) for computing cross validated thin plate sp]ineg in d dimensfons,
and show some numerical results. In Section 3 we extend these ideas
to vector observations on the sphere and investigate the ability of
the GCV method to govern the relative energy assigned to the divergent
and nondivergent part of the estimated vector field. The estimates
appear to be very good from a mean square error point of view.

A good value of the parameter m governing the number of derivatives
in J can also be estimated by GCV as can d-1 relative scale factors in Ed, see
Gamber (1979), Wahba and Wendelberger (1980), Wendelberger (1982), ‘It
is beljeved that, if n is large, A as well as several parameters in J
can be estimated by GCV provided the several parameters are chosen
so that distinct values of X and the several parameters are always
associated with r.k.'s which correspond to perpendicular stochastic

processes, see Wahba (1981b) for a brief discussion of this point,

which we don't pursue further here.



2. Thin plate splines on Ed

In the thin plate spline case J(f) = de(f) is given by

m

d £ 3 f
i (F) = ) sl (EET_TTTEZ;_) dx; .. dx.

1]=1, ,1m=1 1 m
i particular, for-m= 2, d = 2,
T it o i
ds208) o= (L[ ) + ol .
. B3ty 2 o 3%, e

X is the space of all generalized functions for which all partial derivatives

of order < m exist in LZ(Ed).

For X to be a reproducing kernel Hilbert space (that is, for the
evaluation functionals in X to be bounded with respect to J) it is
necessary that 2m - d > 0. The null space of de is the span of the

M= (d+g-1) polynomials in Ed of total degree less than m. Duchon

(1976,1977) has given a semikernel from which the explicit representation
of f given in Theorem 1 below has been obtained. (See also Meinguet

(1979), Wahba and Wendelberger (1980)).

Before giving a formula for fk we need some notation. Let teEd,

e
I(X_]-}/})‘?) .

Il 100

e (x],xz,...,xd). If 8= (y],-..,yd), then |t-s| = (1
Let E(T) be defined by

E(t) = emdrzm'dlogT d even
Elt) = emqr2m-d d odd

where



d/2+1
d (-1)
6 = d even
me . g fe L AR TV il E)
¢ (=11 rldsz-n)
bn = omdj? § B0 .
' 2w m=1)1
Let E, (t) be the function defined by
.i
Et_(t) = E(It—til), Ve
1
and let ¢1""’¢M be the M polynomials of total degree less than

m, for example, ifd =2, m =2, then M = 3, and ¢T(Xj,x2) =9 ¢2(x],x2) = Xq5

05 0xy5%5) = x,.

Theorem 1. The minimizer f. in X of

A
L3y -2(t.3)2 20 %)
n. i i |
i=1
is given by
n M
S .Z CiEt. % Z dv¢v (2.2)
i=] i =
where ¢ = (Ci""’cn)l and d = (di,...,dM)!are determined by
(K+nXl)c + Td = y {2.3)
T'c =0 (2.4)
where K is the nxn matrix with ijth entry E(|ti—tj]) and T is the nxM
matrix with iyth entry ¢v(ti)'
If Q is anyn xn - Mmatrix satisfying Q'Q = In—M and Q'T = On—MxM’

then it can be shown (Wahba and Wendelberger (1980)) that



An efficient numerical algorithm for obtaining X,c

I-A(7) = nAQ(Q'KQ+nA1)'1Q'

nic = (I-A(X))y

Wendelberger's thesis (1982),” It goes as follows:

and d is given in

1. Form the QR decomposition of T using LINPACK (Dongarra, et al, (1979))

where the matrix dimensions are T: nxM; QT: nxM; QZ: nxn-M; R

and (

2. Find the eigenvalue eigenvector decomposition of B

where U is orthogonal and D is diagonal with diagonal entries bv

v o= ]

gives

T= (Q1:Q2)‘R9
1 0

Q}:Qz) is orthogonal and R] is upper triangular.

Q in (2.5) will be taken as 02. Let B = QZ'KQZ.

