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ABSTRACT

We study the problem of estimating the distribution of the three
dimensional radii of a collection of spheres, aiven measurements of the
two dimensional radii of a sample of planar cross sections, This
problem arises in the estimation of the tumor size distribution of
spherical microtumors induced in mouse livers following injection of a
carcinogen. We first convert this problem to a form suitable for the
application of cross validated spline methods for the solution of i1l
posed integral equations given noisy data. Then we develop special
numerical techniques which will allow the spline methods to be accurately
applied to integral equations like those associated with the present
problem. We apply the resulting method to some mouse liver data. The
subject mouse Tiver has been completely dissected, allowing a rare
comparison of the estimate with the "truth". The statistical properties
of the estimate are explored via Monte Carlo methods. The interplay
between statistical and numerical analytic methods for problems 1ike
this are explored and the use of eigensequence plots for studying
i1l posedness is described.
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1. INTRODUCTION

We have been working with data from experiments in pathoiogy studying
the growth of micro-tumors (hepatocellular foci) in the Tivers of mice
(see Koen, H., Pugh, T. and Goldfarb, S. (1983)). Mice are injected
at 15 days of age with a carcinogen which induces the formation of malignant
tumors in the liver. After a fixed period of time the mice are sacrificed
and samples of liver tissue stained and embedded in a paraffin block. The
matrix of paraffin enables the sample to be sliced very thinly, and these
slices are mounted on microscope slides. Tumors in the sample will now
appear in cross section on these slides and their cross sectional area
or radii, if spherical, can be measured.

[t is desired to estimate the number density and three dimensional
size distribution of the liver tumors from the cross sectional observations.
In these particular experiments, a single mouse Tiver may
contain anywhe;é from a few to several hundred micro-tumors. Different
mathematical models for tumor growth have different implications for
the variation of tumor size distribution with mouse age. Thus, it is
desired to identify tumor size distributions
for groups of experimental animals sacrificed at different times
after the exposure to the carcinogen. .These growth models are important
because they might suggest some of the mechanisms which initiate and
promote liver cancer. By the limitations of the dissection procedure,
tumors can only be identified by their cross sections. Since tumors
of different sizes can produce the same size cross sections, there is not

a direct correspondence between the cross sectional data and the distribution



of tumor sizes. Although it is possible to take many, closely spaced
slices and completely reconstruct each tumor, this procedure is both
tedious and costly. What is required is a statistical method that
estimates the 3 dimensional tumor size distribution from observations of
two dimensional cross sections from a modest number of slices.

The biology of the Tiver suggests that the tumors will be
uniformly distributed throughout the tissue, while examination of successive
Cross sections has indicated that the tumors are roughly spherical. These
assumptions suggest a model from geometric probability. Consider a
medium which contains spheres whose centers are distributed according
to a Poisson process in space with constant intensity and whose
equatorial radii are distributed according to the cumulative distribution
function F3(r). It is assumed that the tumor number density is small
enough so that distinct spheres do not interfere with one another.
Now suppose this medium is sliced in a manner independent of the spheres'
sizes and locations. Let Fz(x) denote the cumulative distribution '
function of the (2 dimensional) cross sectional radii from randomly
selected slices. The relationship between F2 and F3 was derived by

Wicksell (1925), and is

R
Fax) = 1= 3 [ ATREdFy(r)  R>x 30 (313
X

where R is an upper bound for the maximum possible value of r and p is

the mean (3 dimensional) radius,
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Equation (1.1) is obtained by a conditioning argument. If a single sphere
of radius r is cut then the distance from the cutting plane to the center
of the sphere is equally likely to be anywhére_ESEEFen 0 and r and the c.d.f.
of the cross sectional radius is Fz(x) =1 - Jtiiﬁfu 0 <x <r. The probability
that a sphere of radius r will be cut is proportional to its radius
times'its relative frequency in the sphere population.

In this work we will usually be acting as though we are sampling
from some population of tumors which possess a density f3. The
problem is: Given a sample from FZ’ obtain a good estimate for the
density f3(r) = F3'(r). In practice tumor cross sections can only be
observed if they are larger than some radius €. In this case, clearly
the experiment does not provide information concerning f3(x) for x < €.
However, an integral relationship between the two dimensional distribution,
conditional on x > ¢, and fg(x) for x > g, can still be obtained. This
was observed by Chover and King (1982) and we give-their derivation
below. Let F2E be the conditional distribution of x given x > e.

