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Abstract

The partially improper prior behind the smoothing spline mode] is
used to obtain a generalization of the maximum 1ikelihood estimate for
the smoothing parameter. Then this (GML) estimate is compared with the
generalized cross validation (GCY) estimate both analytically and by
Monte Carlo methods. The comparison is based on a predictive mean
square error criteria. It is shown that if the true, unknown function being
estimated is smooth in a sense to be defined then the GML estimate under-
smooths relative to the GCV estimate and the predictive mean square
error using the GML estimate goes to zero at a slower rate than the
mean square error using the GCV estimate. If the true function is
"rough" then the GCY and GML estimates have asymptotically similar
behavior. A Monte Carlo experiment was designed to see if the asymptotic
results in the smooth case were evident in small sample sizes, Mixed
results were obtained for n = 32, GCV was somewhat better than GML for
n = 64 and GCV was decidedly superior for n = 128, 1In the n = 32 case GCV was better
for smaller .o® and the comparisen close for larger .¢®, The theoretical
results are shown to extend to the generalized spline smoothing model,
which includes the estimate of functions given noisy values of variogus

integrals of them.

Keywords: SPLINE SMOOTHING, CROSS VALIDATION, MAXIMUM LIKELTIHOQD,
INTEGRAL EQUATIONS



1. Introduction

We consider the same smoothing spline procedures as in Wahba (1978b,1983b)
and elsewhere, and their extension to the solution of linear operator

equations with noisy data. The (special) spline smoothing model is
YosHlE Ve T A NE tief0,1]

= L~ 2 2 . .
where ¢ (ET,...,En) N(O,o Inxn)’ a® unknown and f(-) is some

function in the Sobolev space wzm[0,1],
wzm[O,i] = {f: f,f',...,f(m’]kahs. cont., f(m)sL2[0,1]}.

The smoothing spline estimate fn of f is the minimizer in wzm[0,1] of

sA

%o o)
-)2+A10f(fm (t))2dt. g

fn 3 is the celebrated polynomial smoothing spline of degree 2m-1.

The bandwidth parameter X controls the tradeoff between the infidelity

n 1
to the data as measured by % Z(f(ti)—yi)2 and the roughness f(f(m)(u))zdu
i=] 0

of the estimated solution.

The generalized cross validation (GCV) estimate of A is the minimizer

of V(A),
1
= | [ (I-A(X) )y |12
V(n) = ”]H s U2
[(=Tr(1-A(A)]*
where A(X) is the nxn influence matrix, which satisfies
fn,k(tl)
: = By - ¥ EHyeenad ' £1.3)
£ (t )



The GCV estimate of XA estimates the A which minimizes the predictive

mean square error R()A) defined by
& T (1.4)

fn’A(t),ts[O,T] is also a Bayes estimate of f(t), if f is endowed
with a certain zero mean Gaussian prior, which is partially improper.

The purpose of this paper is to derive a maximum 1ikelihood estimate
for X, based on this prior, which generalizes the usual notion of ML

estimates to the case of improper distributions,and then to compare the properties
of this estimate of A (called the GML estimate) with the behavior of the GCY
esfimate of A. We decided to make this comparison at this time because of
recent interest in related ML estimators.

The GML estimate we derive is the minimizer of M(K) given by

[bet (T-A(x))] 0T Gy

where Det+(I-A(A)) s the product of the n-m nonzero eigenvalues of (I-A(2)).
The GML estimate reduces to the usual ML estimate, as first given by
Anderssen and Bloomfield (1974) when the prior is "proper", and is
an extension of an estimate recently given by Barry (1983). The comparisons
we make between GCV and GML also hold for the proper prior case.

Our comparison of the GCV and GML estimate is based on the criterion
of minimizing predictive mean square error R(}) defined in (147,
Although this might appear to be a somewhat special criterion, under certain
conditions other loss functions (for example, mean square error in the
derivative) turn out to be minimized by a A close to the minimizer of R(2).
Some references are given below.

Llet Agpt be the minimizer of ER(A), where the gxpectation is taken

0
over €. The asymptotic behavior of AOPT and ER(AOPT) has been studied by



a number of authors, under mild regularity conditions on the data points. See
Cox (1981,1982), Craven and Wahba (1979), Ragozin (1982), Rice and
Rosenblatt (1983), Speckman (1981), Utreras (1981), Wahba (1975).

The results include

m-1 L s 1
ferm é¢>AOPT = m,ER(AOPT) = O(ﬁ)'

m W -2m/(2m+1)
fel, => ER(AOPT) = 0(n )
and this rate is achieved with
= O{n—Zm/(2m+1))
B i -2mp/(2mp+1)
fscpr>£R(AOPT) = 0(n )
and this rate is achieved with
Here nmh] are the polynomials of degree m-1 or less and C = Cp(wzm)
1
is the class of functions in wzm with 0 < f(f(m)(u))zdu < «, and satisfying

0
certain additional smoothness conditions indexed by pe(1,2], to be defined more

precisely later. If mp is an integer, then it is conjectured that fst entails

that fewzmp and f satisfies the homogenous boundary conditions

f(jl(ﬂ) = f(le]) =0, = m3m+15.,,?mp«1!

Let f be fixed and let AGML and AGCV be the minimizers of EM(A) and EV()),
Fespectively. Let the "expectation inefficiency" of AX relative to

KY be I defined by

X/Y



IX/Y = ER(AX)/ER(hY).