B = Q,'KQ, = UD,U",

S SnEN
Then
(I-A(A))y = nAQ,U(D,+nAT)™ ULy
2 B 2
n-M n
TelI=B(A)) = Z B oinh

v=]l "y

Letting

1 :

MxM,

3

(2.4)



n-M

1 1 ¥ ( na )2y 2
SIH-AG))y 12 b T )’ My
N = - oL : (2.10)
GUra-aoonz A% m
b= (bv+nA))

3. Find the minimizer X of V()) by global search in 1og10 A on the right

hand side of (2.10).

4. O0Obtain ¢ from

c = QZU(DB+nAI)_1w, (2.91)

d may be obtained by noting that
TR, 0y = Ty
and premultiplying (2.3) by QT' to obtain
Q] Kc + R]d - QT ¥
5. Since R] is MxM upper triangular, d is easily obtained by solving

Ryd = Q' (y-ke) . (g.12)

A test function f(x],xz) was generated by Wendelberger and is shown in Figure 2,17.
A regular 7x7 square array of 49 points ti’ i=1,2,...,49 was selected
with the middle point (0,0) and the spacing 1.0. Data Vs 1= F.2,::4:49

was generated as

.y.l = f(t1) % E.i: t,] F (X]"X

where the £, were pseudorandom normally distributed random variables with O mean



and standard deviation ,01, This standard deviation s "about 1/8 of the
maximum height of f. Figure 2.2 shows fA with A too big, Figure 2.3

shows fk with A too small, and Figure 2.4 shows f. ., In this
A A
experiment the effectiveness of A can be measured by the inefficiency

[EP J=F R )20
e ! i

—
n
Sp—
13
-1

Si—

Z
_ (F, (P )-F(P.))
i 1

which was 1.54. Theory as well as other numerical results show that
I41 rapidly as n becomes large, if f is smooth. For further numerical

results see Utreras (1979).
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3. Vector Splines on The Sphere

Wind fields, magnetic fields, etc. are measured on the surface of
the earth discretely and with error. From this discrete data it is
desired to estimate the field everywhere. In the case of wind fields,
it is also desired to estimate the horizontal divergence D and the
vorticity ¢ of the fields. We define vector splines on the sphere
for this purpose, and show the results of a Monte Carlo study.

We will first describe univariate splines on the sphere and
then use the results to define vector splines on the sphere.

Let P be a point on the sphere, P = (A,¢), where A = longitude
(0<x<2m) and ¢ = latitude (—gf¢fg). (We are using X here for both
Tongitude and the smoothing parameter-which one is meant should be clear
ffom the context). We will use the normalized spherical harmonics
YQS(A,¢), which play the role of sines and cosines on the sphere. The

YRS are defined by

Sy
egscossAPg (sing) 0<s<q

S
Yy (A:0) = Gald

. s
92531n5AP£ (sing) -2<s<0,

D
I

= /2_‘/;22: ESL—[SH% 540

L5 Lt[s|)!

20+1
A

0 =
YD (>\9¢) =1

where the P£§ are the Legendre functions (Whittaker and Watson (1958)),



o o1

The spherical harmonics are the eigenfunctions of the (spherical)

Laplacian

AY, S

g = -o(241)Y

S
,Q_,,,
where

1 1
[ fus * ——(opgif
c052¢ AN coso

il

AF =

i —

6" ¢

and a is the radius of the sphere. The spherical harmonics form a
complete orthonormal system on LZ(S). If fELz(S) it has the Fourier

Bessel expansion

where

see Sansgne (1959).

