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ABSTRACT

The relation between spline estimation, ridge regression, and Bayes
estimation is reviewed. Then a description of multivariate thin plate
(TP) smoothing splines in two and several dimensions is given. Several
generalizations and related methods are described, including spline
estimation where the data are noisy observations on nonlinear functions;
when families of linear inequalities, such as positivity, are known
a priori; and when measurement error is contaminated Gaussian. Penalized
log Tikelihood density estimation is seen to result in spline

-estimation. Some recent related work on penalized GLIM methods, which also
result in spline estimates, is mentioned. Some numerical results using
smoothing multivariate TP splines which are constrained to be
between 0 and 1 are given. Finally we describe multivariate partial TP
splines which are TP splines in some directions and lTow degree polynomials
in others and are suitable for semiparametric modelling in 4 or more
dimensions.

Key Words: cross validated splines, thin plate splines, inequality
constrained smoothing splines,



1. Introduction

Smoothing spline egtimates for the smooth nonparametric estimation
of functions of one or several variables are frequently thought of as a
useful descriptive tool. However, in addition to being esthetically
pleasing, they enjoy many nice theoretical properties, including best
Obtainable integrated mean square convergence properties. With the
advent of modern software such as EISPACK and LINPACK, recent developments
~in numerical analysis and computational statistics, and the availability
of fourth generatibn computing equipment, such previously intractable
problems as the computation of multidimensional smoothing splines
subject to linear inequality constraints becomes feasible,

In the remainder of this introduction we will briefly review the
major ideas behind cross validated smoothing spline estimates, for
functions of one variable, with Gaussian measurement errors. We
describe their relationship to ridge regression, Bayesian estimation
and roughness penalty methods. In Section 2 we describe the multivariate
thin plate smoothing splines (TPSS). 1In Section 3 we mention some
extensions of spline estimation to non-linear nonparametric regression,
to problems where side information such as nonnegativity is available,
and to robust smoothing. We note that penalized maximum Tikelihood
density estimation leads to splines. Then we describe seme recent work
of 0'Sullivan on penalized GLIM methods, which also fit into the spline
framework. In Section 4 we present some numerical results obtained by

Villalobos, on the estimation of posterior probabilities in the



classification problem, for bivariate observations, using constrained
cross validated TPSS. These results demonstrate the feasibility of
computing nonnegative smoothing splines in two dimensions. Finally in
Section 4, we propose and describe a new approach using partial thin
plate spline models for the partially nonparametric smooth estimation of
functions of more than 3 or 4 variables. In the partial spline models
some of the variables enter in a specified parametric form while
only a "smooth" re1afionship is assumed for the others.

Sméothing spline estimates for a smooth function are simultaneously
i) solutions to an optimization problem; ii) Bayes estimates and iii) the
output of a generalized low pass filter. As such, they enjoy nice
properties of all of the above. These estimates may also be thought of
as ridge regression estimates in Hilbert space. We will illustrate
the dual Bayesian-optimization nature of these estimates by a ridge

regression example. Let

y = XB‘+ £

where y = (yT,...,yn)Z X is nxp,

e~ N(0,0’zln ), B = N(O‘Jb )s

3
xn prp

7 is known and b and o? are unknown. Let X = ¢®/nb. Let
[ -1 1
B, = E(Bly) = (X'X#nal)" 'X'y.

Let IA(B) be defined by



1,(8) = 1|ly-x8] |2 + ag' ] s, (1.1)

Here ||y-XB[I: is the residual sum of squares, and AB'Z']B is the

"roughness" penalty". We have. the following easy to check but important
Theorem:

B, is the minimizer of IA(')'

A

Thus, the minimizer of IK(-) is also a Bayes estimate.
The Hilbert space version of the duality between optimization
problems and Bayes estimates goes as follows: Let T be some index set,

for example

gi=pialaasaap (corresponds to ridge'regression)
v 5-104] .

T = circle

T = Ed, Euclidean d-space

T = S, the sphere

T = S(x)[0,1], the atmosphere, etc.

We suppose that it is desired to estimate f(t),teQer, where f is a real-
valued function on t. Suppose that f(t), tetr is a zero mean Gaussian
stochasticlprocess with covariance Ef(s)f(t) = bR(s,t), where R(-,.) is
known. We let HR be the reproducing kernel Hilbert space with reproducing

kernel (r.k) R(:,-). (For more on r.k. spaces, see Aronszajn (1950),



~ Parzen (1962), Hajek (1962), Kimeldorf and Wahba (1970)). Let
vii= L3 oggy = | § AT (1.2)

where Li is a bounded linear functional on HR and € ~ N(0,o%I).
Reproducing kernel spaces are exactly those Hilbert spaces for which the
evaluation functionals Lif = f(ti) are bounded Tinear functionals
and hence are the natural Hilbert spaces in which to work if one
either observes noisy values of the function or wishes to estimate
functional values. Under weak assumptions

Lif = {K(ti,s)f(s)ds
is also a bounded linear functional on HR and in some r.k. spaces
Lif = f(k)(ti} is a bounded linear functional for k = 1,2,...,m=1.
Furthermore, if f(-) is a zero mean Gaussian stochastic process with
covariance bR(-,-), it can be shown that Lif is a random variable well
defined in quadratic mean if and only if Li is a bounded linear functional

on H It is appropriate to think of Lif as the Hilbert space

R"

generalization of Li(B) = injsj' Now let A = o?/nb, and let
J

£, (t) = E{f(t) [y}, ter .