In this paper, we obtain information concerning IGML/OPT aS N-ow

under three (distinct) "smoothness" assumptions on f, namely
(1) fer™ !,
(2) feCp for some pe(1,2] -

(3) f behaves 1jke a "sample function" from a stochastic process
with the given prior,

The results are

(1) = Tguygpr =1

(2) = Tew sopr

(6]
(3 = Lo gy =1 * 01}
i Q m ] (m) 2
The "borderline" case fey with 0 < ftf*m-ﬁu))
; 0

2 du and f%Cp for any p > 1 is

unresolved at this time.

QL(:)span ™ - Wzm)q

(We call this the "borderling' case becayse

It is well known that if f satisfies (1), (2), (3) or is a "borderline" case

Lacysopr = 1 *0 (1) )

For numerical and theoretical results, see Craven and Wahba (1979), Erdal (1983),

Golub, Heath and Wahba (1979), Utreras (1979,1980,1981,1983), Wahba (1977b),
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Wahba and Wendelberger (1980). Speckman (1982) has recently obtained stronger
theoretical results, without the "expectation", and Li (1983) has recently
related GCV and Steins unbiassed risk estimate. A1l of the results in this
paper relate to ER, EV and EM rather than R, V and M. We believe that

the "E" can be removed, possibly without strengthening the hypotheses, but
that is not done here.

In the Tight of (1.7), it follows that

(1) I =1

GML/GCV
@) Towseer = © (1.8)
(3) Ty oy = 1+ of1).

Following these theoretical results we present a small Monte Carlo
study with three example f's satisfying (2). The inferiority of the GML
estimate is perceptibly evident as n = 64 and strongly evident at n = 128.
Cross validated spline methods have been used with some success
in the solution of linear integral equations with noisy data. See
Crump and Seinfeld (1982), Halem and Kalnay (1983), Merz (1980), 0'Sullivan and
Wahba (1984), Wahba (1977b, 1979,1982). One of the reasons for this success is
that under various circumstances the A which minimizes R(A) also minimizes, or

nearly minimizes other, possibly more interesting loss functions, for

‘il

example RD(A) = é(fn,l'(u)-f'(u})zdu. For theoretical results see

Cox (1983a), Lukas (1981), Nychka (1983), Ragozin (198T). Special cases
of this may be obtained by, e. g, comparing the optimal A for ER()) and
ERD(A) using the results from Theorems 1-4 in Rice and Rosenblatt (1983)

or by comparing the optimal A's in Theorems 1 and 2 of Wahba (1977h)

Numerical evidence supporting this result may be found in Craven and

Wahba (1979), Wahba (1979b,1982b),



It is fairly straightforward to state and prove most of our
results comparing GML and GCV in the context of the generalized
smoothing spline model, which includes spline smoothing on the plane and in seyeral
dimensions, and on the sphere (Cox (1982), Utreras (1979), Wahba (1979a,1981a,1982a),
Wahba and Wendelberger (1980)), as well as the integral equation case
discussed above. We will do that here.

The generalized smoothing spline model (of which the special spline

smoothing model is the most widely known special case) is

Y.

=befk e . T8 Talusival (1.9)
i i i

where € is as before, f is assumed to be in some reproducing kernel
Hilbert space HQ of real valued functions on some index set T, and the
Li are bounded Tinear functionals on #,. The (generalized) smoothing

Q

spline estimate fn of f is the minimizer in H_ of

2 A Q

(1.10)

51—

N1
22y

2 172
(Lif_yi) s Al|Pfi|Q=

1

where ||-HQ is the norm in HQ’ and P is the orthogonal projection

operator 1in HQ onto ‘the orthcomplement of the span of m given linearly independent
basis functions'{¢v}vf1. See Kimeldorf and Wahba (1971), Wahba (1983&)

and references cited there. The reader only interested in the special

spline smoothing model may make the associations: T = [0,1], ¢v(t) = tv_]/(v—l)!,

W= R en s il B % wzm[0,1], L

i

Q

When solving (first kind) intefiral equations, we have

1
), and | [Pf]]2 - é(f(m)(u))zdu.

where K(-,*) is known.



In the general case V(A) and M(A) are still defined by (1.2)

and (1.5) respectively, where now A()) satisfies

Ly f

n,A
: = A(A)y,
\Lnfn,l
and R(A) becomes
R(A)=JE(L Fale o Ve (1:21)
Bl g 902 S i

The truth of (1.6) and (1.8) will actually be argued in this more general
setting, with the extra smoothness condition facp appropriately generalized.
In Section 2 we derive the GML estimate of A for the model of
(1.9) and discuss the related maximum 1ikelihood estimates of Barry (1983)
and of Wecker and Ansley (1982). In Section 3 we obtain the asymptotic
behavior of AGML under conditions (1)-(4). 1In Section 4 we cgmp@re.kgmﬁlscvs and

kOPT' Section 5 presents the Monte Carlo results and Section 6 discusses

the extension to the model of (1.9).

For the results under (2) (1.6) we have given very general hypothesis under
which the conclusions hold. A limitation of this general approach js that
verification of the hypotheses in many interesting cases requires further work.

We briefly indicate both the generality and the limitations of the
analytical results of (2). First we note (see details in Section 3) that in
both the special and generalized smoothing spline model I-A(X) has a

representation

I-A(A) = nH(D+nAl) 1W'



where wnxn—m satisfies W'W = In—m and D = d1ag(A1n,...,An_m’n) with Avn > 0.