Defining He by

R
- 2 2
u, = g Yri-g f3(r)dr (1.3)
it follows from (1.1) that
u
= &
1 - Fz(e) el (1.4)

hence,
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FZ(X)-FZ(E)

£ i = LK
1 - F2 (X) =1 - -I—_FE(E)— = ]JE: Lls FZ(X)., (1,5)
Substituting (1.5) into (1.1) gives
€ 1.5 2 .2
For(x) =1 - ﬂ; { Pl . (n)dr, (1.6)

The problem now s to estimate f3(r), r > e (or, rather,
f35(r) = £3(r)/(1-F4(r)), given a sample from s
The problem of estimating the distribution of sphere sizes in a
medium from the cross sections of a randomly oriented slice given a
sample cumulative distribution function from F2 is a classical problem
in stereology. For the case € = 0, several approaches have been proposed,
including maximum 1ikelihood, regression and nonparametric methods.
See Keiding et al. (1972), Nicholson and Merck (1969), Nicholson (1970,1976), Ta!]is
(1970). Recently, Kuk (1982) has placed this problem in the context of esttmating

a mixing distribution. Watson (1971) discussed the estimation of moments of

f3n Anderssen and Jakeman (1975) obtained an estimate of f3 from the inversion
formula R dF,(x)
f ('r') = _c.f_ 2_ f 2
3 de ™
T Jx2-p?

They wuse spectral differentiation and product integration to evaluate
the integral. Mendelsohn and Rice (1982) have recently studied a similar
problem in which the desired density g and the density h from which

observations are made are related by

h(r) = fw(r,x)g(x)dx 7

for a normal kernel w. Their work is somewhat related to the work described here

and will be discussed later.



The problem of recovering estimates of f3 from observations on
f2 is harder than might appear at first glance because it is i11 posed.
Here this means that Targe changes inthe true F3 lead to changes in the
sample histogram which are imperceptible compared to the sampling error.
In particular, "high frequency" components in f3 will not in general be
recoverable from medium or even large samples from FZE. For this reason
parametric methods (if a parametric form is known) or nonparametric
methods which estimate a smooth solution are most Tikely to be successful.
[f the true solution is "smooth" then a good nonparametric smoothing
method is a promising candidate for recovering the "truth". If the truth
is not smooth then such a method should recover the smooth part of

f Similar remarks have also appeared in Anderssen and Jakeman (1975),

3
Mendelsohn and Rice (1983) and elsewhere, but are worth repeating.

In Section 2.7 we show how the problem of estimating f3é from a
sample from f2 can be converted to the problem of solving an integral
equation given noisy data. We can then apply cross validated spline
methods for solving i11 posed integral equations. These methods have
been shown to be successful in a variety of applications. (See Crump
and Seinfeld (1982), Merz (1980), Wahba (1977, 1979, 1980, 1982a,h),)

In Section 2.2 we develop a numerical algorithm using certain carefully
matched quadrature approximations, which are particularly suited to the
application of cross validated spline methods to integral equations like (1.6).

In Section 3 we apply the estimation procedure to a sample of crgss

sectional mouse liver data obtained by two of us (S.G. and T,P.). The



mouse Tiver from which this data was taken was exhaustively dissected
and the true distribution of the three dimensional tumors from the subject
mouse determined. Thus we have a unique opportunity to compare the
estimated distribution with an actual distribution in circumstances
which accurately reflect laboratory experiments.

The results appear to be quite successful.

Convergence properties of this estimate can be obtained by adapting
known techniques for regularized solutions to i11 posed linear operator
equations, see, e.g. Cox (1983), Lukas (1981), Silverman (1983), Wahba (1977).
The results will appear in Nychka (1983). More to the immediate point,
the experimenter would 1ike to know how well the method will recoyer size
distributions with a sample size and slicing design similar to those encountered
in practice. We have designed a Monte Carlo experiment to answer this question.
for an experiment similar to the laboratory experiment described in Section 3,
This experiment is in the spirit of the recent landmark paper of Diaconis
and Efron (1983). Some of the results are given in
Section 4. In general, the accuracy of the estimate is quite impressive,
considering the modest sample size and 11 posedness of the problem.
It is, however, difficult to estimate f3(r) for r near e with sample sizes
Tike those of Section 3. This is not surprising considering that f3
is subject to length biased sampling and that large tumors can give
rise to both large and small cross sections. Thus information in the
data concerning the behavior of f3 near € is scanty. The method described
here extrapolates from datarich to data poor regions of r in a linear
manner. In Section 5 we describe how a2 priori information concerning the

behavior of f3 near e can, if available, be incorporated into the estimate.
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In Section 6 we show how certain eigensequence plots can provide
important insight into the precise degree of i1l posedness of this
problem, and we discuss the effects of "binning" the data.

In Section 7 some related methods are described, and we describe
the very important interplay between statistical smoothing methods,

and approximation theoretic methods such as quadrature and finite

element methods.



2. CROSS VALIDATED SPLINE METHODS FOR ILL POSED LINEAR OPERATOR EQUATIONS

2.1 The cross validated spline estimate fi for f3

Let H be the (Sobolev) Hilbert space of real-valued functions on LasR],
H'= {h=" h,h* abs. cont., h“eLz[e,R]}.

