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Abstract

Generalized Cross-Validation (GCV) is an effective method of choosing the
smoothing or regularization parameter in data smoothing problemns. Unfor-
tunately, the computing cost for the method can be high - particularly with
large data sets. One of the most costly parts of this computation is taking the
Singular Value Decomposition of a large, generally ill-conditioned, matrix. Since
the smaller singular values are not important in further steps, we present a
method of determining the larger singular values by a Truncated Singular Value
Decomposition (TSVD). Other methods are also presented to use non-iterative
matrix decompositions whenever possible and to economize on storage. Applica-
tions to the solution of Fredholm integral equations of the first kind and to the

computation of thin plate smoothing splines are given.
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1. Intreduction

The method of generalized cross validation (GCV), described in Craven and
Wahba [3], Wahba [20], Golub, Heath, and Wahba [10], and other papers, has pro-
ven to beK an excellent method of choosing a smoothing parameter or regulariza-
tion parameter. It has been used in applications from meteorology (see Wahba
and Wendelberger [24], Wahba [23] ), medicine (see Wahba [23] ) and other con-
texts (see Merz [14], Crump and Seinfeld [4] ). However, the method has been
criticized recently (Utreras [19], Wecker and Ansley [5] ) for its high computa-
tional cost since a straightforward application of generalized cross validation to
data smoothing is an O(n®) computation where n is the number of data points.

Its use on very large data sets is thus impractical.

We give three methods here for reducing the cost of smoothing and other
applications using GCV so the method can be used with large data sets. First,
the use of basis functions is outlined in section 2 and the associated GCV calcula-
tions are described. The greatest part of the time spent in these calculations is
in the determination of the singular value decomposition (SVD) of a large, gen-
erally ill-conditioned matrix. We introduce a truncated singular value dec ompo-
sition (TSVD) in section 3 to provide the information needed in the GCV calcula-
tions but at a lower cost. In section 4, we give a means of performing the GCV
calculations with the smoothing or penalty component defined by a semi-norm.
The method avoids all eigenvalue-eigenvector calculations and uses instead a
pivoted Cholesky decomposition thereby lowering the computing burden. A few
remarks about generalizations are made in section 5. In section 6 we show how
the method can be used to compute cross-validated thin-plate smoothing splines

in two or more dimensions with large data sets.

The use of the TSVD is not restricted to GCV calculations. It can be applied

in any situation where the larger singular values and associated singular vectors
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- of an ill-cenditioned matrix are required. It complements other methods for
performing SVD calculations quickly such as those introduced by Golub, Luk,
and Overton [11], O'Leary and Simmons [17], Cullum, Willoughby, and Lake [5]
and Cuppen [8]. We provide a bound on the error of approximation of the singu-
lar values so the impact of the approximation can be assessed and, if necessary,

the calculation performed again with a closer approximation.

2. Generalized Cross Validation Calculations

An important setting for GCV involves a data vector (¥1.%2 -+ ,yn)T which

is assumed to be of the form

1
%= [K{t,s)f (s)ds + &, i=1,- - (2.1)
0
where K is known and the &; are zero mean errors with constant (but unknown)
variance. Aregularized estimate of the function f, for a given value of the regu-

larization parameter A, is the minimizer of

1
- BUENE)F + [ ™s)as (2.2)
This minimizer f) can be shown to exist and to be linear in the data vector Y
under suitable, rather general conditions. If A(\)is the n by n influence matrix
which satisfies

(A7) (KD = ANy (.3)

then the GCV estimate & of A is the minimizer of

= 2
V(A) = _I_i(l[ ANy | 5/ (2.4)
[ tr(-a00) P '
While there are specialized methods of determining A(\) and tr(I—-A(\)) for
certain problems, the determination of A(\) for a general function space and
the necessary optimization problems results in a calculation which is Q{n?).

When large data sets are being used, however, it was suggested in Wahba [20]

that the minimizer of (2.2) in the Sobolev space WI* can be approximated to a

2
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~suitable accuracy by an element in the span of a set of basis functions {5},
=l p where p=n . In the example of (2.2) a basis of B-splines of degree 2m —1
is a natural set (see deBoor [7], Nychka, Wahba, Goldfarb, and Pugh [16] ). With

basis functions, the regularized estimate Sfap is of the form

Fro =Y exsBi (2.5)
i=1
where cj=(caq, * * ,CMJ)T is the minimizer of
:}T' ly—Xe | |2+ TEc (2.6)

and the nXp matrix X has (7,7)'th entry

1
Ty = {K(ti,s)Bj (s)ds (2.7)

while the pxp matrix I has (i,7)'th entry

1
o1; = [ B (s)Bfm)(s)ds . (2.8)
4}
The minimizer could be expressed as

cy = (XTX+nAT) X Ty (R.9)
which gives a form like ridge regression calculations. In fact GCV is shown in

Golub et al. [10] to be an excellent method of choosing the ridge parameter in

ridge regression.