Let
a5 2
'3 fzs

e B e
=1 s=-0 "Ls

where the {AQS} are some nonnegative numbers with |k25|+0 as Qe

The set of all functions in LZ(S) with J(f) finite can be taken as a
Hilbert space X with J]/2 as a seminorm, with null space the constant

functions. X can be made into a reproducing kernel Hilbert space, provided



T

oo

} (22+471) max A, < o,

2=1 |s|<a *S
This follows since
) < 16 1% T T IF, |1 SP)]
f(P)| < |f + | Y, (P)
- o0 Gl g=cy - 28" &
LN R P R b
f ( ] X oelYo (PY] )
o 2=1 s=-g Mos g=1 seof 5 4
il e
|fDOJ Bl g (29+1) max Rt

2=1 |s|<2

where, in obtaining the last inequality we have applied the addition
formula for spherical harmonics (Sansone (1959)).

L
3 Yo UPIvg (P  S3E p dcosuiPyp )], (3:2)

S==

where y(P,P') is the angle between P and P', the P, are the Legendre

polynomials, and PQ(O) = 1.

It is easy to show that if AQS = [2(2+1)]_m, then
IF) = [(a™%8)24p m even
(A(m-])/zf)i (3.3]
= 4 O MR e
sinZg ¢

For X to be a reproducing kernel space it is necessary that m > 1
(although not necessarily an integer). Later on, we will use the fact

that (Af)(P) will bea bounded Tinear functional in X for each PeS provided
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b oR2(241)%(22+1) max Ape <
2= s|<g *3

We remark that, if Ais = AQ independent of s, then it can be
shown by the use of (3.2} that J(.) is isotropic, that is, it is
invariant under the group of all rotations of the sphere. The seminorms
de of Section 2 are also isotropic, they are invariant under the
group of all rotations and translations of Ed. The vector splines
on the sphere described below also result from isotropic seminorms.
There are, of course, situations when a specifically anisgtropic '
seminorm may be called for (for example, when X1=---=Xd_1 are space
variables and xd is a time variable, or, when the earths' Coriolis
force is an important factor) but we omit detailed discussion of that
case here.

We are now ready to define vector splines on the sphere. Let
b= (U,V) be a sufficiently regular horizonal vector field on the
sphere, where U(P) is the eastward component and V(P) is the northward
component at P.

The vorticity z and the diverence D of V are given by

b s ac;s¢[ a¢(UCOS¢) SX
e aU ji
D = acosda[ "'j\" ¢(VCOS¢)].

Then there exists (by Helmoltz' Theorem) two functions ¥(P) and &(P),
PeS, called the stream function and the velocity potential respectively,

with the following properties:

(3.4a)

(3.4b)
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T3y 1_ 3¢ T 1 ¥, 3¢
U= 2k 30 ' cosd 3 - é(cos¢ aA a¢) (3.5)
T = AY D = A (3.6)

¥ and @ are uniquely determined up to a constant, which we will take to
be determined by [¥(P)dP = [o(P)dP = 0.
S S

Let X be the collection of all pairs (¥,8) on the sphere which integrate
to zero, are square integrable and

o5l S s

(1) 25
J (‘if) 221 S.__X_Q’WW \PRS IT(P)YRS(P)dP

J(z)(®) = f % s e ¢ = fo(P)Y 3(P)dP
. = 5=-gkgst2§ s L

Where'{xls(1)} and'{ARS(Z)} are strictly positive sequences satisfying

L 2% (a+1)2 (2847 )maxa, (i)<e, § = 1,2.
221 5 s

Xis clearly a Hilbert space with sgUare norm

w0112 = o) + 1@ (g)

for any fixed ¢ > 0 and furthermore both members of each pair possess Laplacians
everywhere,

Let data (”1’V1) be given, where UT and Vi are supposed to be noisy
measurements on the true field (U(PQ;V{Pi)L Let (¥,®) be the streamfunction

and velocity potential associated with (U,V) and let (Wk &®A,5) be the minimizer of



=16

1% 5y 1 2
3.0 (3 S0Py + ool Bp )

= ap" i acos¢i i
= 1 ay 190 2 3.7
A ﬁiz](acos¢1 aaiPy) + a _E(Pi)_vi) 187

+ ALd;(¥) + gaz(cm,

Note that in the residual sum of squares above, U(P ) and V(Pi) are

expressed in terms of ¥ and @ via (3.5). A unique m1nimizer (Wk S’QA 6)
exists for each » > 0, § > 0 and the resulting wind field (UK 5 VA 6)
constructed from (WA 52 A 6) may be termed a vector smoothing 5p11ne field.

