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ABSTRACT

There are many areas in applied science where the non-parametric
estimation of regression functions is important.

In this thesis a general penalized 1ikelihood method for non-parametrically
estimating regression functions under a variety of observational models is
developed. The existence and numerical approximation of the estimators is
studied and a cross-validatory method for estimating the smoothing parameter
is presented. Implementation of the method is algorithmically straight-
forward.

The procedures developed are applied to the estimation of atmospheric

temperature profiles from satellite radiance data and are found to compare
favorably with the currently used methodology.

A thesis under the supervision of Grace Wahba.
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CHAPTER 1

INTRODUCTION

1.1 THE BASIC PRINCIPLE

The method of Penalized Likelihood estimation was in-
£roduced by Good and Gaskins in 1971. They argued, from a
Bayesian perspective, that in order to estimate a probability
density function given a random sample, a:le,xz...xn:sb,
the penalized log likelihood functional

n

elE) = 2 3 Jog £(X,) g MRk, sl

i=1
should be considered. J(f) is a "flamboyancy" or penalty
functional such as L? [£" (t)]1%dt, designed to represent
prior notions about the behaviour of the density £f. The
estimation of the density is done by maximizing w over a
suitably chosen space of alternatives. The parameter A
controls the amount by which the data are smoothed to give
the estimate.

The Good and Gaskins idea is not new to statistics,
nor is it restricted to density estimation (see Kimeldorf
and Wahba 1970, Leonard 1978, Silverman 1979, Tapia and
Thompson 1978, Wegman 1982 and, indeed, Whittaker 1923).
In this thesis some generalized versions of the penalized
1ikelihood estimation are studied. The following specifi-

cation of the method will be used: x is some function/



vector of parameters of interest. Conditional upon a data
vector 2z, the estimation of x 1is done by minimizing

the quantity:
I, (x) = o(x|z) + AJ(x) A>0

over some set C of plausible alternatives. Q(x|z) could
represent the -2 log [sampling distribution of z|x] but

other choices are feasible. We give a few concrete examples.

1.2 GSOME EXAMPLES

(i) Density Estimation

In 1982 Silverman introduced an interesting penalized
likelihood estimator of a log probability density function.
There are many density estimators which are similar in
spirit (see Cox71982 and Leonard 1978).

Given observations a:sxl:sxzs ---s)&lsb Silverman's
penalized likelihood estimate for the log density of the
Xi's is prescribed to be the minimizer of

ay(g) = -0t ] g + 4 [P g™ @12
f=f & d
over K; = {g « Wg[a,b]: L? 9 gt = 1} m = 1. 1t can be

shown (see Silverman 1982) that minimizing AO over Kj

is equivalent to minimizing

o b gt b
Ik(g) = -n j;z_-l g(Xi)+_]'a eg( )dt+)\ J:a [g(m) (t) 12dt



over K = {g ¢ Wg[a,b]: Lf I g & wl,

(ii) Generalized Linear Regression Models
Here we have independent observations yl,yz,...,yn
where each observation Y5 has a one-parameter exponential

density, p. of the form:
ply;) = exp{[yiei - b(Bi)]/ai(¢) + C(yi,¢)} (*)

for suitable choices of as b and ¢ (note that ¢, termed

the scale parameter, is constant for all i). The mean and
the variance of y; can be expressed in terms of ei and
¢ as

E(y,) =W = b'(8;) and var(y,) = b"(8,)a, ()

The functions ai(¢) are usually of the form ¢/wi (where
the w, are known). Specification of the model is com-
pleted by supplying a linearizing transformation, g(pi),

of the mean.

g SR Esv T

The function g, referred to as the link functiton, is as=-
sumed to be monotonic and differentiable. The Li's are
1inear functionals and x is the unknown function/vector

of parameters to be estimated. Penalized Likelihood esti-

mates of x are obtained by considering Il given by:



n
I, (x) = izl [b(ei) - yiei]/ai(q:) + AT (x)

over an appropriate space of functions.