It is easy to write down an explicit formula for fl(t) for fixed t using
standard formulas from multivariate analysis once the {n+1)x(n+1)
covariance matrix for {f(t), Yqs---a¥,} 1s known. However it is known

that



Ef(t)Lif = bL.(

; s-)R(s,t)

EL;FLIF = bl yLsp)Rst)

where Li(s) means that the linear functional Li is to be applied to the
subsequent expression considered as a function of s, so that this
covariance matrix is usually easy to write down. For example, if

Lif = fK(ti,s)f(s)ds
ELiijf 2 b][K(ti,s)R(s,u)K(tj,u)dsdu.
Let Ik(f) be defined by
10
=, 2 2

: n :

where ||-I|R is the norm in Hp. > (L;f-y;)? is the residual sum of
a i=1

squares, and ]|f||§, the smoothness penalty, is the analogue of 8'2'13.

We have

Theorem: (Kimeldorf and Wahba (1971))

fk is the minimizer of IK(-L

Thus, the minimizer of I, is a Bayes estimate.

A
We would Tike to replace Ilfj|§ by J(f), where J(f) is a

seminorm in HR with a finite dimensional null space. This is the

Hilbert space analogue of the case where Z_] is not of full rank. This

rank deficiency will come about if, for example, we let one or more

eigenvalues of ) tend to infinity, thus endowing some linear functional (s)



of B with an improper prior. The most celebrated example is the

polynomial smoothing spline. In this example, Tt = [0,1], fy is the

m
(

Sobolev space wz Hilbert space of functions with m-1 continuous

derivatives and mth derivative in LZ{O,lj, see Adams (1975)), and

(F(t;)-y;)? + K;(f(m)(u))zdun

1
Here J(f) = f(f(m)(u))zdu has a null space in wzm, spanned by the
polynomials gf degﬁee less than m. If there are at least m distinct
values of ther{ti},'then IA has a unique miniﬁiZer for each A > 0.
The minimizer, call it fi,is a polynomial of degree m-1 in [O,t1j and
in [tn,1] and is a polynomial of degree 2m-1 in each interval

P -

; 1.4_]], i=1,2,...,n=1, with the pieces joined so that f, has 2m-2

continuous derivatives. The Bayesian model corresponding to IA is

moo 0t Up-1 M
f(t) ~ Y e t+pf [ ... [ di(u)
Sy B
v=1 (3] 0
where EeQ =, [...[ is the m-fold integrated Weiner process and

A = o%/nb. Details may be found in Wahba (1978, 1983), The bandwidth
parameter X controls the tradeoff between fidelity to the data and

smoothness of the solution. As X = =, f. tends to the polynomial of

A
degree m-1 best fitting the data in a least squares sense, and as
1
A0, fy tends to that element in wzm which minimizes f(f(m)(u))zdu
0

subject to fk(ti) = Yo i=1,2,...,n. If X >0as n + « but not "too

fast", then fA + f in various ways, and much is known about convergence



rates, see Craven and Wahba (1979), Cox (1983), Ragozin (1981), Rice
and Rosenblatt (1981, 1983), Utreras (1981b) and Wahba (1975).

The "bandwidth" parameter A as well as the "shape" parameter
m can be estimated from the data by the method of generalized cross

validation (GCV). The GCV estimate X for )\ is the minimizer of

HICI-AG))y ]2

V() = 1
(ﬁTrace(LA(A)))2

where A()X) is the nxn influence matrix which satisfies

g'H ff

] c = A(A)y.
\

\Lnfh

A estimates the X which minimizes the predictive mean square error

Il ~135

2
(Lif-LifA)

under a wide range of assumptions on f. Properties of A and related

estimators are an area of active research, see Chow, Geman and Wu (1983)

K. Li (1983a,b), Speckman (1982), Utreras (1981b), Wahba (1983b).

A computer program which computes )\ and fK for the m = 2 case is

available in IMSL (1981).