Here both W and D depend on (tl,...,t ) or (Ll,...,Ln). Writing (t1n""’tnn)

n
or (Lln,...,Lnn) instead of (tl,...,tn) or (Ll,...,Ln) to denote the emphasis on
n, define

i gl,n fy 'F(tln) ! Llnf
= Wil . or w'{

Our hypothesis for (2) are stated in terms of the conditions (as n+=, and A+0)

2
e g /n

) J_independent of n, for some pe(0,1] (1.12)
v=] Avn ek s
1 i e o 3 constly)
=TrAl = = 7| ¥ = (1+0(1)) for j = 1,2 and some r > 1
n n -1 nA+Avn n}\;/r

(1.13)

The expressions on the left depend on (tln""’tnn) or (Lln""’Lnn) as well as

f and a certain reproducing kernel. In certain very special cases, for example,

the special spline smoothing model with t. = {i/n) these conditions can be

rigorously related to readily understandable smoothness conditions on f and the
(known) eigenvalues of Ql’ the repeoducing kernel for Hd\{span ¢1,...,¢m}. See
Rice and Rosenblatt (1983), Utreras (1983). Conjectures relating to the general
spline smoothing model may be found in Wahba (1973,1977b,1977c) and in Sections
4 and 6 below. Since this paper was written, Cox and Nychka (1984) have

provided further information on convergence properties of the solution to the

generalized spline smoothing problem.



Throughout the paper we assume "some regularity conditions" on the

{ti} = {tin}' We believe that in the case te[0,1] sufficient regqularity
conditions for the results in (2) and (3) of (1.6) are: the (tin} satisfy

for some strictly positive bounded density w; and that the arguments don't

| accumulate to a fixed finite number (independent of n)

always hold if the {tin’

of accumulation points.
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2. The GML estimate of %.

The Bayesian model behind the estimate f goes as follows:

n,a

¥5 ¥ Lif + €;r 1= 152 wagh

where the e; are as before but f(t), teT is supposed to be a certain
zero mean Gaussian stochastic process with a partially improper prigr,
The meaning of Li will be given shortly. Let Q(s,t) be the reproducing
kernel for HQ and let 01(s,t) be the reproducing kernel for the

orthocomplement of span {¢v} i He. that ds,

Q
m _j
Qylsst) = Qlsst) -~ F ¢ (s)e (L)
S Vv
U:\)“]
where kMY is the uvth entry of the inverse of the Gram matrix {<¢u’¢v>Q
the {¢v}°
Let
Xg(t) = z 8. ¢ (t) + bl/zz(t)
where 8 = (el, .,em) NN(O,gImxm), b is some constant, and Z(t), teT ig

Zero mean Gaussian stochastic process independent of 6 with
E2(s)Z(t) = g, (s.t)

In the polynomial spline case, Q] is the covariance of the m-fold
integrated Weiner process. We let f have the prior distribution of Xg’
as g»e. It is shown in Wahba (1978h), in the case Lif = f(ti)’ that

a8 = 1im £ (D) ey,

with A = o2/nb.

(2.1)

(2.2)

} of

(2.3)

el

(2.4)



&Vl

Now, the sample functions Xg are not in HQ (see below), so that the
exact meaning of Li must be clarified. According to Parzen (1962)
(for further details, see Wahba {1982a)LL1 is a bounded Tlinear functional
on H, if and only if Lix is a zero mean Gaussian random variable well

Q g

defined in quadratic mean. Then the covariances will be

E(Lixg)(ij ) = Li(s)Lj(t){Exg{s)xg(t)}’ (2.5}

£

where Li(s) means Li is applied to the operand (in brackets) considered
as a function of s.
Letting T be the nxm matrix with ivth entry L1¢v and I the nxn

matrix with ijth entry Li(s)Lj(t)Q1(s’t)’ we have, using (2.3) and (2.5),

'{E(Lix EaEe

3 g)}= ETT' + bE. (2.6)

£

Using this fact, straight forward substitution in Wahba (1978b) (see also

Wahba (1983b)) can be used to show that (2.4) holds for the {L,} any

set of bounded Tinear functionals on HQ such that rank-T ts m, If Lif = f(tila
etc., then Li(s)Lj(t)Q}LS’t) = Q](ti,t.),

J
Using (2.1) and (2.6), it follows that

Y ~ N(O,ETT'+bZ+021).
Setting X = o®/nb and n = £/b, we have
¥ ~ N(O, b(nTT'+Z+nAl)). (2.7}

We find the GML estimate of X by letting ms= in (2.7) in an appropriate

manner. We do this by letting Rn— be any n-mxn matrix satisfying

m=n



-]2-

RR' = 1 and RT =0 . Let
n-m

Then
Exx' = b(RIR'+nAI) (2.8)
m Exti' = 0
e
Tim Euy® = BIT'TIT'T)
T'I-+00

Since in the 1imit the distribution of u does not depend on X, we claim

it is appropriate to define the GML estimate of ) as the (usual) ML

estimate based on the distribution of x, Peter Green has kindly peinted out to
us that this argument has previously been used by Patterson and Thompson (1971)
in a different context. A straightforward calculation

gives, that the ML estimate of X based on x.N(0,b(RZR'+n)I)) is the

minimizer of M(A) defined by

x‘(RER'+nAI)_]x

[det{RZR'+nAI)_1]]/n_m

M(A) = (2.9)

Substituting in x = Ry and det(RZR'+nhI)'] = det+R‘(RZR'+nAI)"1R gives

y'RYRZR@nAI)h1Ry

M(X) = .
[det R(RZR4nAT) " TR]'/N-M

(2. T0]