The (usual) model behind cross validated spline methods for integral

equations is:

z; = Lih * gy T 5 Ealaisih, {2.1)

where the {61} are independent zero mean random variables with common
unknown variance, and L1,...,Ln are bounded Tinear functionals on H.
See Wahba (1977, 1978, 1980, 1982,a,b). Given data z = (21,,,?,zn)2 the cross

validated spline estimate h2, for h is obtained as the minimizer in H of

A.,

R
(Lih-20)® + AJ(h (r)) 2ar (2.2)

e~

1
n;

i
where the smoothing (bandwidth) parameter is taken as the generalized
cross validation (GCV) estimate of A. (See Craven and Wahba (1979).)

In the problem under study, let er be the sample c.d.f. of the
n
cross sectional radii, let {Pi} be a partition of the interval
i=1

fe i), & 2 Py < PZ <...< P <R, and let z be the fraction of all observations
in the ith bin, [Pi’P
Then

i+1)'

. e € 2 e - E €
2y = Fpr(Pig) = FR(Py) = FB(P ) - F5(PL) + e, (2.3)

where the £; are random variables. If the observations are an independent



sample from FZE, then the {ei} will have zero mean and be jointly
asymptotically normal and only weakly correlated. In this work we are
going to ignore the fact that the variances of the € are not necessarily
the same. (Various reweighting schemes are possible, see Cox (1970),
Villalobos and Wahba (1983).) Letting h = f3/u€, and setting

R R el il

L:h= f 2-P.2h(r)dr - [ vr2-P. .%h(r)dr (2.4)

i i i+1
P Pisl

(2.3) becomes (with the aid of (1,6)),

2. =L.h + ..
i L1 4

Given z, we let h, be the minimizer of (2.2) in H, and let

fl be

A

R
fk(r) = hl(r)/ihk(s)ds. (2.5)

Qur eﬁtimate ;3 is then fi’ where i is the GCV estimate of A. (Note
that fhi(s)ds is an estimate for 1/u_ .). The estimate obviously
integiates to 1, but it is not required to be positive. Negativity was
not a problem with the actual mouse liver data. In one of the Monte
Carlo examples the estimate went negative and we have truncated the

estimate in the plots. If desired, non negativity constraints can be

added to the problem of (2.2), see Wahba (1982a), Villalobos (1983)
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2.2 The numerical method for computing fi

Using known but scattered results, we next give an efficient numerical
procedure for computing (a very good approximation to) the minimizer
of (2.2) and the GCV estimate K of XA. The method is readily implemented
for n less than a few hundred. In all our calculations, n will be 80,
and the bins are equally spaced in log x between £ and R. The Tog
spacing is a crude variance stablizing spacing for our mouse liver
data. For the actual and most of the Monte Carlo data the number of
observed cross sections was between 150 and 450. The choice of n = 80
bins is Tlarge enough so that the binning is not doing any appreciable
smoothing. Binning as smoothing will be discussed in further detail
in Section 6.

As with any 111 posed problem, care must be taken in the actual
calculation of the solution, or garbage may result from dividing
random or roundoff errors by small eigenvalues. It will be seen here
and in Sections 6 and 7 that the numerical analysis and the estimation
procedure can become inextricably intertwined in i71 posed problems,
Approximation theoretic methods become smoothing procedures and vice
versa. For completeness, and to allow discussion of this point, we
outline the major stepé of our numerical method here, pointing out
the steps developed particularly for the problem at hand.

Using the results in Kimeldorf and Wahba (1971), Wahba (1978) and
Wahba and Wendelberger (1980) an explicit formula for hA’ the minimizer

of (2.2) in H can be given as follows. Under the inner product
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R
<f,g>, = fle)g(e) + f'(e)g'(e) + [f'(r)g"(r)dr
€

H is a reproducing kernel Hilbert space. The reproducing kernel for H

with this inner product is

Q(r,s) = 1 + (r-e)(s-g) + Qy(r,s), e <r, s <R (2.5)
where
Qy(rss) = (r-e)z(s~e) - (rée)a C s
(r=€)§5-e)2 i (Sgg)a s

Let ¢1(r) =1, ¢2(r) = (p-e), and Ef(r) = Li(Q1(-,r)), where Ly is given

by (2.4) and Li(01(-,r)) means that L is applied to 01(s,r) considered as

a function of s. Let T be the nx2 matrix with ivth entry 7, = Liqa, v =1,2,
and let K be the nxn matrix with ijth entry kij = ?EQ(F)E}(r)dr.

If T is ofrank 2, hA is uniquely determined, and giyen by

n 2
r) = Z c:g:lr) # Jd o (r) (2.6)

1 § %] ¥V
where ¢ = QCT""’Cn)' and d = Cd?’dz) satisfy

(2.7a)

n
~N

(K+nAl)c + Td
T'ce = 0 (2.7h)

The GCV estimate A of ) is the minimizer of the cross validation function

v(X),
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VO = 1/n(][(1-A00)z2]|2)/(3Tr(1-A(0)))2, (2.8)

where A(A) is the nxn "influence matrix" defined by

Ly(h,
2 = AfA)z
anhk)

From, e.g. Wahba and Wendelberger (1980) it is known that
I-A()) = Q(QKQ'+n,\I)']Q‘, (2.9)

where Q can be taken as any nxn-2 matrix whose n-2 columns are Tinearly

independent and perpendicular to the 2 columns of T. The numerical
problem now is to compute the minimizer } of V(A), and hs,
In this problem closed form expressions can be obtained for the

{Ei} and {Tiv}, and are given in Appendix A. Unfortunately we were

J
some form of quadrature must be used. It is not at all clear that Just

R
unable to find a closed form expression for kfj = fsi"(r)g.“(r)dr, S0
£

applying the nearest handy quadrature formula to obtain approximations
to the entries k].‘j of K is appropriate. In particular, the nonnegative
definiteness of K could easily be lost, Teading to problems in the
calculation of i, see below.