(1.5)

(1.6)



2. Spline estimates of functions of several variables

Several generalizations of spline functioﬁs to more than one
variable have appeared in the recent approximation theory literature.
If one wants an isotropic penalty functional J(.) on Euclidean d-space,
with the polynomials of total degree less than m in the d variables
for the null space, one is lead to the thin plate (TP) splines. The
original results characterizing thin plate splines were provided by
Duchon (1976) and Meinguet (1979) and later elaborated on by Wahba and
Wendelberger (1980). Numerical methods for computing these splines,
with the GCV estimate of A, may be found in Bates and Wahba (1983),
Wahba (1980b, 1984 ) and Wendelberger (1981, 1982).

Integrated mean square error convergnece rates for TPS were
conjectured in Wahba (1979) and a number of rigorous results provided
in Cox (1982). The facts given in the rest of this section may be
found in the above references.

For d = 2 dimensions and m = 2 the smoothness penalty J(f)

associated with the TPS is

o o

— 2 2 2
J(f) = I _{ofx1x] + ZfX]XZ + fxzxzdx1dx2
and form > 2
m o oo m 2
ey = 1 f TME=E=1T dxgax,
v=0 -0 -0 ax1 ax2

and, in general in d-dimensions

(2.1)

{z.2)



- __ml N F %
Jf) = ) Tl Jisaf [ o ud] dxy...dx,. (2.3)

i ax] .axd

We want to estimate f(x],...,xd) = f(t), given data

Y-

e Lif * e, R O T (2.4)

with € ~ N(0,0®I). The thin plate smoothing spline estimate of f is

the minimizer (in an appropriate function space X) of

=51

(Lif-yi)2 + AIF) (2.5)

1

L s e

1
X is a space of real valued functions on Euclidean d-space Ed, all of

whose derivatives of total order m are square integrable, see Meinguet

(1979). The null space of J(f) in this space is the M = M(d,m) = (d+2'1)
polynomials of total degree less than m. For example, ifd =2, m = 3,

then M = 6 and these 6 polynomials are

¢'|(X'i ’XZ) = ¢)2(X.I,X2) = X1 ‘ ¢3(X-I sxz) 7 X2
by (x75%5) = x;? 95(x1%5) = xq%, 96 (x1%5) = %,

[t is necessary that 2m-d>0 in order that X be a reproducing kernel
space, that is, in order that the evaluation functionals be bounded.
Expression (2.5) will haye a unique minimizer if t1,...,tn are such
that the nxM matrix T with ivth éntry Li¢v is of rank M. An explicit

representation of the minimizer of (2.5) is given by

| n
doy(t) + ] cg(t) (2.6)



where
E}(t) = L_i(s)Em(t,S), i= ],2,...,”., (2,7)

Here Li(s) means the Tinear functional L. applied to what follows

considered as a function of s, and Em(t,s) is given by Em(t,s) = E(|t-s]),
d
. _ _ 1/2
where, if t = (x],...,xd), s = (u],...,ud), then |t-s| = (ig (xiuui)Z)
and

E [el) =8 d|T|2m_d2n|r| d even 5 0
s 2.8
=g |t/ d odd
d/2+1+m
B - d even
,d 5 s y
M 12 (1)1 (m-d/2)
6 = I’(.d/z"m). d odd
m,d ’ .
Zemnd/ztm-T)J
Letting K be the n x n matrix with ijth entry Em(ti’tj)’ then
c = (c],...,cn)' and d = (d],...,dM)'satisfy
(K+nal)c + Td = y {2.9)
T'c = 0. (2.10)

We remark that in the case d = 1 and Lif = f(ti) the expression
(2.6) reduces to a function which is a polynomial of degree 2m-1
between ti and ti+1’ for each i = 1,2,...,n—1(t=x1), and by virtue

of (2.10), is a polynomial of degree m-1 for t < t] and t > tn.

Also, symbolically, we have



.,

where 8, is the delta function at ti' This relationship generalizes

to d dimensions as follows: Let A be the Laplacian operator in d

dimensions - Af = f +=F PR AE . Now E is the fundamental
X1%q XXy X4%q

solution of the m-th iterated Laplacian in d dimensions (see. e.g.

Schwartz (1966)), A"E = 6,, so that, in general when L.f = f(t,),

=
—+
I

Il e~1 S
(g
o5

The influence matrix A(\) satisfies

I - A(A) = R(RKR'+nAI)" TR

where R is any n x n - M matrix satisfying R'R = In_M,T'R = OMxn-M’
and the GCV estimate K of A may be computed as the minimizer of
(1.5). Wendelberger and others have successfully computed fi for n
as large as 350, using EISPACK and LINPAC. The numerical work in
computing fA and i is roughly independent of d but is 0(n®). However,
it is evident that for large d, it is necessary for n to be large to
obtain a good estimate of f. It is also possible to choose m by GCV
(Wahba and Wendelberger (1980), and to choose at least one scale
parameter in the d = 3 case by GCV. (See Hutchinson et al, (1983),
Wendelberger (1982)). It is desirable to do this when, e.g. Xy and
X, are space variables and X3 is time - the units of X3 relative to

x1 and X, must be selected in some reasonable manner.