To put M(A) in final form for further study, we observe that



ST

1 1

R'(RZR'+nA1) "R = (z+naD)™) - (zenal) " T(T(znAD) T T (D). (2.11)

To see this note that both sides of (2.17) have the same action on the
m columns of T and the n-m columns of (Z+nAI)R'. It can be shown from
e.g. Kimeldorf and Wahba (1971) that I-A(A) is equal to ni times the

right hand side of (2.11). Thus for A > 0, M()) can be rewritten

y'(I-A(}))
[Det™(1-A(2))]

%i’(n_m) : (2, 18]

M(A) =
Anderssen and Bloomfield (1974) were the first to suggest the use of
a maximum likelihood estimate for A in a smoothing context, and (2.12)
will reduce essentially to their estimate in the case of a proper

prior, that is,when the set of {¢v} is empty, equivalently f]Pf||2Q.= J’f[]zq.

Barry (1983), in a forthcoming thesis, has recently obtained the equivalent of (2.12)
in two cases where the dimension of the null space of P is one, In the two
cases he studied, the joint distributions for the n-1 variables
(yz-y],...,yn-yn_]) or (y1—§,...,yn_]-}) are proper, and he exploited
this fact to obtain his estimate. Thus the GML estimata generalizes
the estimate obtained by Barry.
We compare this result with a maximum likelihood estimate for A given
by Wecker and Ansley (1983), egn. (4.5). By making the associations,
their A is our 1/nXx and their A is our (nk)_}(2+nAI), ang using (2.11) 4t
can be shown that their maximum likelihood estimate is the minimizer of

MNA(A) given by



BT

(x) = L'R(RZRMP\I)_]Ry

M :
[det(z+na1)]/"

WA (2.13)

which is to be compared with (2.10) and (2.11). The difference results

from the fact that they include the estimation of (61""’8m) of {2:3)

as part of the Tikelihood equatigns while we do not, Séé O'Hagan (1975)
for more on the role of nuisance parameters in ML estimation, We remark that
Wecker and Ansley are in error in their claim that GCV cannot be done

with repeated observations. Neither the GCV nor the maximum 1ikelihood

estimates require I to be of full rank. The only condition on the

observations is that the matrix T be of rank m.
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3. Asymptotic behavior of AGML

Let Rn—mxn be defined as in the previous section and let the eigenvalue

eigenvector decomposition of RZR' be

RZR' = UDU' fa. 1)
where UU' = In—m and Dn-m is diagonal with diagonal entries Kvn' Let
M £ B
(W1n""’wn-m,n) = W - WY
Then
I-A(A) = naR' (UDU'+nauU") " 'R
= nR'U (D+nAI)” LR
= naH(D+nal) " T
and
ngm 5 = )
o] o nk+Avn
MOy = n-m O 1/n-m (3.2)
(7 (1- =2
v=l A
Letting
h] qu g}’n
e = ; H = W'h (3.3)
hn L f 9n-m,n
X b

we have



.

ZWy % * O L
EM(A) = - L (3.4)
n-m A 1/(n-m)
m (1 nA+Xn )
v=1 ~n
Letting
2
L 5 Wy )
1 n-m Avn
U]()\) S T [TrA(2)-m] (3.6)
=1 vn
n-m Avn 1/(n-m)
D(A) = w (1- e (3.7)
=1 wn
gives
: AGON+E2(1- (1))
~EM(2) = 573 (3.8)
where g2 = Dﬁﬂ s
We first assume szQ. We must consider the cases |]Pf||Q 0 and
I]Pfl]Q > 0 separately. Now [IPf[]Q =0 if and only if f = Z 6,9, for
w21
some § = (61,...,em), then h = 76, g = W'h = 0 and G(x) =0, all A.
Then -
1 e e
EM(}) = = : (3.9)
2 lnom) (n-m o ; 1/(n-m)
o nA+i

and the right hand side, being the ratio of an arithmetic to a geometric
mean, is bounded below by 1. Assuming that the Avn are not all equal,

then this expression achieves its 1ower bound for A = =,



w1

We now return to the case J[Pfl]é > 0. Differentiating the right hand

side of (3.8) with respect to A, and using the fact that

DI{a) = 2%51u1(x), (3.10)

and setting the result equal to 0 gives
[26(0)+02 (11 (VISR (07 = D00 D6 (460052, (1)1,
0Ly (A)+h " (1) 2(0)] = A6(A1A26" (1)-26(\) sy (). (3.1)

Now

uy(2) + Ayt (A) =

1
=
] —_
=
{ g
< =
Il ~1
—_1
<
=
<
]
—

= uz(k), say, (8.12)

and

¢ 2 2.9
n-m Agvn ni g\m”2
(AeEx )
1 n (nA+Avn)

AG(A) + A%G'())

\):

n-m X g2
un=un
e e

v=1 (nA+Avn)

]

AG1(A), say. _ {3.13)

Thus, (3.11) can be written

a?1y(2) - A6;(2) =y (3) Loty (A)-AG(A)]. (3.14)
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It is well known that if 0 < ]IPfIIQ < = it is necessary that A » 0 and

uz(h) + 0 in order that R(A) » 0. Since UZ(A) > ulz(k), we will only consider

roots of this equation for which A + 0, uz(k) > 0 and ul(A) > 0.