D = AP

vorticity and d1vergence w11] be glven by EA T AWA s> B s A6

The parameter ¢ influences the relative amount of energy that will
be assigned to the divergent and nondivergent part of the estimated
vector field, It is tempting to set § =1, however, in some applications
this may be a priori not the correct value. (The application we haye
in mind is to upper altitude horizontal wind fields in mid latitudes,
where the divergent part is generally smaller than the nondivergent part,
In the numerical study described below we have investigated the ability
of the GCV method to estimate a good value of & as well as a good value of ),
Explicit expressions for the minimizer of (1.1) with J given by (3.3)
and related expressions may be obtained in terms of infinite series, and
various methods of approximating the solution by a finite form may be
based on approximations to the relevant r.k. See Wahba (1981a), Freeden
(1981a,b), Shure, Parker and Backus (1982). Wendelberger (?982) has found a
closed form expression for the cases of (3.3) withm = 2 and 3 in terms of
dﬁ— and tri-Tlogarithms. These results could have been extended to aid in

the minimization of (3.7) for special choices of the Ags(jl' However, in

Its



o7

this work we have chosen to obtain the minimizer of (3.7) in the span
of two sets of the N = N(N+2) spherical harmonics. This proved to be
quite feasible for N up to around 16 on the Amdahl at Goddard Space

Flight Center.

Let
L
VY = Bl
2=1 s=-4 A8 R
[3.8)
N I8 i
Ol
=1 s=-¢ LN
The coefficients {aﬁs}and {Q&} for which (3.7) is minimized, and the
cross validation estimates of 3 and § are found as follows,
First, the indices (%,s), s = -%,...,%, are renumbered from 1 to N.
Let Xqb be the nxN matrix with (i,4s) entry
3 s
5 25 Lo Py
and XA be the nxN matrix with (i,%s)th entry
1 s e
a 0S¢ BA Y2 (Pi)
and let X be the 2nx2N matrix
=X X
it Rl (3.9)
Xk X¢

Let D(5 be the ZNx2N matrix



wd B

Dy = (' ) (3.70)

~ A

where Di is the NxN diagonal matrix with 2s,28th entry Aﬂs(i), i=1,2.
Letting Z = (U1,...,Un,v],...,vn), vy = (a1,...,uN,8],...,BN), it is seen

by substituting (3.8) into (3.7) that we have to find v which minimizes

] =
Fliz = Rl[® o+ 'y,

The minimizer is

W= (X'an)\Dé})-]X‘Z. 5 (ﬁ3'!'[)

By the use of (3:5) and (3.11), it follows that the estimated wind field
(U V. .) at the data points satisfies

A8 A,S
\
U)\,(S(P]) "‘\
: \\
u, (P )
As0n
| = A(X,8)z (3.12)
Yy ,s(Pp)

\yk,é(Pn}///

where A(x,S) is the 2nx2n "influenge" matrix

A(3,8) = X(X'x+nAD; )"

S %

The cross yalidation function V(1,8) to be minimized in i and § 1is
1
2 (1-A(2,8))2] |2

V(R,8) = - _
L Trace(I-A(x,6))]?