If we suppose that the symmetric matrix I is positive definite, a linear

transformation of parameters from c to

g = Fc (2.10)
with the corresponding transformation from X to

Z = XRr™! (2:11)
where K is the Cholesky factor of 2 so that

e RiR (2i1E)
changes (2.8) to
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i—lly-ZgH“"'kg""g (2.13)
Following Golub et al. [10] we can simplify V(X) by forming the singular

value decomposition of Z as

Z = UBVY (2.14)
where U is nxp with U7 U=/, B is pxp and diagonal with diagonal entries §&,],

i=1,...,p, and Vis pxp and orthogonal. Using the p dimensional vector

z = Uty (2.15)
the predicted y values (Kf ,(¢,), . .., (Kf ,(t,)) for a given A become
(REA(ED. - KT = wr = A = By 0 (2.16)
where u; is the j'th column of U. This corresponds to anA(?x) of
A(A) = UB*(B?+nAl)"1UT (2.17)
which, combined with (2.4), gives
A
liyllz 7 -—IIZHEJ
Y(A) = (2.18)

5 2
im Jil bA+mA g
It can be seen that the expression for V(A) in (2.18) is a relatively simple

rational functicn of A cnce the {b;] and the {z;] values have been determined.

The major part of the calculation for the method using basis functions is in
the singular value decomposition of Z. We discuss in the next section how this
can be streamlined. The GCV calculations outlined above apply only when the
matrix ¥ is positive definite so that the term ¢ 7Zc represents the square of a
norm. In many cases, £ as defined by (2.8) will only be positive semi-definite. In
section 4 we will give modifications to these calculations to deal with a positive

semi-definite .
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3. The Truncated Singular Value Decomposition

We begin by quoting the following theorem on a bound for the error in the

singular values when using an approximation to a matrix.

Theorem 1: Let X and ¥ be nxp (n=p) matrices with singular value decomposi-
tions UDVT and RSHT respectively. Denote the ordered singular values of
X as {di], i=1,....p withd,>d,> - - - =d, and the ordered singular values of ¥
as il i=1....p : Then

i‘(da"si)zs X = Y] =tr(X-1)T(X-Y)

i=1
This is quoted in Sun [18] and proven in Mirsky [15].

We will take advantage of this theorem to calculate the SVD of a matrix X
which is close to X in the sense that | |X—X; || is small but is better conditioned
th;m is X so the iterative portion of the SVD tends to converge faster and the
computational burden is reduced. First, we take a pivoted QR decomposition of
X using the pivoting scheme from Linpack [8]. That is, we determine @, nxn
orthogonal, £, nxp and zero below the main diagonal, and £, a pxp permuta-
tion matrix, such that

XE = QR (3.1)
and K has the property that

T g S]Ti?j (4 mdededd up) (3.2)
i=k
If we take the SVD of K, the triangular matrix composed of the first p rows of
2, as

Ry, = KDLT (3.3)
we can produce the SVD of X as

X = G KDLTET = ypvT (3.4)
where &, is the nXp matrix composed of the first p columns of @ and U = eh K

ismxp while V' = FL is pxp and orthogonal. This method would not, however,
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produce better conditioning for the SVD algorithm since the singular values of

F, are the same as the singular values of X.

To provide better conditioning, we truncate the matrix R, after the k'th
row and take the SVD of the resulting k xp matrix R, (k<p) as
Py = K D Ly - 18:5)
where K is kxk and /i is kxp. The diagonal elements of D, are no longer the
singular values of X but now represent the singular values of a matrix
Fi
0

Xe = Gl g BT (3.8)

which is different from X. However,

X=X ||r =

%
: i iTiz.J'] (3.7)

i=k+1j=1

so we can choose £ to be as small as possible subject to the constraint that

|| X=X | |lp/ {1 X |lFr=e (3.8)
where £ is a small number, say 1078, The double sum on the right of (3.7) is

easily evaluated a row at a time starting at the p 'th row until the constraint

(3.8) is violated and the smallest k is determined.

By theorem 1, if {d; §, i=1,...,p are the ordered singular values of X and
{d;x3, i=1,...,p are the ordered singular values of X, then
()P e1X]| = o ( at (3.9)
The d; , and the corresponding left singular vectors calculated from &y K, are
used to calculate V(A) and to determine an estimate X . The error bound,
|| X| | is then compared to nX . If it is much smaller, say by two or more ord-
ers of magnitude, the values are accepted. Otherwise, the value of ¢ is

decreased and k is increased to provide a lower error bound.