2

Several recent developments allow the computation of f for d = 2

and 3 for n of the order of 1000. Instead of computing the minimizer

(2 137
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of (2.5) in X exactly via (2.6-2.10) one selects a convenient N

dimensional subspace X, = {span BR’ 2=1,2,...,N} of X, where the

N
{Bl} are known to have good approxfmation theoretic properties.

Then one seeks the minimizer of (2.5) in Xy- and if N is large enough.
under suitable conditions this will be a good approximation to fk’

the minimizer in X. The influence matrix A(A) may be found for this
approximate method, and X obtained by minimizing (1.5).

For d = 1, the natural choice for XN is a space of so-called

B-splines of degree 2m¥1 (see deBoor (1978), Wahba (1980a)) which are
hill functions formed from smoothly joined piecewise polynomials.
In two dimensions one may use a space of tensor product B-spTines
(see deBoor (1978)) or use the thin p1até basis‘functions(TPBF's)
suggested in Wahba (1980b). These basis functions are obtained as
follows: Choose 51""’5N’ N points in Ed, spread around in an

appropriate manner (and such that the NxM matrix with 2uth entry

¢v(s£) is of rank M) and let

B,Q = ¢2, L=1,2, WM
N-M y
span{B,, ,J,_; = span { Conbrl-=8)s & = Loupnsh-Hl
. r=1
A e l ) ) o i i
where the Cy = (c21"‘CEN)’ 2=1,...,N-M are N-M linearly independent

N-vectors which are "generalized divided differences of order m", that
is
N

Ye ¢ (s)=0,v=1,2,...,M, 2=1,2,...,N-M.
=1 [ RSy
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This space is equivalent to a space of B-splines if d = 1, and for

d >.1, also spans a space of hill functions (see Dyn and Levin (1981)).

The A matrix can be easily written down. Hutchinson et é]. (1983) have

successfully used these TPBF's for estimating Australian solar

radiation as a function of latitude, longitude and rainfall index.

fi can be computed for even larger data sets by combining TPBS with

a truncated singular value decomposition, see Bates and Wahba (1983).
The intrinsic random functions of Matheron (1973) provide one

description of the stochastic process model behind the TPS. Some of

the procedures behind kriging used in mining engineering are related

to Matheron's intrinsic random functions, and hence to TPS. The

connection between kriging models and spline smoothing also apbears

in Kimeldorf and Wahba (1971), and Duchon (1976).
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3. Generalizations

(1) Non1inear functionals. In numerous physical problems one
observes mildly non]inéar functionals of the function one desires to
estjmate. For example, the relationship between vertical atmospheric
temperature T(p) as a function of pressure p, and satellite observeable

upwelling radiance Rv and wavenumber v is given by\
Po

R,(T) = B (T(pg))t,(pg) - gBU(T(p)]T\)'(p)dp,

V)

where Po is the surface pressure, 0 is the pressure at the top of the
atmosphere,fv(p) is the transmittance of the atmosphere above pressure

p at wavenumber v, and Bv is Planck's function, given by
B (T(p)) = cqvi/lexp(c,v/T(p)-11,

where c, and c, are constants, see Fritz et al. (1972). Satellite

radiance measurements are modelled by

yvi = Rvi(T) * Eys i=1,2,...,0,

where R (T) is the above nonlinear functional of T. Letting N. be
i
a general nonlinear functional, 0'Sullivan (1983) considers the estimation

of f given data
i © Nif + €55 i=1,2,...,n

e ~ N(0,0%I), by the minimizer of



-

11—

1

N~

(Nif-yi)z + AJ(F). '(3.1)
1.

0'Sullivan provides existence theorems and proposed and tested a
numerical algorithm for obtaining minimizer(s) of (3.1). The algorithm
consists of solving a seqdence of linear problems where the kth

problem consists of finding the minimizer of

n
L e 3 (3.2)
n . S :
i=]
where
k k-1 ko k-1
Y = Wy N(ED ) Lifx
k o peks]
L5 Ni(f )
k-1 . e iad vpakSly 5
Here fl is the minimizer for the k-1st problem, and Ni(fk ) is
the Frechet derivative of Ni evaluated at f§'1. (N%(f)) is a continuous
Tinear functional on HR for each feHR under suitable assumptions).

This is a Gauss-Newton method based on linearizing Nif as
(3:3)

(A good starting guess for T(p) is generally available in the satellite
radiance problem). There are two advantages of this iteration. Firstly,
discretization of the problem occurs late or not at all, since the
minimizer of (3.2) in function space can be expressed explicitly in

terms of a finite number of unknowns. Secondly, the software developed

for the linear problem may be called as a subroutine to minimize (3.2).
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In solving i11 posed problems (as this one is) numerically, it is
generally important to do any necessary discretization as late as
possible.