The following form of "matched quadrature" can be used to avoid this |
problem. The particular form of "matched quadrature" chosen is motivated
by a) the fact that ii(v)(a) =0,v=0,1,1=1,2,...,n, and b) the
desire to do as Tittle quadrature approximation as possible by exploiting

the known closed form expressions for 5i and Tiv*
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First, let yk be the representer of Li in H, that is,
Lih = <”i’h>°

It is known that n; = Ei + ai1¢1 + ai2¢2 for some ;953505 S€E, €.4.

Kimeldorf and Wahba (1971). Note that (2.2) may be rewritten

n R
%!Z](<ni,h>-zi)2 + Af(h"(r))2dr.
1= €

Now, choose a fine grid of N+1 points, e = 55 <5 <5, <...<5 =R

and, for any h let P h be that element in H which minimizes J(h)

N
subject to (PNh)(sg) = h(sl), 2 =0,1,2,...,N, and (PNh)‘(s) = h'(e).
PNh will be a cubic interpolating spline subject to the left boundary
conditions. The "matched quadrature" consists of approximating

Li by Li’ where Li is the linear functional on H defined by
Lih = <PNn1,h>.

We are now in a position to solve the approximate problem:

Minimize
1o~ R
= 7 (L:;h=2.)% + Af(h"(r))2%dr, (2.11)
ne: 1 1
i=1 £
in H, exactly. This is easily done using the formula (2.6) since, it
% » - e 1]
San beRshown that T, = L9, = Ligip.oi= g and Li(Q1(=,r)) = Py&; = &> say.
kij = fgi”(r)gj”(r)dr is readily evaluated exactly, since the {5i} are
>

piecewise polynomials. The minimizer hA of (2.11) is given by (2.6)
and (2.7) with Ei replaced by 51 and K replaced by K = {kij}° The cross

validation function V() for this problem is given by (2.8) and {2.9) with A(})

1| The procedure we used for computing PNEf is given in Appendix B,
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replaced by E(A) defined by replacing K by E in.(2.9). QQQ' will be nonnegative
definite.

Given E and T, we give an efficient procedure for minimizing G(A) and
computing ¢ and d.

1. Use LINPACK (Dongarra, et. al. (1979)) to find the QR decomposition

of T, to obtain

_ : 0
where 02 is an nxn-2 matrix with 0202 = In-2xn-2’ QZT = 0 and R1 is
upper triangular. The Q appearing in (2.9) can be taken as QZ'

2. Let B = QZ'KQZ and use EISPACK (Smith et.al,(1976) to find the
eigenvalue eigenvector decompositon UDBU' of B, where hvz PR ) e A |
are the n-2 diagonal entries of Dg (eigenvalues of B), and the n-2
columns of U are the eigenvectors of B. Then

n-2

Trace(I-A(X)) = 7§ DA
v=] bv2+nl

-t B < nAQU(Dg#nA) T Ur g, 2.

3. Letting w = U'Qz'z, then

d n-2 n-2
. 1 nAw 2 1 ik )z
My=1 b z+my Myl b+

c = QZU(DB+nAI)'1w
and d is obtained by solving

R1d = 01'(Z-EC).
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G(A) is minimized by a global search in log A. IfnA is much smaller

than the smallest buz or much larger than the largest bﬁ, it may be taken
as 0 or =, respectively, so this limits the region required to be searched.
?hi(r)dr is easily evaluated.

- It is useful to note that if hi is to be obtained for repeated
samples, with the same bins, the cost is quite medest for runs after the
first, since the expensive calculations involve the calculation of

01’QZ’R’ U and D, and these need only be computed once as they do not

B
depend on the data.
The above procedure appears in Wendelberger (1981), and has been

found to work well in similar problems for n as large as 350.
In the calculations that follow we used N = 8Q, with the 8.4 equally

spaced. Further discussion of the choice of N appears in Section 6.
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3. NUMERICAL RESULTS WITH THE LABQRATORY DATA

The liver being sliced fits roughly into a box about 7500 x 7500
microns (p) square by 2380y deep (100p=.01cm.), and, for the experimental
data studied is sliced perpendicular to the short dimension in 21 equally
spaced slices (of negligible thickness) 50 microns apart, through the
central 1000 microns of the block, to be called the slicing region.

Figure 3.1 gives a schematic diagram of the slicing design.