We now want to impose a further "smoothness" condition. Further discussion

of this condition will appear in Section 4. Define

n-m g 2/n

] vn
J = )p

P ogEl (A
wn

and suppose that Jpn < Jp for some p > 1 independent of n. Then

2
2.4g n-m
G(0) - G(A) = Z, nlii 1 Xn + ¥ ‘“‘EEQL_Q'Qan
_ vq} vn  v=l (nA+AUn)
= g.....n
< agP4 Ty oz ) < TP
v=l (A )
vn
n-m g g 2/n
Gl(o) = Gl(x) = 7 (nkﬁi - Avn 2 Ap_1Y vn - 5 Ap"ld
V= vn vn (Avn/ﬂ) P

and so, as x + 0,G(A) = G(0) + o(1), Gl(l) = GI(O) + 0o(1), independent of n.
n-m g
Now Gl(O) = G(0) = ) Xn
v=1 vn

It can be shown that

n-m g
Vo= Heb oS < TRetl? (3.15)

v=] wn

where f 1is that element 1n}{0 which minimizes ||Pf|]Q subject to

n
Lifn = hi’ i=12,...,n. The demonstration proceeds by showing that

IIanIIQ2 = b (VT Ty ket R (RERY) TR, (3.16)
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Thus, as n=«<, G(0) and GI(O) increase monotonically but are bounded above by

||Pf||02. (Assuming, of course, that the set {Ll""’Ln+1} contains the set

{Ll,...,Ln}). We have the following
Theorem:
Suppose
2
1% /n
) ———— < J_for some p > 1, independent of n
(» /n)P P
vn
and
u () = —f(1+0(1)) (3.17)
ni
= 2
UZU\) = n_)\WF(:H-O(l)) (3.18)
and n»« for some r > 1. Then,
;2; r/(r+l) :
e ( 7) =t Lro(l)) (3.19)
IlenHQ n

is a zero of (3.14).

Proof: Substituting (3.17) and (3.18) into (3.14) gives

~ ~

(o° —f - 26,(0)) (1+0(1)) = nkf/r [nzlfr - A6(0)1(1+0(1)),  (3.20)

ni

which is satisfied by (3.19).

In the case Lif = f(tin)’ with tin = i/n, it is generally believed that
the asymptotic behavior of ul(k) and uz(k) can be related to the asymptotic
behavior of the eigenvalues of the reproducing kernel Ql. (See the heuristic
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argument in Wahba (1977b). 1In the special spline smoothing case with HQ = wzm,
it is known that (3.17) and (3.18) are satisfied with r = 2m. See Craven and
Wahba (1979), Utreras (1980,1981,1983). Roughly, the Avn behave 1ike n times
the eigenvalues of the reproducing kernel.

Let w(s) be a strictly positive smooth density on [0,1], let

t '1 1 tin
BlE) = éw(s)ds, Kl(S,t) = QI(F (s), F “tt)) and let to satisfy i/n = [ w(s)ds.
0

then by the same reasoning as in Wahba (1977b) one could argue that the behavior

of ul(k) and uz(A) can be related to the behavior of the eigenvalues of Kl.

Letting {gv} and {mv} be the eigenvalues and eigenfunctions of-K,]:s we have

E i (e] = lfo (F ey, F L s))w (s)d
e 6 1 £k S ¢v S)dsi,

and making the change of variables y = F "(t), x = F “(s) gives

w1/2 1/2 w1/2

e b FOWH 20yy = iy, w2y (Fx0 Wt 2 (x)ax

which shows that the eigenvalues of Kl are the same as the eigenvalues of

ik 172

El(y,x) =W (y)Ql(y,x)w (x). Now if Q is the Greens function for a 2mth

order self-adjoint differential operator K, is also the Green's function for a

z

2mth order self adjoint differential operator, its eigenvalues are Ev = O(v—zm)

and the same heuristic argument gives (3.17) and (3.18) satisfied with r = 2m.

In the case of thin plate splines in d dimensions with

2
[T [y = \ Y+ Rl
(xl... ad-m 011 Old
partial results are available to the effect that (3.17) and (3.18) are satisfied

with r = 2m/d. See Cox (1982), Wahba (1979c). For information concerning
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tensor product splines on the plane, see Barry (1983), Micchelli and Wahba
(1981) Wahba (1978a), for splines on the sphere, see Wahba (1981a). Behavior of
ul(x) for other Li is discussed in Section 6, and very recent results of Nychka
and Cox (1984) shed 1ight on this question.

Inspection of the proof of the Theorem reveals that if 0 < ||Pf|]| < =, and
the L, are such that ||an|]2 4 ||Pf||02, further smoothness assumptions of f
cannot change the asymptotic behavior of AGML' A simple example will be given
in the next section.

To complete our study of the behavior of X we now cosider the case f

GML”’
"behaves 1ike" a sample function from the original prior. If f is a random

function from the original prior, it can be shbwn that



WA

2 —
Efgvn bkvn’

where Ef is expectation with respect to this prior. Then
n-m Kun
EfG(O) = b g' e b(n-m)
v=1
and
Ecl[PFI[E = .

0f course ‘[Pfllé = « entails f¢HQ. To see quickly what will happen, set

2= b in (3.8} giving

gN)l"l vn

n-m

)\ 2
: L (Wix:;)“\)ﬁ ]
BE_FEM(;\) = n-m X -I/(n__m) . (32])
[f 0= ﬁk+—;\m_)J
v=1 un

Differentiation of the right hand side of (3.21) or substitution

into (3.14) gives that (3.21) is minimized by

2
gk
MeNl. T E

It appears that Wecker and Ansley's ML estimate; call it AWA would be only

approximately equal to o®/nb in this case as n>e, and slightly subopti-

-1
i

fal % the Gase Fer It appears that we will have Ay, = 0(1),

if f is a fixed function (not in HQ 1) and the Li are such that
1
n-m g
Tim ﬁl_' 7 =N = constant .