Using the generalized cross validation function for nonlinear

problems in Wahba (1980a), namely

IRsS(2)
V(A) = 1
[-Tr(1-A(1))]2
where
oN. f
R A
A0 = B;j

0'Sullivan observes that an approximation to A(A) is obtained at the
final step of the iterative procedure described above as the A matrix
for the final Tinear problem of (3.2).

(2) Linear inequality constraints. Returning to the model

Y.

i T Lif + €ss i=1,2,....N5

suppose it is known that f is in some closed convex set CCHR. For
example C = {f: f(t) > 0, teQ} , is a closed convex set in any
reproducing kernel space if Q is closed. C is closed convex since, in
any r.k. space HR’ there exists §,eH, such that <6t,f>R = f(t), where

LR

<-,.>_ is the inner product in H Then C = {f: <§,f> > 0, teq}

R R* ]
is the intersection of a family of (closed, convex) half spaces, and
so is closed and convex. Letting ¢1"“’¢M span the null space of
J(+), if the nxM matrix T with ivth entry Lio, is of rank M, then it

can be shown that the minimizer of

(3.4)
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(Lif-y.)? + AJ(F) (3.5)

S1—

nNe~13

i=1

in any closed convex C, exists and is unique. Frequently C can be

well approximated by C, , the intersection of L ha1fkspaces, 8.9

L’

CLo= {f: <y, f>p >ap, L= 1,2,...,L%

For example C = {f: f(t)>0, te[0,1] may be approximated by

2L-1

seers—o— )

[pe K&

= : Ul gl
CL = {f. f([) 2 O, L= 2,

for sufficiently large L. Then the computation of the minimizer of

(3.5) subject to feC, can be reduced to the solution of a quadratic

L
programming problem subject to a finite family of linear inequality constraints,
see Kimeldorf and Wahba (1971), Wahba (1973, 1980a, 1982), Villalobos

and Wahba (1983). Wegman (1982) and Wegman and Wright (1983) have

also discussed the imposition of side conditions in spline smoothing,

A generalization of GCV for constrained problems, was proposed in

Wahba (1980a) and is defined as follows:

1

ﬁRSS(K)
ViA) = : - (3.6)
(]'ﬁkélakk*(l))z
where Ly o {ytd Y=L £, (¥) .
o *(1) = KA dek kY .73

Here, 6k = kaEk]-yk, where fk[k] is the minimizer of (3.5) subject to

feCL with the kth data point omitted, 6k = (0,...Jl§k,0,...,0) (ékin the
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kth position),fk(y+6) is the minimizer of (3.5) subject to feCL
with the data y + 6, and fk(y) = fA’ akkf(x) is thus a divided difference

~

of L f, considered as a function of y,. This definition is motivated

by the identity below for the ordinary "leaving out one" function VO(R):
n
- 2 - * 2
.gngfA v )2 (1-a, *(3))2, (3.8

which becomes (3.6) in the generalized version of cross va]idation“ For
a proof of (3.8) see Craven and Wahba (1979). V(X) is generally
preferable to VO(A) in spline smoothing problems because of its
theoretical properties as well as its relative computational ease,

The denominator (}-gigTakk*(k)} is fairly expensive to compute.

However, a frequently reasonable approximation to akk*(A) is

i
/

oL, f
k' )\

. * ~

L (A) = 8yk (3.9
Here (as with nonlinear problems) one may obtain V easily by observing
that, if fA is the minimizer of (3.5) subject to <w£’f> > Qs and the
constraints involving U,,...,0 are active, then f, is also the

b Qmax A

minimizer of (3.5) subject to the equality constraints <hp,f> = 0y &= 2,
Now the problem: Minimize (3.5) subject to <w2,f> = ay, L = 21""’2max

is Tinear in the data, and the A(A) matrix of this problem has for

its diagonal entries the right hand side of (3.9). See Villalobos
(1983), Wahba (1982). Here TrA(A) and hence V(A) are not continuous
functions of A (jumps may occur at critical points where new constraints

become active) but this appears not to be a serious problem in most
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of the examples tried. We shall return to spline smoothing with
lTinear inequality constraints in Section 4.

(3) Robust smoothing. If, for example, the measurement errors

n
are contaminated Gaussian, the residual sum of squares Z (Lif-yi)2
n i=1
may be replaced by a sum of robust functionals } p(Lif—yi). This

i=1
approach has been suggested by Huber (1979), Lenth (1977), and

Utreras (1981). Various combinations of the setup in (1), (2) and
(3) are possible.

(4) Penalized 1ikelihood methods.