Thus, in practice, slices of the paraffin block containing the
Tiver are all parallel to one another, the spacing is equal, and only the
"phase" of the tumors with respect to the slicing grid is random. In
this experiment, it was decided in the laboratory that ¢ = 38.36 lJ microns
was the smallest cross sectional radius reliably detected hy all the
personnel identifying cross sections. Smaller cross sections, when
abserved were ignored. Spherical tumors of three dimensional radius
greater than 45.78 microns ‘and lying wholly in the slicing region will
be observed in at least one slice, while tumors with radius between
e and 45.78 may or may not be observed. Figure 3.2 gives the probability
that a sphere of radius r which lies wholly in the slicing region will
have at least one observed cross section. Equation (1.1) still holds,
but a Tittle reflection will show that if the spacing is uniform, and spheres
can be sliced more than once, the sampling variance will become smaller

as the spacing becomes finer.

With this sTicing 154 tumor cross sections were observed, Fiqure 3.3 gives a

histogram of the observed cross sectional radii using the bins [Pi*Pi+])“ Figure 3.4

1] The observations do not actually have 4 figure accuracy. we are ignoring this.
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Figure 3.1 Schematic diagram of the slicing design



wil 7=

PROBABILITY

i 1 | ] | i i I i |
‘Qa.+ 38. 40-  41-  42.  43. 44. 45. 4B. 47. 4B.

£ rs MICRONS
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gives a plot of the estimate fk(r)’ e <x<R, for three different values
of A. (R was taken as 690u, the same value as in Figure 3.1). This
figure demonstrates the sensitivity of fy as A varies. For large ),
the resulting spline is very smooth, but may have ignored some features
of the data. When )\ is small, the estimate fits the cross sectional
distribution well, but yields an oscillating estimate for the tumor
size density. In these particular data, one wonders whether the mode at
280 microns is an actual component of the distribution or rather just
an artifact from under smoothing.

Figure 3.5 gives a plot of log GLA) vs, log A, GLAl is minimized for
A around 10'5. This suggests that the solid curve in Figure 3.4 is a
good estimate for the size density. Note that this estimate retains
a mode at around 280 microns. To compare fi with the true f3E, the slicing
region was completely dissected by very fine slicing. Figure 3.6
gives a plot of fi (same as the middle curve in Figure 3.2) and a
histogram of the true tumor size distribution. There were 53 tumors
at Teast partially in the slicing region. Tumors which were only
partially in the slicing region were counted as a fraction of an
observation, that fraction being the ratioc of the volume inside the
slicing region, to the whole tumor volume as estimated by the curvature
of the portion in the slicing region.

Overall the agreement between a histogram of the reconstructed
data and the cross validated smoothing spline is good. These results

are particularly striking since there are only 53 reconstructed tumors
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in the tissue sample, although, of course, the systematic sampling helps,
The concentration of tumors around 280 microns predicted by the spline
is an actual feature of the reconstructed data. However, close to the

Tower limit, e, the spline underestimates the reconstructed distribution.
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4. MONTE CARLO EXPERIMENTS

We studied the sampling properties of the estimate by Monte Carlo
methods designed to mimic the effects of multiple sampling of large
tumors, as well as edge effects, as they actually occur in the mouse
experiment. |

The geometry of the Monte Carlo experiment is exactly that
described in Figure 3.1, where, however, R in that figure may take on
other values. A pseudo random number for the total number of spheres
was generated according to a Poisson distribution with mean equal to
the volume of the entire block x 900 tumors/cc. (The actual mouse had
a tumor number density of about 900/cc.) If the number of spheres is
Mas then nq "centers" are uniformly distributed throughout the entire
block. For each center, a random radius was generated according to the

density f Twenty one parallel, infinitely thin slices 50 microns

3"
apart were then made through the shaded region and the radii of all

(two dimensional) intersections greater than ¢ were

recorded.

There are now at least two ways of defining the "true" distribution
of the three dimensional radii in this experiment. One is as the "theoretical"
distribution determined by the density f3 from which the pseudo random
radii were drawn. The second is as the "actual" distribution of the
three dimensional radii that were actually drawn. For comparison purposes
we will display both the "theoretical" density and a histogram of the
"actual" distribution as defined above. (The "actual" distribution is
defined here a little differently than the "true" distribution of Section 3,

since tumors in the block but outside the slicing region can be counted,)
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Experimenters will Tikely want to focus on the "actual" distribution if
they are interested in a single mouse, and on the "theoretical"
distribution if they consider a single mouse as a member of some "super-
population”.
We present the results of four Monte Carlo studies. In each of
the studies six replicates were performed. A replicate consists of
drawing a sample of tumors, slicing the block, recording the observed
cross sectional radii and computing the estimate fia
Experiment 1 was very roughly designed to mimic the number density
and theoretical size density f3 of six experimental mice, one of which
has been described in Section 3. The theoretical f3 was taken as a Weibull
density that approximates the data of Figure 3.6. R in this experiment
was 690 microns. (R in the definition of J(-) and in Figure 3.1 have
been taken to be the same.) The number of tumors/replicate in the
entire block averaged 115 with about 49% of them having recorded
intersections. The number of observed cross sections averaged 204,
Figure 4.1 shows the results of the six replications. The solid curve
in the upper left plot is the theoretical Weibul] curve, the histograms
represent the "actual" size distributions, and the dashed lines are the estimates fi.
While the overall shape of the estimate is quite good, a tendency to
underestimate the density near the cutoff is evident in 4 aof the six
replicates. Experiment 2 studies a density with different behavior near e.
f3 is a truncated Beta density. The average number of tumors in the block