-m A
n--co v=1 "yn

Conditions under which this will occur are suggested in the next section.
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4. Comparison of AGML’ AOPT’ and AGCV

We first consider the case feH.. The predictive mean square error

Q
R(%) is defined by

1.2 )
R(A) = 5151(L1fA—Lif) A

and
1 o

ER(A) = ﬁ||{I-A(k})hf[2 + =— TrA2()})
or

which is minimized for A = )

GML A

in span {¢v} best fitting the data in the least squares sense and

&) = il
ER(«) = o :

Thus, from (3.9)
(1) fespan{o J=>1gy /opp =
Returning to the general case we have

ER(A) - &2

I

m
n

A

; 2 o
A]leH0 + 0 HZ(A)E

= o, in which case fn is that element

(4.

(4.

.5)

:8)



Pl

If uz(k) = —ﬁ%%F (T+0(1)) for some r, the right hand side of (4.8) is
n

minimized by setting

%, r/(ra1)

A= (——) (14801 )) (4.9)
el[P] |2 ik
and ER(ADPT)< ER(A*) =‘0(n1r/(r+1)) (=0(n'2m/(2m+])) in the special spline

case). If no further assumptions are made on f it appears that this

rate cannot be improved upon.

However, it is well known that if f satisfies certain additional
smoothness conditions then higher rates of convergence can be obtained

by choosing X to go to O more slowly. We always have, fop any pel1,2],

e s -m (g2 /n)
Al g = 2P Z (4.10)
= nA+Avn wn wa (A /n)
S e
= J
: p
If 3" is uniformly bounded by J_ independent of n, and by = —ngL—{1+@(])),
p p 2 np\1/r
then
Al By o
ER(A) - o L Jp + nxl/r @7 T (4.11)

The right hand side of (4.11) s minimized by

e RAL e ¢ FIYSEY

and

Thus
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. e/ (rp#l Jorf(r+l) |
IGML/OPT = const n : (4.13)

The condition Jpn < Jp is satisfied in some interesting cases. For
example, suppose HQ = wzm(per), the space of periodic functions in

wzm[o,T] satisfying the periodic boundary conditions f(v)(O) = f(v)(])

). Then, very roughly, (for

v=20,1,...,m-1, and suppose Lif = f(%

details, see Craven and Wahba (1979), Utreras (1980))
1 1
g nf@, F, = [f(s)cos(2musMs or Jf(s)sin(2mvs)ds
0 o)

(2WV)_2m .

A =nia ., A
DL

Then if fewzmp(per) for some 1 < p < 2, we have

.

(£(MP) (5))2gs - z(zm)zmpfvf2 zf—-—g"”m (1+0(1)).
(A,y/mP

This example, with f(t) = f0c052ﬂv0t, say, can be used to show directly

-4m/(4m+?))

Oo—, —

that ER( Ay ) is still 0(n~2™2WI) ite ER(A ) = Ofn

GML)
by observing that in this example

OPT

)Zm

2
(Zwvo fo

M) 2

(]+A(2'rmO

and

L amz -
nf& LS R i ﬁ%
=i nk+kvn 2] (1+A(2ﬂv0)2m)

L
n
V

and carrying through the minimizations directly.
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For the case Lif = f(ti)’ we state as a conjecture a general

n-m gin/n

condition for J " = to be uniformly bounded. Suppose Q](s,t)

= p
v=1 (Avn/n)

possess the Mercer-Hilbert-Schmidt expansion

4ls,8) = T Ao (o),

where the {Av,uv} are the eigenvalues and eigenfunctions of Q- (For

this it is sufficient that ffQ,%(s,t)dsdt = 7 A, < @ see Riesz and Sz-Nagy
=T v=1
(1955), this condition is being implicitly assumed throughout this paper).

Let J*p(f) be defined by

(Pf,u\))2
g% (F) - i

I~1 8

i : (f,uv) = ff(t)uv(t)dt. (4.14)
v

We say that feC*p ol J*p(f) <o . It is conjectured that fst*

and some regularity conditions on the {ti} = {tin}iil’ o= B D LY

that there is some constant cp such that

n
R E T L
p()_cpp()

To see the behavior of R(A) when f behaves like a sample function,

we only consider the case i ibkvn, we suggest that the results can
n-m g2

be extended to functions f for which Tim ﬁ%ﬁ } ixﬂ =+ constant, and we
N-rco v=1 “un

conjecture that it is sufficient for this that some reqularity conditions

hold in the Li and

o
PE = v£1fvuv e
f 2
75—-+ b for some 0 < b < = Letting g
Sl

N~ 3>

with Tim %
n->o "y

ey .
s bhvn in (4.2)

gives
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2
n-m (nA)2+5%~x
nb[ER(A)-mo?] = § A { >
v=l v (nl+lvn)2

Ly

Differentiating the expression in brackets on the right with respect to

A and setting the result equal to O gives
2
: 2, O e 2
L(nA)2+ bkvn]n (na+a ) (na+a )20n (nA)]
which is satisfied for

2o
AobT = B

for every kvn' Thus, in this example (assuming AOPT and AGML are global
A - _
minimizers!), IGML/OPT 15

We can summarize the result of the last two sections as follows:

Let H. and Lsi.:.5Lb . be such that
Q 1 n

2

U fA) =

1 nk?/r
E

gAY et

2 nAT/r

for some r » 1, as n + o, X » 0, and let Cp be defined by

n-m g
C o= [ralipe] 50 and § —22 & J (fi{T40(1))
A q EL G Rl

for some constant Jp independent of n. We have:



=0

Table 1

(1) fespan{¢ }=>1 1

GML/OPT =

(2) feC for some p > 1=>

D LamL/opT™

(3) f "behaves like" a sample functiont:>IGML/OPT =T g l1):

We remark that we do not prove, but merely state as a conjecture
that in the special spline case with ti = i/n, and mp an integer,that
the definitions of Cp here and in the introduction are equivalent,
and that the methods in, e.g. Cox (1981), Rice and Rosenblatt (1983)

can be used to show it.