Notice that a wide variety of distributions, including
the normal, Poisson, binomial and gamma, can be written in
the form of equation (*). Consequently, a great deal of
useful statistical modeling can be accomplished within the
Generalized Linear Interactive Modeling (GLIM) framework
(see Baker and Nelder 1978). Unfortunately however, good
graphical procedures for exploring the data {yi} do not
exist (see Raynor and Bates 1983) so that the model build-
ing process can be rather slow. The primary motivation for
obtaining a non-parametric detgrmination of the regression
function, x, is that it can be used as an Exploratory Data

Analysis tool by the GLIM modeler.

(iii) Cox's Proportional Hazard Regression Model

Following Miller (1981), let Tl,Tz,...,Tn; Cl,Cz,...,Qn

be independent random variables. Ci is the censoring time
associated with the survival time Ti' We observe (Yl,Sl),

(YZ,S ),...,(Yn,ﬁn) where

2

Ve mim (L 46,0 By =B P =8k
1L 1 i & 1 5 A

Covariates X, corresponding to the survival times Ti are
also available. 1In Cox's Proportional Hazards Model the

hazard rate p(t;x) for the distribution of T given x



is written as

Hitisl = uo(t)ee(x)

where 6 is some regression function on the covariates.

Let the ordered observed times be written as

Yy aX gy 1 - m aiiny !

and R be the risk set, i.e. the set of individuals

fi)
surviwing up to Yiay: The Penalized (Partial) Likelihood
estimator of 6 is the minimizer of the functional
I, = ] {log( ] 050 — e} + AT(e)
ieU jeR(i) 3
where U. 4is the set of uncenséred observations. The prac-
tical use of this model is currently being evaluated by

Crowley and O'Sullivan (1983), a report should be forth-

coming.

(iv) Normal Regression Model
The observed data {zi}?=l are functionals of x con-
taminated by white noise.
iid
=1 + €, ~
z; nl(x) By o€ N(0,0)
where ni's are functionals of x. x is estimated by
minimizing:
1
n

2
; l[zi - ni(x)] + AJ(x), A>0.

| 13

bed B



Apart from the data smoothing applications of this model
(see Kimeldorf and Wahba 1970), there are a number of in-
version problems in engineering where the normal regres-
sion assumption becomes a useful approximation (see West-

water 1979) .

1.3 CONTENTS OF THESIS

There are a number of questions which arise in con-
nection with the actual implementation of the penalized
l1ikelihood method. The penalized likelihood estimate is
the minimizer of the penalized likelihood functional, IA ’
over an appropriate space of functions. The technical

issues addressed in the following chapters include:

Existence of the penalized likelihood estimate.

Numerical computation of the estimates for fixed A.

- Choice of the smoothing paramefer A

The analysis is carriedout first for the general case
and then applied to various particular models. Existence
questions are dealt with in Chapter 2; the approach is
similar to that taken by Wegman (1982). Numerical methods
are presented in Chapter 3 - versions of the Newton-Raphson
and Gauss-Newton algorithms are analyzed. The material in
these latter two chapters involves a fair bit of mathema-
tical machinery, the elements of which are contained in an

appendix at the end of this chapter. Generalized Cross



validation-type estimators of the smoothing parameter A
are proposed and partially justified in Chapter 4, while
the final chapter features an application of the methodol-
ogy to the remote sensing of atmospheric temperature pro-
files. An asymptotic analysis of penalized likelihood
estimators is currently under study (see Cox and

O'sullivan 1983).



APPENDIX A, BACKGROUND MATHEMATICS

NOTATION

H is a real Hilbert space with inner product <=+, ->
and norm ll*ll (so Ixll? = <x,x> x ¢ H). The dual space of
continuous linear functionals on H 1is denoted by H¥*.

|+l induces a norm ll-ll, on H* given by

el = sup |le,(x) L oe .

xeH

*

For every & € H Ay, H such that

L({x) = <Y g X ¥ x € H

The relation & < vy, establishes an isometric isomor-
phism between the spaces H and H*. We also have that

H* is a Hilbert space with inner product:
<L,k>, = <Yﬂ-'yk> 2,k € H*

Finally if Hl and H2 are two Hilbert spaces then the
space of continuous linear operators from Hl into H,

will be denoted by L(Hl,HZ).