(3.13]
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The minimizer of V(A,8) was found, in the study described below, as

follows. For fixed &, let wa = XD61/2’ and Tet the singular value
decomposition (SVD) of W, be
lr\l(S - UDNV' (3.14)
where UU' = U'U = 12nx2n = V'V and Dw is a diagonal matrix with entries b]*"”bZn‘
(Here, an;Q U,{bi} and V* are computed using LINPACK. Letting
W= (W']a°--1W2n) = U,
then
1 2n na 2 2
Eﬁ'z ( ) Y
i=1 bv2+nk
V(A,8) = o7 {3.15)
] Bk, a2
(57 1
v=1 b_Z4n)
v
b
: Q.
b]2+nk '
v 20, ey = W (3.16)
; b2n
0
b2§+nk

For fixed 6,;(6), the minimizer of (3.15), was easily ‘found by a global

search in increments of Togix. Then V(K(G),G) was plotted for 8 values of

§ chosen in powers of 1/6, and the minimum was readily evident. No doubt

more efficient and automatic search procedures can be found. However, V is not a

convex function of ), and it is possible to encounter more than one Tocal

minimum. We have on occasion seen this when analyzing experimental data with small n,
For large n, N, and w6 poorly conditioned, computing the SVD

can be expensive, or it can fail to converge in a reasonable time. Some

shortcut methods which alleviate this problem somewhat and use less storage

have been developed. See Bates and Wahba, (1982).)
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We designed a Monte Carlo experiment to estimate the accuracy with
which the method is able to estimate vorticity and horizontal divergence
of the 500 mb. horizontal wind field over North America from observations
on the East {Ui) and North (Vi) components of the wind taken by the
North American radiosonde newwork. We will show the results of one
such experiment. This information is useful in meteorological studies.
Since the accuracy will depend on the distribution of data points, and the relations
between the energy-in the true diyergent and nqndiygrgentrparts of the wind field as
well as the measurement error, pains were takew to make the &imuiated”
truth and simulated measurment errors as realistic as possible. Nevertheless,
the results obtained below must be treated as a lower bound to
accuracy expected in practice. In particular, it will be seen below
that a particular sequence of {Agstj)}'has been chosen to define J(1}
and J(z), based on some (partly ad hoc) meteorological considerations,
and the simulated "truth" below was generated via a random model based
on the same {Als(fl}. In practice the matching of the {2, (i)} used
in J] and J2 cannot be expected to match nature as well. (Also
energy exists in nature at higher wavenumbers than are being simulated.)

We digress briefly to discuss the choice of the Ao ) e 2
this study. Suppose a (univariate) function on the sphere can be

considered to be a random linear combination of spherical harmonics

)= XZfRSYRS(P)

where the fﬁs are supposed to be realizations of zero mean independent

(Gaussian) random variables with Efﬁsz = bARS for some b.



o,

Letting

Y.

g PR 8y

where the {Ei} are independent and normally distributed with mean 0 and

variance o2, then fk is the Bayes estimate of f, that is

£,(P) = ELF(R) [ypsee.uy ]
where fA is the minimizer of
1"
=} {u—f(P. )% & Agbt};
;s i

where A = ¢?/nb and

>

s :
For further details, see Kimeldorf and Wahba (1971), Wahba (1978), Wahba
(1982b)).

With many (possibly oversimplifying) assumptions information
concerning {Kﬁs} may be obtained, from historical records. For

example, suppose X _ = AR, independent of s, (that is, the resulting

s
J will be isotropic). Then

EF(P)T(P"]

L
e e e B
ge gt VIS i £

1t

b % SR

Ls

Ik 20+1 ;
= b%kz o Pﬁ(cosy(P,P 3]

r(y(P,P'), say.
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D = A9 had magnitudes typical of real 500 mb. wind fields,

(z‘f‘rfczdp)]/z =6 x 10“5/sec.,@yDzdP)”2 = 1 x 107"/sec.

SR

Figure 3.1 gives a sequence of idealized {AQ} of which the first 14

were used in this study and Figure 3.2 gives a plot of the correlation

function p(y) = r(y)/r(0) associated with the {AQ} of Figure 3.1.

Figure 3.3 gives a fitted isotropic correlation function estimated from
historical 500 mb. geopotential fields by Julian and Thiebaux (1975)

which roughly matches that of Figure 3.2. Although in meteorological

practice the isotropy and other assumptions made below may be suspect,

in principle appropriate sequences {Aggg or at least appropriate rates

of decay of the {Aﬁg»may be obtained from historical records. See, for eiamp]e,
Kassahara (1976)).