The end result is that singular values whose squares are comparable to nX

or greater are well determined. The effect of the other singular values and
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corresponding singular vectors in calculating V{\) by (2.16) and in calculating

1s negligible,

This method of calculating the SVD is similar to a method proposed by
Chan [2] which also starté with a QR decomposition. However we use a pivoted
QR decomposition rather than an unpivoted decomposition and we truncate the
resulting & matrix. It is possible to exploit the fact that R, and £, are upper
triangular when using orthogonal transformations to reduce them to bidiagonal
form but Chan [2] points out that this does not result in a substantial computa-
tional saving. In fact, we just use the SVD code from Linpack [8] based on the

algorithm from Golub and Reinsch [1R] for general matrices.

4. Calculations for a Semi-norm

In the case that the matrix Z is positive semi-definite rather than positive
definite, the Cholesky decomposition used in (2.10) cannot usually be computed.
We can, however, use a pivoted Cholesky decomposition to form

L= 508 (4.1)
where E is a pXp permutation matrix, S is (p—m)xp with zeroes below the
main diagonal, and m is the dimension of the null space of £. A QR decomposi-
tion of S7 gives

SL=gn (4.2)
with @ being pxp and orthogonal and R being p x(p —m.) and zero below the
main diagonal. If we let @, be the first p—m columns of § and @, be the last
m columns of &, then the columns of &, span the null space of £ and the
columns of &, span the orthogonal complement of the null space. Letting R, be
the first p —m rows of R, we can now transform to parameters ¥ and § where 6

lies in the null space of £ by

5= [ o)ersme (+9)
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- with the corresponding transformation of the X matrix to

I

The function of ¥ and ¢ which is to be optimized is now

Y= (YY) = XE‘Q[(Rg)_l D] (4.4)

ga(7.0) = Hy—Y{g]I [2+n 2y Ty (4.5)

and the second term on the right is in the désired form. However, the first term
involves ¢ as well as 7. We can isolate the dependence of the first term on 7 by .

taking a QR decomposition of ¥5 so

[
Y, = FG = [FI:FE][% (4.6)
and pre-multiplying everything in the left hand term by F7. This produces
IA7.0) = [wy=T1y=G:8 | [? + | |we=Tay| |2 + nhyTy (4.7)
where
w = ﬁj;] = Fly (4.8)
and

T FlY,
= [T;] - [ 7o (4.9)

Fiy,

The leading term on the right hand side of (4.7) can be made zero for any choice

of 7 by solving

G,6 = w,~Tyy (4.10)
so we can proceed as in the case of the positive definite ¥ as described in sec-
tion 2 with g replaced by . That is, we form

Tg = UBVT (4.11)
and set

z = UTaw, (4.12)
to get
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paml pa P
n[]|we| 4% | T2t o2 |2 )2
i=1 b_‘,‘ +'T'L)\
V(X)= e ! (4.13)
n 2
+ — —
[+ 3 o F @)
Once the optimal A is chosen, ¥ can be calculated as
Y = V(B® + n\) 1Bz (4.14)

then & from (4.10) and finally ¢ from solving (4.3).

5. Generalizations

The methods above are broadly applicable to smoothing problems and gen-
eral ill-posed linear operator equations involving functions defined on the plane,
the sphere, and in d dimensions. See, for example Wahba [21] and the refer-
ences cited there. Let H be a Hilbert space of real valued functions on some
compact index set 7, let J(.) be a seminorm on H with M dimensional null space,
and suppose the data are of the form

Yi = Lif +&;, i=1,...n
where the Ly, - - - ,L, are n bounded linear functionals on H. Let B,, - - - By be
P suitably chosen basis functions in &, then J » is obtained as the minimizer in

span{ B, -+ ,B,} of

1 n
23 (L )+ A (1),
i=1
The matrix Z of (2.8) has 4,7 'th entry <B;,B;> where <B;,B;> is the semi inner

product associated with J, and the matrix X of (R.7) has i j'th entry L B;.