To compare AGML and kGCV’ we have, from Craven and Wahba, that

(1) fE&pan{¢v}=s>I 1

GEV/0PT ~

2 3 =
(2) fEHQ, u](AOPT) -+ 0 and My (AOPT)/MZ(AOPT) - 0 imply IGCV/OPT =1 +0(1).

Although the arguments are carried out for a special case, it is seen
by following them that the results hold in the generality of this paper.

Now, suppose f behaves 1ike a sample function from the st@chasfié

process.
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V(A) is given by

A
T ow? ()
RIEY _ vl vnnA+&m
L et
v=1 wn
and
n-gm( nai )2 2 gn_m( ni )
= nk+Avn gvn t i nitx f
REV( ) = ¥ & . (4.15)
Mmook 2
(] (- =2
v=1 n%+Avn

Replacing gén by its expected value bkvn under the prior in (4.5) gives

n-m 2 2
na o
1 S
EEanV(A) = (4.16)
n-m »
(L
v=1 vn
and a straightforward calculation (which appears in Wahba (1977a)) shows
that the right hand side of this expression is minimzed for ) = o?/nb.
1
2 = -
It appears that, for gvn’lkvn ~ constant, we have Aecy O(n). The proof
! . 1 o 1
of Theorem 4.2 in Craven and Wahba shows that AOPT = O(ﬁ), Agey = (O{ﬁ) and
s 1/r = B e LI P . i
u1(k} 0T uz(k) = %/n) for some r > 1 entails that IGCV/OPT = T+0(1).
We conclude that
(4) f "behaves 1ike" a sample function T=>IGCV/OPT =1+ o(1).

Thus, in each of the three entries in Table (1), we may replace

TameopT BY Tgmy/gey
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5. Monte Carlo results

A Monte Carlo study was carried out to see whether some of the‘preceding
asymptotic results would be manifest in small to medium sized samples. Three

experimental test functions were used, given in Cases 1, 2 and 3 below.

Case 1 f(t) = %810’5(1',) + ;[§E>7’7(t) + ]3'85,10(t)

B

Case 2 f(t) = 10 830:'[7(1:) - %83,]](t)

1

_ 1 1
Case 3 f(t) 3820,5(t) & 3512’12(t) i §B7,30(t)

n

where

- _Ilptg) .p-1,. . .g=1
Bp,q(t) TTB??%ET £ Tk g dhep.a ]

We considered only m = 2, all of these functions are in wz“(per), and

the periodic smoothing spline in w22 was implemented. The study reported
on here was done simultaneously with the Monte Carlo study in Wahba (1983h)
but not published at that time. Plots of f of cases 1-3 above and

sample Monte Carlo data appear there, and §ome of the values of EGCV/OPT
appearing here for comparison purposes are also reported there. We
considered only Lif = f(é), 1= 1380 and n=-32.84,128.  (Sofe
examples with n = 16 were also tried but the resuylts were erratic.)

Five values of g, ¢ = .0125, .0250, .05, .1 and .2 were tried. Since

} |f(t)|dt = 1, the smallest two values of o represent "engineering
gccuracy“, or two-figure data, while a ¢ of .2 is one-figure data.

For each of the 3 cases x 3 n's x 5 o's, 10 replicates were generated

from the model
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_ gl fo s
¥y = el s By Wl 1 =020 B

For each replicate the GML and GCV estimates AGML and AGCV’ the minimizers

of V(A) and M(}), were computed, along with KOPT’ the minimizer of R()).

Then the inefficiencies IGML/OPT and IGCV/OPT defined by
6o WG .0 Ry
GML . REREN S
Rpr) Rgpr)
were computed. In the Appéndix is given a complete table of fGML and fGCV

for each of the 3 x 3 x5 sets of 10 replicates. A summary of this data
appears in Table 2. For each n,0 and case, Table 2 gives IGML and IGCV’
where IGML is the average of the 10 replicated values of IGML’ and similarly
for TGCV' Table 2 also gives the GML score, defined as the number of times

out of 10 replicates, that I A tie is counted as 1/2. It can be seen that ir

am. < Tacy:
the extreme NE corner of the table, n = 32, ¢ = .2, GML appears to have a
modest edge over GCV (perhaps not "significant"!), and mixed results obtain

in other entries towards the NE. For smaller o and all of the n = 128 entries
except the o = .20 case, the GCV edge is fairly striking. The results of

this experiment, with n = 32 and 64, are in rough agreement with the Monte
Carlo results of Barry (1983) and Davies et.al. (1983). Barry considered

n = 20 and 40, and Davies et.al, considered n = 50.