We obtained a model streamfunction and velocity potential of the

form
N L -
s .
o g=1 §'=Z—szSY9“ g

s
C] and C2 were scale factors chosen so that the simulated éxi/ﬂ@ and

s
5
by choosing ag. and bﬂs as normally distributed pseudo-random numbers/{fﬁi%;
with mean 0 and variances Azs(]) B0 (2 = AR given in F1%pre‘§.‘,‘ 7 /i;!7

L

i C] = C2 then the optimal & would be 1 (or near 1). However, here,

/
the divergent part of the wind field is smaller than the nondivergent //
part, and the optimal & will be less than 1. The experiment below o /
tests the ability of GCV to estimate a good value of § (as well asj;?{ ' Kfizéic7
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Figure 3.1 gives a sequence of 1dea112ed'{k£} of which the first 14
were used in this study and Figure 3.2 gives a plot of the correlation
function p(y) = r(v)/r(0) associated with the {AQ} of Figure 3.1.
Figure 3.3 gives a fitted isotropic correlation function estimated from
historical 500 mb. geopotential fields by Julian and Thiebaux (1975)
which roughly matches that of Figure 3.2. Although in meteorological
practice the isotropy and other assumptions made below may be suspect,
in principle appropriate sequences {Aﬁg” or at least appropriate rates
of decay of the {Aig-may be obtained from historical records. See, for éxamplea
Kassahara (1976)).

We obtained a model streamfunction and velocity potential of the
form

N i 5

L sg{ﬁaﬂsYR (3:17]

N % .
=6 b Y
=1 s=-% sy

2

by choosing ag. and bgs as normally distributed pseudo-random numbers
with mean 0 and variances kgs(i) = ARS(Z) = A, given in Figure 3.7,
C] and CZ were scale factors chosen so that the simulated ¢z = AY and
D = A® had magnitudes typical of real 500 mb. wind fields.
] 1/2
EE(]CZdP) /

ik C] = C2 then the optimal & would be 1 (or near 1). However, here,

= B ]O_Slsecii%;szdP)]/z = T % 10_5/sec.
the divergent part of the wind field is smaller than the nondivergent
part, and the optimal & will be less than 1. The experiment below

tests the ability of GCV to estimate a good value of § (as well asfk).
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Model wind vectors (U(P1)=V(P1)) were computed from the model
(v,8) of (3.17) for {Pi} corresponding to n = 114 North American

],...,Un, V]""’Vn)’ where

V., = V{Pi) + eiv, were constructed by adding the

measurement errors eiu, siv as normally distributed pseudo random

radiosonde stations. The data z = (U

numbers with mean 0 and standard deviation ¢ = 2.5 meters/sec., a
realistic value for the measurement error standard deviation.

Figure 3.4 shows the simulated wind vectors. Figure 3.5 shows
the estimate of the true wind field, plotted on a 5° x 5° grid in
latitude and Tongitude. Figures 3.6 and 3.7 show the model and
estimated vorticity and divergence, respectively. In Figures 3.5-3.7
6 = 1/36 was used, which was the minimizer of V(i(dl,ﬁl found by the
search described above. Figure 3,8 gives MSE(z. ) and MSE(D. )

A(8),8 A(8),8
and their sum, where

MSE (

I ~1=

5.8 = R L (5, a8 )5l )2

k=1

MSE(D

Il b~ 2%

1
X8 = K L0y s(RJ-DIR Y}

k=1

The {Pk} constituted a regular grid inside the U.S. It can be seen from
Figure 3.8 that if & is taken as too small (i.e. divergence is suppressed),
then the mean square error in the estimated vorticity becomes large, and
similarly if § is too large the mean square error in the estimated divergence
becomes large. It appears that the GCV estimate of & here is quite close

to the & which minimizes. MSE(z) + MSE(D).
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