6. Thin plate smoothing splines

With a trivial extension, the methods above can be used to obtain an
efficient approximation to a thin plate smoothing spline (TPSS) in two or more
dimensions, with a very large data set, by using the basis functions described in

Wahba [22].
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The model for the TPSS in two dimensions is

Vi = f(znzy)te, i=1,..n
and the TPSS estimate Jafor f is the minimizer, in an appropriate space H of

functions possessing square integrable derivatives of total order m, of

ey NUSCACHIEN) IS VAED " (8.1)
where :
e a :
Im (f) = i[ﬂy;c’[?}l'%—v%i??f (z1,22)| dz dz, . (6.2)
In particular, for m =2
Ter) = [ [ (8 40020 + 12, Yot (6.9)

—0 —oo

The minimizer f of (6.1) can be obtained from the work of Duchon [9] (where H

is also described), and has the representation:

INE) = Becknlt—t)+ Sdup), (6.4)

“where t=(xp,x) Ty ) = (22 a((n1)03217 | [ 12" 2n 12

qﬂl(t) """ @H(f) = 1,2:1,:52,2'12,2122,222, FLii 'Iéﬂ—l.
where M=[m2+ lJ is the number of polynomials of total degree <m —1, and the
veetors e =(oy, -+ i6,)" and d=(dy, - -+ )T are solutions to
(K+nX)e+7Td =y (6.5)
i oAl

Here K is the nxn matrix with (i,7)'th entry E, (t;—t;), and T is the nxM
matrix with 7,v entry ¢,(t;). The {g,} span the null space of J;;, and T of rank ¥
is sufficient for a unique minimizer. The use of GCV to choose A in this problem,
and a computational approach good for n up to several hundred is given in
Wahba and Wendelberger [24] see also Wendelberger [26], Wahba [21]. Generali-
zations to three and higher dimensions are discussed in Duchon [9] as well as

the above references and the results below also generalize in a straightforward

10
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manner, but we restrict the discussion to two dimensions to avoid excessive

notation.

There are several generalizations of B splines to more than one dimension.
The generalization suggested in Wahba [22] appears to be a natural one for use
with the penalty functional J,, of {(6.2) and goes as follows: Choose P "knots"
§1.52....5p in Buclidean 2 space, distributed throughout the same region as the
data points £),tg, . .., ,. Letting S be the pxM matrix with i,v'th entry ¢,(s;),

thesq .0 Sp must be chosen so that S is of rank M. Let By, be

where the uj:(ujl ..... ujp) . J=1,...,p—M are linearly independent and satisfy
STu;=0. B, is ap dimensional subspace of H. Then the minimizer f of (6.1)

in By has a representation

f)\(f)"—'igﬂiﬁ'm(f —si) +Viﬂu%(t)- (6.8)
where o=(ay, . . ., ap)7 satisfies
STa =, (8.7)
and it can be shown that a and 9=(3,, . . . ,9)7 are the minimizers of
+y=(Lat+TE)| [+ ra’Ja | (6.8)

subject to (8.7), where L is the nxp matrix with (i.7)'th entry B, (f;—s;) and J
Is the pxp matrix with (1,7 )'th entry £, (s; —s;). It is known that J is strictly
positive definite over the p —# dimensional subspace of Euclidean p space per-

pendicular to the # columns of S,

Let the QR decomposition of S be

[
R
S = [61:Q2] 01] (6.9)
where @) is pxM, @, is p@—M) and /2, is MxM. Then by (6.7), a has a

representation

11
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a= &y

for some ¥=(¥;,....%-x)” and (6.8) becomes
A Y —L@Y—T3| |2+ M7 QLT Qzy (6.10)
Now let #7 ¥ be the Cholesky decomposition of @/@; and let y=#%. Then (6.10)
becomes
& lu-lapl y-Tn | Feigly
which is of the form (4.5). Thus y and X may be found exactly as in Section 4,

and thence a and ¥ in the representation (6.8) .

The space B, contains the "bellshaped functions” of Dyn and Levin [1], and
a spanning set for B, has been successfully used as basis functions by Hutchin-
son et al. [13] in the context of thin plate smoothing splines to estimate Aus-
tralian solar radiation as a function of latitude and longitude. The procedure
here can also be extended to the solution of integral equations involving func-

tions of two or more variables.

" 7. Discussion

Three methods are proposed here for making the use of generalized cross-
validation on large data sets easie-r. The use of basis functions with either a
positive definite or positive semi-definite penalty functional can be simplified by
the methods of sections 2 and 3. The time-consuming step of calculating the
SVD can be speeded by using the TSVD of section 3 and the particular applica-

tions to TPSS are aided by the methods of section 6.
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can be high-particularly with large data sets.
of the most costly parts of this computation is taking the Singular Value
matrix.
we present a method of

determining the larger singular values by a Truncated Singular Value

Other methods are also presented to use non-

X ize or (
to the solution of Fredholm integral

)
method of choosing the smooth-
ing or regularization parameter in data smoothing problems.

Unfortunately, the
One

Since the smaller

iterative
Applicatiol
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equations of the first kind and to the computafion of thin plate smoothing

splines are given.