THE WEAK TOPOLOGY
In the usual or norm topology on H, an open ball,

Br’ of radius r about the origin is defined by:

Br={XeH:||X|| < r}



However the space H* generates another topology on H
called the weak topology: this is the weakest topology on
H with respect to which the elements of H* are contin-
uous on H.

The usual topological notions of convergence, compact-
ness, closedness etc. will be used in many places (see
simmons 1963). Whenever we are talking about these notions,
unless explicit reference is made to the weak topology, the
norm topology will be what we have in mind. Thus when a

sequence {xn} converges to a point x in H we will

write:
X =+ X as n ==
n
if norm convergence is intended ( lim Hxn -xll = 0).
n-=+«x

Whereas if {xn} converges weakly to x we will write:

meaning lim |%(x e Riloe)bls =0 Vo d e B,
n - « n

PROPERTIES OF NON-LINEAR FUNCTIONALS ON H

We will be interested in various properties of non-
linear functionals defined on H, the most important of

these being convexity, continuity and differentiability.



10

CONVEXITY

Definition 1.A.1. B get. C in H  is convex if N X,y eC
Ax + (L-AN)y e C 0<A<1.

Definition 1.A.2. A flinctional £ on H ‘is conpvexr if

Yooy .o ., and, 04l

F(ax+ (L-2)y) <Af(x) + (L-A)f(y).

f is strictly convex if the above inequality is strict

whenever X # V.

Definition 1.A.3. The epigraph of a functional £ on H

is the set:
epi £ = {(u,a) e Hx R: f(u) =al .

It is the set of points in Hx R which lie above the graph
ef £. The notions of convex sets and convex functions

are intimately related; a function is convex if and only if
it's epigraph is convex. One important property of convex

functions on finite-dimensional spaces is the following:

Lemma 1.A.1l. Suppose H is finite dimensional. If £ is

strictly convex and bounded below and has a minimum in H
then f(x) -+ » as lxll + « (i.e. £ 1is coercive on H).

Proof: See Rockafellar (1970).



1l

Definition 1l.A.4. A function £ is quasi-convex 1if

¥ x,v e B and 0L Al
Elan+ (1 =) y) =maz (£(x),.£l(y))

f is strongly quasi-convex if the above inequality is
strict whenever X # y.

It is easy to see that if f is convex or gquasi-con-
vec then a unique local minimizer of £ is the unique
global minimizer of £. Also if f is strictly convex
or strongly quasi-convex any minimizer of £ is the unique

global minimizer.

Definition 1:8:5: A function f is uniformly convex on

B i s x gy
£ (25 < n£(x) + HE(y) - 8 (x-yl)

for some real-valued, continuous, monotone function &8; S6(t) =0
BPor b 2008 HtR- isitEp =0 LliE andoonly 1E St S 0.

Local versions of convexity, guasi-convexity, uniform
convexity etc. can also be defined. For instance £ 1is
locally convex at = e H 1if - % is convex in some neighbor-

hood of x. We get the following lemma.

Lemma l1.A.2. If £ is a convex function and - .#* A& a

minimizer of £ then if £ is locally uniformly convex

(or locally strictly convex) at x* then x* is the unique
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global minimizer of f£.

CONTINUITY AND LOWER SEMI-CONTINUITY

Definition 1.A.6. A function £ is (weakly) continuous

at u if for all sequences, {un], (weakly) converging to

i dim £{u) = Fln) .
In > n
Definition 1.A.7. A function f is (weakly) lower semi-

continuous on H if it satisfies one of the two cguivalent

conditions:

¥ aeR {ue8H: f(u) < al <is (weakly) closed.

or
deH, liminf f(u) = £()
n
for all sequences (weakly) converging to u. A further

characterization of lower semi-continuity is also available.