was 113 of which around 60% had recorded intersections, the average number

of observed cross sectional radii was 426. In this experiment most replicates
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overestimated f3 near € while, overall, the shape of f3 is quite good,
particularly for larger r. In Experiment 3 we wished to examine the
ability of the estimate to resolve distinct peaks. It is of some

interest to know to what extent this is possible. The thegretical f3

was a mixture of two truncated normal densities. R = 450. Figure 4.3
shows the results of 6 replications for Expe}iment 3. The average number
of tumors in the block was 80 with about 70% having recorded intersections
and the average number of observed cross sectional radii was 341. While

in all of the six replicates excellent recovery of the two peaks of f3 was

obtained, the estimate of the replicate in the lower Teft hand corner
demonstrated "flaky" behavior near €. Inspection of the observatienal
data reveals that the five well behaved estimates had no obseryations
in the smallest observation hin while the "flaky" estimate Rad two, In Experiment
4 we wished to see the effect of increasing sample size in Experiment 3. The same

f3 but a tumor number density five times as big as that of Experiment 3 was used.
The average number of tumors in the block was 460 with about 70%

having recorded intersections, and the average number of observed
cross sectional radii was 1781. Figure 4.4 gives the results of this
experiment. Extremely good recoverly of f3€ is seen,

We were also interested in the properties of this smogth estimate in the
Timiting case when the slicing region is sliced an infinte number of times, For an
example, we used the size distribution of the 53 tumors from the mouse of
Figure 3.7 and assumed that all the tumors were actually contained within the
sample. It is not difficult to show in this case that the appropriate data is
the expected values of the profile histogram for this discrete distribution (Nychka
(1983). A plot of fi appears 1in Figure 4.5, superimposed on a histogram

of the "theoretical" distribution.
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5. MODIFICATIONS FOR END EFFECTS

We conclude that this approach is quite successful on the random
spheres problem, although the behavior of the estimate is not as good
as might be hoped near e, for small sample sizes. We believe that this
is a problem primarily of the data (as opposed to the estimate) since,
due to the length biassed sampling, and the fact that large tumors have
small cross sections as well as large ones, there is very little information
in the data concerning the behavior of f3 near . However, it should be
recognized that the estimate extrapolates smoothly from "data rich”
values of r to "data poor" values of r, where "smoothness" is essentially
determined by the choice of penalty functional J(-), which has been taken
in this paper as

R
J(F) = f(f"(r))2dr.
€
The null space of J(-) is the linear functions, thus, where there is
insufficient information in the data extrapolation will be linear. In
this problem, the penalty functional could have been replaced by, say,
R
J(F) = f(f"(r))?dr
=

in which case, the extrapolation would have been quadratic. ;i
prior information concerning the behavior of F3 near £ were available

from some external source, then this information could be included in

the cross validated spline estimate by appropriately modifying J(.). For
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example, suppose it was known that f3 behaves 1ike a particular
negative exponential density g, say. This information may be incorporated

in the estimate by replacing
R
J(F) = f(f"(r))%dr

by, for example

ae) = eyt

where ng is the projection of f onto the grthcomplement of span

{g,¢1,¢2}. Then extrapolation from data rich to data poor regions (i.e. near
€) will proceed via Bayesian information that the true f has negative
exponential behavior there.gl The abstract idea hehind this approach

may be found in Wahba (1978), Section 3. For details of the application

to this problem, see Nychka (1983). See also the remarks in Silverman
(1982), where a normal density is in the null space of his penalty functional,
For a different approach te modtfying Boundary behayior, see Gasser

and Muller (1979).

2] We are compelled to report, however, that for the mouse Tiver problem
behavior of f35 neéar e was something of a surprise,
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6. QUANTITATIVE ILL POSEDNESS, EIGENSEQUENCE PLOTS, AND THE CHOICE OF n

Since the cost of the numerical calculations increase rapidly with
n (for the first estimate computed), it is tempting to choose n fairly
small. If n is much less than the number of observations, it may act
as a smoothing parémeter. Using n as a smoothing parameter can be
justified theoretically, from an asymptotic point of view (for example,
see Wahba (1975)). However, it is our numerical experience that
when there is a relatively small amount of information about the
solution available in the data, then smoothing by binning can result
in Toss of fine structure in the estimate that would be observable
if A were allowed to do most of the smoothing. Thus, we set out in
this problem to choose n large enough so that 1ittle or no smoothing
is being done at the binning step.