55

94035 W9 ayy pue NIy < TI,
z alqel

SR B e o T ST B R e
USRS R O e e e,
G L s e R e e e - R
AR AT R e e e T R S e
AR PR R RO e e T e e e e
8 etk eml R SRR e Tl el e I R gl o e R
IRl e e e e e T S e
9 |ETL SO B CRGIGEL At | B Rl i L T e e ey
Gl 2 e L s e e e e e A L

oL

24005 | AD9; TWDp | P4005 | AJD. WD, | sdods| A9 WD, | @dods | a2m. o, | 20 | aos. o

THY Sl e e e B st Serl
g X # g & 8 13 3 T | adooag i 3

o

02°0 0L=0 50" =0 0520 =0 5210" =0

— O

a25ed

gclL

¥9

¢t

u



-33-

6. The case of general Li

gML> *goy @Md Agpr with

general Li if the {Li} can be imbedded in a nice family LS, seS, of bounded

We may study the asymptotic behavior of A

linear functionals on HQ. This generally can be done if one is trying
to solve a so called Fredholm integral equation of the first kind.
To show how this study proceeds, we first review some relevant facts
from Nashed and Wahba (1974).

Let S be an index set and, for each scS, let LS be a bounded
Tinear functional on HQ. Later we shall let Li = Ls.' We can define a
linear operator K with domain HQ and range contained]in the real valued

functions on § by
M= gk tRsle LE, feHgs ses.
The most interesting case concerns K an integral operator,

(Kf)(s) = JKls.t)rle)ldt, se8,

for some known K. It was shown by Nashed and Wahba (1974), that

where HR is the reproducing kernel space with reproducing kernel R({u,v)

with
R(U V) = LU(S}LV(t)Q(S ,t):
which, if K is an integral operator, becomes

R(u,v) = f[K(u,s)Q(s,t)K(v,t)dsdt.



) = H, where

We also have K(H R
1

O
Ry (U,v) = LyegyLy gy O (5580

The null space of K in HQ consists of all szQ with Lsf = 0, seS. Llet ¥ be
the null space perpendicular of K in HQ. If we endow HR with its

reproducing kernel space topology, then there is a 1:1 inner product

preserving map between U and HR = K(V) under which
feVl ~ g = KfEHR B

and
<f1,f2>Q = <91,9,>p (6.2)

whenever f],fzeU, Kf] = 995 hfz = 9g5- Thus the geometry of V and HR are
the same under the 1:1 correspondence tah-gitven In (6,10,

We assume that the dimension of the span of {K¢v} is ms (If it
is not, T cannot be of rank m) Let P be the orthogonal projection in

HR onto HRE’ (

defined, for g in HR, as that element in HR of minimal norm which satisfies

which is the orthocomplement of span {K¢v})' Letting K" be

Kf = g, we have K+(HR) =ilis K+(HR1EEI¢v}; PK+g ~ Pg and so fIPK+g!|5 = ]|5g[f§.

Let 90 be that element in HR which minimizes

(9(s;)-y;) + A| [Pg]]2.

S—
I~ S

i=]

: it + .
Using g(s;) = L.f, |[P gl]s = }]pK g!|5 and the fact that fy,; Must be in

V, it can be shown that Kfn = g ) and K+gn e f Furthermore,

SN n, e
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+, +
£ - = IR'Ke - 5, 112+ 115 - Kxe] 2

2 -
fn,al g

and

+
|1K°Ks = £, 3112 = [lg - g, 5112

by (6.2). Further details may be found in Nashed and Wahba (1974).

Now consider the problem of studying the behavior of A and A

GML* “GCv
for the case of general Li’ and suppose the Li can be embedded in a family

OPT

LS, seS, by Li = LS . The problem then reduces to examining the
.i
properties of g and G in HR, with the loss function of (1.11)
. b ey ; :
becoming R(}) = 5121(g(51)"gn,k(5i)) . The entries of ¢ are R1(ST’Sj)'

Thus if the s; are regularly distributed, the behavior of the‘{kvn} will
be related to the eigenvalues of R1 (instead of Q]). This can be used
in some cases to establish the asymptotic behavior of p](k) and uz(k),
see e.g. Lukas (1981), Rice and Rosenblatt (1983), Wahba (1977h),

Conditions (1) - (3) on f can now be transported to conditions on
g = Kf and we have

(1) gespan K{¢v}=$ 1 1

GML/OPT ~

(2) gec, for some p > 1f>IgML/0P_T i

(3) g "behaves 1ike" a sample function => Todog (T s

LemLsopT ~

With some abuse of notatioh, we are letting Cp be defined by

y n-m gin/n
C, = {g:[[Pg||5 >0 and ] st

< J_(g)(1+0(1)),
P V=] (Avn/n) Tl

for some constant Jp independent of n.
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Let 5p*(g) be defined by

i (Pg,u,)
gl = o
P v=1 Avp

where {iv and Gv} are the eigenvalues and eigenvectors of R1, and say that
gel * if 0 2 Jp*(g)<w . It is now conjectured that gecp* and some
regularity conditions on the {Si}’ T 20 ceaun Amply that geCp.

Since
+
=g, Al12 = 11Kke=5, 112,

the study of the optimal A with certain other loss functions referenced

to f can be studied by examining the problem in HR' For example,

compare the methods and conclusions of Theorems 1 and 2 of Wahba (1977).

There is some continuing research in this area, see Cox (1983), Nychka (1983).
We remark that the generalized spline smoothing problem has recently been

extended to nonlinear functionals and non-Gaussian errors by 0'Sullivan (1983).
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Appendix

Values of IGML and IGCV for all replicates.

~

ISUBM IGML

ISuBv IGCV

REPL

replicate number
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