Theorem 1.A.3. A function f:H - R 1is (weakly) lower

semi-continuous if and only if it's epigraph is (weakly)
closed.

The concept of lower semi-continuity plays an impor-
tant role in minimization problems because of the following

result.
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Theorem 1.A.4. Let f be a weakly lower semi-continuous

functional defined on a weakly compact set C; then there

exists X in € - guch that f(xo)= int £lx).
x el

Proof:

Let m = inf f(x); then there exists a sequence {xn}
xeC
dn s@svEngh that lim f(xn) = m. Since C is weakly com-
n-’rm

pact, there is a weakly convergent subsequence {xni} of

W
% e % ~ =, for some %.. in €. “Dut by weak lower
n nl 0

0
semi-continuity and the fact that I}%ﬂﬂf(xni) = m we have
¥
I < . . = <
f\XO) < l;?igf f(xni) m f(xo)
a b
Thus f(xo) = m. [l

The above theorem has two important corollaries.

Corollary l.A.5. A weakly lower semi-continuous func-

tional achieves its infimum on every closed and bounded

convex subset of H.

Proof:

In a real Hilbert space, every closed convex set is
weakly closed (see Ekeland and Teman (1973) pp. 3-7) while
a weakly closed and bounded set is weakly compact. There-

fore Theorem 1.A.4 applies. a

Corollary 1SR 6Y" Let f be a weakly lower semi-con-

tinuous functional on an unbounded closed convex set C.
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Suppose lim f(x) = ® in C. Then £ achieves its in-
| x|l - :
fimum on C.

Proof:

If f(x) = » ¥ x ¢ C then we are done. Otherwise for
M large enough inf £ = inf £, where B is the unit ball.
C CnMB
The result now follows by corollary 1.A.5 since CnMB is a

closed and bounded convex set. O

FRECHET DIFFERENTIABIT.ITY

Let f be a mapping from a Hilbert space Hl (norm

-ll;) into a Hilbert space H, (norm [I-ll,) .

Definition 1.A.8. f 1is Frechet differentiable at Xe¢ Hy

if there exists a bounded linear operator f'(x) ¢ L(Hl’HZ)

satisfying:

ﬂf(x+y)-f(x)-f'(x)yﬂ1

lim =0

lyll, >0 Iylly
f'(x) 1is called the Frechet derivative of f at x.
Higher order Frechet derivatives are analogously defined;
the second Frechet derivative of f at x, f"(x), is an
element of L(Hl’L(Hl’HZ)) etc.
Versions of the usual mean value theorems apply to
Frechet differentiable mappings. A couple of these results,

which we will use later on, are worth noting.
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Theorem 1.A.7. Let f : DcH-+R, and assume that £ has

a second Frechet derivative at each point of a convex set

B4 < Dupos Then, fercamre o8 € D thate is8'a t e [0,1]

0
such that

Of

£(y) = £(x) = £ (x) (y=x) =%f" (x+t(y-x)) (y-x) (y-x) .

Theorem 1.A.8. Assume that f : DcH-+ R, has a second

Frechet derivative at x ¢ D.. Then
lim (1/Ilhll?) [f(x+h) - £(x) - £' (x)h - Lf"(x)hh] = 0
(I hll-0

for any h e H.

Definition 1.A.9. A function f on H 1is uniformly

positive definite if for some positive constant M we have:
£" (x)hh = Mlhil?

for all x:h e H.
Functions which are uniformly positive definite on H

clearly satisfy: £(xX) +« ag |xl =+ =

THE GRADIENT AND HESSIAN OF A FUNCTIONAL

The usual notions of gradients and hessians of func-
tionals on R" generalize to real Hilbert spaces. Suppose
g:H =R 18 a funetional on H. The first and second