However, since this problem is il11 posed, increasing n beyond some
point will not retain much more information, even if the sample size
were infinite. 1

Inspection of the computed eigenvalues bvzs ve=1,2,...,n=2 can be a
valuable procedure in studying this question and we describe how below.
First, given the bins, let Kn be the operator with domain H and range

1
design matrix X in the usual regression problem y = XB + g, and the

En which maps f to th = (L F,...,Lnf)° Then Kn is analogous to the
role of XX' is played by the nxn gram matrix I with ijth entry <”1’”j>'
Inspection of the eigenvalues of I thus provides important information

on the effective dimension of the range of Kn, when the domain of Kn is H.
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In some i1l posed problems, I is theoretically of full rank but has
fewer than n eigenvalues which are actually larger than machine double
precision 0. For an extreme example, see Wahba (1979). Now, since

n; = gi + aﬂ¢1 + a12¢2 for some a515 3500 the matrix I can be obtained
from the matrix K with ijth entry <£i,£j> by the addition of some rank 2
matrix which is not important to our problem. (The aij depend on the
definition of <¢u,¢v>, w,v = 1,2, which is jrrelevant to the estimate
being studied.) Furthermore, if 12Y 2 ... 2y, are the eigenvalues

of K, and & > 8y > .on > 6n-2 are the eigenvalues of QKQ' then

Yy.2 S8, 5, Nowas part of the calculations for Sections 3 and 4
we have computed bﬁ > ... b;_z, which are the eigenvalues of QEQ'
K being the nxn matrix with ijth entry <PNEi’PNEj>‘ The bvz‘s satisfy
bu2 £ ¥y i=1,2,...,n-2 and the number of non zero 51 ‘s cannot be
bigger than the dimension of the range of PN. In the Timit as N-ow, b3+yv.
If N is too small, it, too, can act as a "smoothing parameter".
Figure 5.1 gives a plot of the first 68 bvz‘s on a log-log plot,
with n = 80, N = 80. (The vertical unit is arbitrary and depends on
the units in which r is carried in the computer. It is reasonable
to choose these units so that b,%z1). For comparison an arrow marks

1
ni = B0 x }0'5. Recall that the eigenvalues of A(A) are
(1,1,b,2/(by%n2) ...y b2 5/(b._,+nA)). A(A) plays the role of the
influence matrix X(X'X+nAI)X' in the regression problem when a ridge

estimate is used for R.
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Based on trying several values of n and N, it is our belief
that at least the first 30 or 40 bvz’s approximate the SU'S very well,
and that increasing N would have no appreciable effect on the resulting
estimate f2. If n is increased, our unpublished plots as well as
recent analytical work suggests that the slope of the (major part of)
the eigensequence log-log plot will tend to a limit. (See, e.qg.
Utreras (1981), Wahba (1977).) Note that bfm/b.l2 is already down
to ]0'1 We conclude that increasing n (with Nzn) much past 80 would
not change f;, certainly not to plot accuracy, and that we have thus
succeeded in choosing n and N so they are not acting as smoothing
parameters.

Eigensequence plots can provide insight about practical limits
on the amount of information concerning f,%, in the data, and we
suggest that these plots be routinely examined in problems of this sort.

It is seen that with i = 10'5, the eigenvalues va/(bv2+nxl of the

influence matrix A()A) have: decreased to .5 by about the 8th efgenvalue (v=6),
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7. RELATED ESTIMATES AND THEIR SMOOTHING PARAMETERS
Another approach to the approxiﬁate numerical calculation of the
minimizer of (2.2) in H is to minimize (2.2), in a convenient approximating
subspace SN 2 span{BZ}, say.

Then one finds hk of the form
h, = J6,B
A e 2%

to minimize (2.2). 1In the problems studied here a space of cubic
B-splines (see deBoor (1978)) would be appropriate. If the basis functions

have compact support, this would be considered to be a "finite element" method.

Given € = Sg < S7<e..Sy = R, Tet SNh be that functien in H which

minimizes J(h) subject to (SNh)(sz) = h(s L=0,1,...,N, and

ks
(SNh)'(so) = h’(so),(SNg)'(sN) = h'(sN)n SNh is the cubic spline
interpolating to h at SgsSyscesSys and to h' at Sg and SN. Let SN
be a set of N+3 cubic B-splines whose span is the range of SN' (See,

e.g. deBoor (1978) Chapter IX.) Then the minimizer of the exact expression

=
s 3

(<njsh>-2,)2 + 2 (h) (7.1)
i=1
in the approximating subspace SN’ is the same as the minimizer of the

approximate expression

(<ny,Syh>-2.)2 + Ad(h) (7.2)

31—
e~ 3

i=1

in H. This can be shown without difficulty by writing

h=Syh + (I-Sy)h = %6231 + (I=Sy)h for ;ome {8,} and using the
property of the cubic spline interpolant f(SNh)"({stN)h)“ = 0, to obtain
€

J(h) = J(SNh) ¥ J((I-SN)h).
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It can then be shown that the minimizer of (7,2) must be in SN‘ Upon
observing that SNh = h for any h in SN (spline interpolation is idempotent)
it follows that problems (7.1) and (7.2) are the same. For comparison

with (2.71) we can write (7.2) as

—&

(L;h-25)% + Ad(h) (7.3])

31—
Be~13

i=1
where Eih = <SN*ni’h>’ SN* being the adjoint operator to SN. The

cross validation function ﬁ(x) for the problem (7.3) can also be

readily obtained.