(i) Density Estimation. A number of authors have discussed

maximum penalized T1ikelihood estimates for a density. Let X;,...,X

1 n

be a random sample from a density f, then one may estimate f as the
minimizer of

n
-Tog I

f(Xi) + AJ(f).
i=1

See Tapia and Thompson and references cited there. Silverman (1982)

has probosed estimating g = log f as the minimizer of

Nr~—>

g(X;) + 2d(g)

i=1

t)dt = 1. These estimates will be splines if the J's

subject to ?;g(
of the pre;lding sections are used.

(ii) Penalized GLIM methods. 'O'Su11ivan (1983) has suggested
generalizing the GLIM method of Nelder and Wedderburn (1972) to

penalized GLIM methods. In thé GLIM method one has
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independent observations Yiseeo¥, where each observation Y; has a

one-parameter exponential density ®i of the form

for suitable choices of a5 b and ¢c. The mean and variance of Y

can be expressed in terms of 8i and ¢ as

E(y;) = w, = b'(6), Vér(yi) = b"(6,)a, (0).

The model specification is completed by supplying a linearizing
transformation g(ui) of the mean, g(ui) = Lif’ and g relates iP to
the function f it is desired to estimate. 0'Sullivan suggests a
maximum penalized 1{ke1ihood estimate of f as the minimizer, in an

appropriate function space of

e

Ik(f) & - log®i(yi) + AJ(F) (3.11)

i=1

) = @1(y1,f), and he discusses numerical algorithms.

where @1(y1

Since the normal distribution has a density of the form (3.10),
the spliﬁe estimates of the preceeding chapters are a special case, with
g(ui) =y = Lfy 109@1(yi,f) = const.(yi-Lif)z. Two other interesting

cases are the Poisson distribution and the Binomial distribution.

Let

where P (u) is the Poisson distribution with mean u. Let

g(u1)=1og w, = L;f. By using a penalized GLIM model one is assuming
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that f is "smooth"-if Lif = f(til and Tz = Tag Ufﬁil this is the same

as assuming that log u(t) is a smooth function of t. We have °

uyoe ;
¢1(y1) = _——qu__ s ]Og pi = Lif
- ‘ Lif
N - |
loge,(y;,f) = y;L.f - e * + Togly;!)

and the maximum penalized Tikelihood estimate of f is obtained by
minimizing

e

n
; IA(f) = iz](yiLif—e 1 +1og(yi!)) + MJ(F) (3.4}

over a suitable space of functions.

In the binomial case, let

yi £ B (1,P1)

and suppose one is interested in estimating the logit, 1og[pi/(1—p1)].

Thus we may choose the 1ink function g(pi) = 1og[p1/(1—pi)] = Lif‘

Then
G 1-y.
(I)i('y'i) p.l 1“-[31) 1
Togd,(ys) = yilog pi+ (1-y.)l0g(1-p,)
d i
, = yi1091_p1 + Tog(1-p,)
ah L.f

1

1090, (y;,f) = y,Lif - Tog[l+e ' ]

and the maximum penalized Tikelihood estimate of f is the minimizer of
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L.f
ly;L;f-Tog[1+e V13 + xa(f). (3.13)
1

He~— >

Lo - -

This approach provides a nonparametric form of logistic regression.
This approach can also be used to provide an estimate of the log

1ikelihood ratio in the classification problem. Suppose one is going

to have available n/2 observatiops )(H,...,,th/2 from some density

h, and n/2 observations X21""’X2,n/2 from some other density

1

h2“ From this data one wishes to estimate the log Tikelihood ratio

f(t) = 1og[h1(t)/h2(t)]; Relabeling the n observations as t1,.,.,t

]

n

one may define a random variable ¥i B y(ti) which takes the value 1

if ti was from population 1 and 0 if ti was from population 2.

Conditional on there being an observation at ti’ the posterior

probability that it is from population 1 is p. = h1(t1)[ﬂh1(t1) + hz{tiﬂ ,

and we may treat y; as though

Y.

; ~ B (1.p;).

Since f(ti}'= 1og(h1(ti)/h2(ti)) = 1og[p1/(1-pi)], we may estimate f
by minimizing (3.13) with Lif = f(ti)'
This estimate for the likelihood ratio was proposed by Silverman (1978),
see also Raynor and Bates (1983), Villalobos (1983), Villalobos and Wahba (1983).
0'Sullivan has proposed a further generalization of GCV for
estimating 5 in the penalized GLIM setup. Letting
n

Qy,f) = constlz

1_]109‘1’1"(5'1 ,T)
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n
Z (yi-Lif)2 in the normal errors case) 0'Sullivan's
i=1

proposal for estimating A in (3.11) reduces to the minimization of

(which becomes %

" Qly.f,) T
v A) = 35
GLIM (%Tr(I-A(A))Z
aLifk
where here the entries aij(k) of A(A) are approximations to 5y
d Yy

which are available as the A matrix at the last step of an iterative
algorithm similar to the procedure for non-linear functionals. He
argues that the minimizer of V(A) of (3.14) in the binomial case

is an estimate of the weighted predictive mean square error

R

hr~1>=

A) =

i ;