The minimizer of the exéct problem (7,1) in some space Sy of B-splines
is the "hybrid estimate" proposed by Wahba (198Q) and mentioned by
Mendelsohn and Rice (1983). If the dimension of Sy is chosen large
then this "hybrid estimate" will numerically be a good approximation
to the original cross validated spline estimate (minimizer of (2.2)
in H). On the other hand, if SN is re]ativeiy small, then N will act as a
smoothing parameter. Thus there will be a pair of smoothing parameters
(A,N), which, 1in principle, could be chosen objectively by GCV.

Mendelsohn and Rice (1983) solved the problem mentioned in (1.7) by

using the minimizer of

i~ >3

i —

2
“ (th-zi)

i=1

in SNW In their work n was very large, and N was the only smoothing parameter.
When N is the only smoothing parameter, the optimal (IMSE) value
of N grows very slowly with n. (For certain regression problems N = O(nl/s),

see Agarwal and Studden (1980)). When n is very large and the data is nearly

exact, then one can sometimes profitably use N as the sole smoothing parameteyr,



-38-

since the optimal N will be large enough so that recoverable structure
in the solution will not be lost. (An "N only" estimate is the
easiest to compute.) In Mendelsohn and Rice's problem, n was several
hundred and the data could be considered extremely "exact" since 105
observations were in the n bins. They found an N of 12 subjectively. 1In
our problem with much "noisier" data we conjecture that the optimal N
in an N only estimate would result in N of more like 3-6, and in
general the estimate would not show the peak resolution that is evident
in Figqures 3 and 4 unless the true solution was actually in SN' Efficient
numerical methods for the hybrid estiamte for problems with very Targe N
(as might occur in image processing, for example) can be found in Bates
and Wahba (1982).

We see now that there are actually three possible smoothing
parameters, A, n and N. In the "matched quadrature" method, it is
natural to have N > n and the computing load is sensitive to n and insensitive
to N. In the "hybrid method" it is natural to tak; N < n and the computing
load will be sensitive to N and insensitive to n. In the "matched
quadrature" method, one could easily use n and A as joint smoothing
parameters and in the "hybrid method" one could easily use N and ) as
joint smoothing parameters. (There may, however, be a region in (A,n)
or (A,N) space where decreasing both parameters simultaneously will have
1ittle effect on the IMSE.) In the problem at hand, where the data is
very noisy (because the sample size is small) and the problem is somewhat
i11 posed, we believe that one can do a better job of recovering structure
in the solution if one lets X do all, or most of the smoothing, and one

chooses n and N just large enough so that they are not doing appreciable
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smoothing. When there is a very large amount of information in the data,

using n and/or N to do (some of) the smoothing, can be very cost effective.
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Appendix A

Formula for gi(r) and Ty

E'I(r) = L.i(Q‘]("sr)) = W(PTEPY‘) e lD(P1 5r)s where

32 s .
w(Pst) = (t S) J](Espsp,R) = LE—%l_ ID(P,P,B), £ f t f P
= Lt8) 5 (e,p.P,t) - 1.(e,PP,t)
7 25999 _359’:

+

3
(=0 5 (erst,R) - LS 1 (ppR) P et cR

where

[}

0;1452:3

b —_—
Ik(x,a,b) = fukfhz-xzdu X <a, k
a

:)ek'iIi(x,a,b) k

]

k
1« 0,1,2,3.

jk{E,X,a,b) = .

i=0

The definite integrals Ik have closed form analytic representation, see

Selby (1979) Formulae No.'s 156, 167, 168 and 170, p. 425.
Ti1 T IU(P1_1an_],R) = IQ(Pi,P?,Rl

T'IZ = J‘i (PT-] -P.l_] :R) = J'I (P.! yP.i.sR)
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Appendix B

Computation of PNgi and kij

Since Ei(O) = Ei'(O) = 0, and Q is the reproducing kernel for the

subspace of H satisfying these boundary conditions, we must have
%
Pug. = Shre QU-S80 T
N™=q ke ik k

for some o, = (ail’aiZ""’aiN)' The a4 are chosen so that the

interpolation conditions are satisfied, that is
/’;51(51)\
SBjiBs] oua
\Ei(sN)
where 5 is the NxN matrix with ijth entry Q(gi,sj)! Since 5 is pesitive

definite, the a; can be efficiently computed via a Cholesky factorization

of Q (see Dongarra et al. (1978), Chapter 3).

Now kij = <PN€i,PNEj> = éaik§a5£<Q(“’sk)’ Q(°,sl)>

aiQuj,
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