(
GLIM :

Silverman (198é) has ﬁade the elegant observation that if A = @ and m = 3,
since the null space of J is the span of the polynomials of degree
2 or less, then the estimate of f = 1og(h1/h2) will in fact correspond
to h1,h2, normal densities - this holds so long as 2m-d>0, 1i,e,

d 7 T2 yuwicaB
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4. Constrained TPSS estimates for poéterior probabilities in the
classification problem
Simultaneous with some of the preceeding work on the estimation
of the log 1ikeTihood ratio f = Tog(h1/h2) via a penalized GLIM method,
a study was made of the use of bivariate constrained thin plate smoothing
splines for the estimation of the posterior probability
p = hI/{h]+h2). See VT]ia?obos (1983), Vvillalobos and Wahba (1983). p(t)
is the posterior probability that an observation t came from population
1 if each population is-a priori equally likely. (If the prior
probability of population 1 is g then the posterior probaBiTity pq(t)
is qp(t)/[(gp(t)+(1-q)(1-p(t)]). These posterior probabilities are
frequently of direct interest, for example in estimating the probability
of a heart attach, given Xy = blood pressure and Xy = cholestero]
Tevel.

The estimate Py of p under study is the minimizer of
1
SLp(ty)-y.)% + 3d(p) (4.1)

subject to

where the yi's are 1's and 0's, according to whether the observatiqn at
ti was from population 1 or not. Although the motivation for this
estimate is heuristic, the numerical results were excellent and
demonstrate the feasibility and effectiveness of bivariate constrained

smoothing splines, even with non-Gaussian data. (A constrained penalized
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GLIM method for p would consist in minimizing

1E]{5/1-109(|D(t1-}/(1-p(t1-)) + Tog(1-p(t;))} + ad(p)
subject to 0 < p(s) < 1, a harder numerical problem than the one under
study.)

In general, to compute Py> One will first normalize the X1
and Xo scafes so that the data falls within a sﬁuare and the region of
interest for estimating Py is the same square. In the work that
follows, the region of 1hterest was discretizéd by a 15x15 = 225
array of equally spaced points s

],...,5225 and the constraints discretized

as
) 2 Tt 1M 205 . (4.2)

The problem of minimizing (4.1) subject to (4.2) can then be reduced

to a finite dimensional quadratic programming problem subject to the
inequality constraints (4.2). (See Villalobos and Wahba (1983)),

A quadratic programming algorithm due to Gill, Gould, Murray, Sanders
and Wright (1982) (GGMSW) was used to solve the quadratic program.

In the present problem, the unconstrained problem is first solved and
the (unconstrained) cross validation estimate of )\ found. A substantial
number of the s;'s can be eliminated as identifying possibly active

i

constrains when the unconstrained solution at ) is sufficiently

inside the interior of [0,1]. Of the remaining pdssib]e constaints
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a good starting guess for those which will be active can also be made.
If the possible set and the starting guess set are. chosen reasonably
well, the GGMSW algorithm converges rapidly. This is done for the
unconstrained cross validation estimate K of A and then ) is changed
slightly until the minimizer of the constrained cross validation
function is found. The active constraints for the most recent value
of A are used as the starting guess for the new value of X. See
villalobos (1983) for more details.

The figures below were obtained by M. Villalobos. Figure 1 gives

a D]Ot of the test examp]e p(_x'laxz), 5 h'l(_x'j yxz)/[(_h'l(x'l ,X2)+h2(}(-| zxzjja

where
0 10
hy ~ Nps (g 7))

1)+ N,y 5(g -

Figure 2 gives a plot of a pseudo random sample of n/2 = 70 observations
from hI (crosses) and 70 observations from h2 (circles). Figure 3
presents the estimate pi(xl,xz). Figure 4 presents a plot of the Tevel
curves of pi superimposed on the pseudo data. Figure 5 presents a plot

of the level curves of P3 along with those of the true p (corresponding

to Figure 1).
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The constrained TP spline estimate pA(x1,x2)n

Fig. 3.
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Level curves of pa~

Fig. 5.

Level curves of pi,

4.

Fig.

and the true p.

and the pseudo data.
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5. Partial TP spline models in many dimensions

~Thin plate splines have been successfully used in three dimensions,

and with the advent of more powerful computers and the availability
of larger data sets, will probably be useful in somewhat higher-
dimensions. But frequently one has a function f of interest which
depends on more than three or four variables. One way of combining
parametric models and TP spline models for use in higher dimensions
to get "semiparametric" models is as follows.

Let f(x],...,xk,xk+],...,xd) be modelled as follows: For fixed
Xep 2+ 2%y f is a polynomial of degree m-1 or less in Xqseee Xy
and, for any fixed x],...,xk, f considered as a function of the d-k

variables x aXy is in the Hilbert space X of real valued functions

o e
of d-k variables all of whose derivatives of total order m are square

integrable, that is,

m

R O RS S T
: 2 e O 0 ] R R d
s naxy) = d_kz L foo L o T 14y
Z a1=m 8xk+]. .axd

i=1

for each x (We assume 2m-(d-k)>0).

'EERERLI®
We may construct a Hilbertspace Hof functions of d variables
with the desired properties and J(f;0,0,...,0) as seminorm, as follows.

Let
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where X is a Hilbert space of real valued functions of the d-k

variables x “ Xy all of whose derivatives of total order m

g
are square integrable. (X is equivalent to the space X of functions

of d-k variables of Section 2.)

e would Tike H to contain the M, = ("1=1) poTynonials of total

degree less than m in the variables XpaeeesXye The space ¥ already

d-k+m-1

il ) polynomials which do not contain any

contains those (

X{s+esX, as factoré, so we will Tet H1T consist of those

MO = (d+ﬂ']) - (d-ng-1) polynomials of total degree less than m in
the variables XqsensaXys which contain at least one Xps-e-aX) as a
factor.

For example, ifm =3, d =5 and k = 3, Hw consists of theM0 functions

2 2 2 Z
X1 x2, x3, X1 X%, x3 s XqXgs x2x3, x]x3
X1Xgs XqXps XoXgs XoXg, x3x4, x3x5,
whereas X contains
2 2
1, Xg x5, x4 > Xp s x4x5.
Thus H consists of all functions of the form
‘F=fﬂ+fx

where f_is a polynomial in (x],...,xd)gHW, and-fX = fX(Xk+1""’xd) is

an element of X.
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It is now trivial to check that J (£;0,0...0) is a seminorm on H,
with the Md polynomials of total degree Tess than m in the variables
XpoeeeaXy spanning its null space.

Now, let

Y.

5.5 Lif + e, G e

where the Li are bounded linear functionals on H.- We can define the

partial TPSS as the minimizer in H of

o

: (Lif-yi)2 + A F3040 e x0)
i=1

S

Geometrically, this problem is essentially the same as that considered

rin Section 2. There will be a unique solution provided the Md X n

matrix T with ivth entry Li¢v (¢v is the vth polynomial, of the Md polynomials of
total degree less than-m) is of rank Md, and the minimizer can be represented as

a linear combination of the ¢v's and the functions Ei( X

4
of (2.7), where the equations for the coefficients and the influence

Xigqoe -

matrix are analogous to (2.9, 2.10, 2.11). The numerical methods in
Bates and Wahba (1983) can be used to compute fi'

If the behavior of f as a function of Xpoeen Xy really is polynomial-
like, then this approach should provide a good estimate for f with fewer
data points than a spline estimate in all directions. (Other parametric
constructions for H1T are possible, for example, fewer or more polynomials.)
Engle et al. (1983) have recently carried out this construction for the
case d - k = 1, with first degree polynomials in the non-splined variables.

In exploratory data analysis it would be of interest to know how

to separate the variables xl,...,xd into two subsets, so that f will be
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modelled by polynomials on one subset and a TPS on the other. More
generally, let I'be a dxd orthogonal matrix, and Tlet (;1""’;d)' = F(x1,.,.,xd),
and model f as a polynomial in (;1’°"’;k) and as a TPS in (;k+],u.n,;d)n
One may then ask the question: How can I' be chosen? If the goal is

model building then some predictive mean square error criteria 15.
appropriate. In principle the GCV function can be computed as a

function of I', however, it is an open guestion at this time whether

the use of GCV for that purpose is a good procedpre, particularly if

A is chosen by GCV. Analogous to an idea of Huber (1983) one may ask:
What are the interesting directions? One might then define the
interesting directions as those for which the dependency 1is not

well modelled by a polynomial of degree less than m. In this case one

has found the T producing the "interesting" directions if J(fi) using
(;1,,..,;d)' = F(x1,...,xd) is larger than J(fi) obtained with any

other orthogonal transformation. These "interesting" directions

are not necessarily the same as those that would be selected by a
predictive mean square error criteria but might be the ones one chooses
to examine visually. For fixed T, J(fk) is a monotone decreasing

function of A. In some sense, A measures "deviation from polynomialness".
Thus, it may be useful to Took at i as a function of T', or at an estimate 5
of the parameter b which appeared in Section 2, as a function of I (One
such estimate is b = J(fi)/TrA(K).) Numerous questions remain as to

the choice of an "optimality" or "projection pursuit" criteria for T,

and, how to find the optimal T numerically,
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