Frechet derivatives of g at a point x in H are de-
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noted by g'(x) and g"(x) respectively. Now since
g¥ix] e H* and g"(x) € L(H,H*), by the isometric isomor-
phism between H and H*, &Vg(x) ¢ H and Hg(x) ¢ L(H,H)

with the properties that:
<Vg(x),y> = g'(X)y ¥y ¢ H

I17g(x) Il = llg* (x) 1«

and

<Hg(x)y,z> g"(®x)ye ¥ yv,2 ¢ H

Il

HHg(x)yH lg'(x)ylly ¥V yeH

R Vg(x) and Hg(x) correspond to the gradient and

hessian, respectively.
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CHAPTER 2

EXISTENCE THEORY

2.1 INTRODUCTION

In this chapter we give conditions under which the
Penalized Likelihood estimators will exist. Attention will
be restricted to the case where the penalty functional J
is,.at least, convex (indeed, more often than not, J(x) =
Ipxll2 where P is a projection operator with finite di-
mensional null space). One of the main results, Theorem
2.2.5 and its corollary, gives conditions when the exist-
ence of a minimizer of Q(x|z) guarantees £he existence
of the PenaliZed Likelihood estimator; this related to
gilverman's 1982 Annals of Statistics conjecture. We be-
‘gin with some general considerations and go on to discuss
some applications in section 3. The major references for
this chapter are Daniel (1971), Ekeland and Teman (1973)
and Ortega and Rheinbold (1970). The notation introduced

in Chapter 1 will be employed throughout.

2.2 SOME GENERAL CONSIDERATIONS

Consider the functional:

I)\(X) =0 (e} 4 XA(K) ;'  A=0.
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Our program is to find sufficient conditions for there to
exist minimizers of IA in closed convex unbounded subsets
C .-of+ H. The next theorem, a restatement of corollary

1.A.6., clarifies this problem somewhat.

Theorem 2.2.1.

Let C be a closed convex subset of a Hilbert space
H. Suppose I,:C~+R is coercive (i.e. IA(X) e gy
Ixll + », x ¢ C) and is weakly lower semi-continuous on C,

then IA attains its infimum on C.

Proof: [See corollary 1.A.6]

In the context of this theorem we now ask ourselves
what conditions must the functionals Q and J satisfy
in order that

(i) I is weakly lower semi-continuous on C?

A

(ii) IX is coercive on C?

The first of these can be answered as follows.

Theorem 2.2.2.

Suppose C is a closed convex subset of H. Let Q
be weakly continuous on C, and J (bounded below) con-
tinuous and convex on C. Then IK is weakly lower semi-
continuous.

Proof:

J 1is continuous and convex so it is weakly lower con-

tinuous (see the appendix of Chapter 1). Now since A > 0
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and Q is weakly lower semi-continuous (it is weakly con-
tinuous) it follows that Q + AJ is weakly lower semi-

continuous. 0O

Conditions guaranteeing the coerciveness of IA on
general convex sets C are not as easy to identify. How-
ever, when Q and J are well behaved, and C satisfies
some mild conditions, the problem becomes more tractable.
Suppose H can be split into two subspaces, H0 and Hl'
with H = HO @ Hl: HD is finite-dimensional. Let
J(x) = lPxll? where P is a projection operator on H
with null space H0 and range Hl. We consider subsets
C of H which satisfy the following property:'

Definition 2.2.3.

A convex set C in HO ® Hy satisfies property 1 if
for any sequence in C for which e By s and
{HPan} is bounded 9 sequences {un} < [0,11; {un} < Hy,

{yn} ¢ @ and =z e H for whien

DS bz = el + (l-un)y

n n

with llu Il ~ « and {yn} bounded.

Definition 2.2.4.

A convex set C in HO ® Hl satisfies property 2 if

it satisfies property 1 and the choice of =z does not de-

pend on the sequence {xn}.
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Convex sets satisfying property 1 are common in appli-
cations; for instance in Wg[a,b] with H0 = {XeEWg[a,b]:

x(m) = 0} the sets Cq a={xewlg[a,b]: x(q) 2al, Dsg<m

i

and o some continuous function. To see this let

'{xn} c cq 4 DPe such that HPanI2 = f;g [xr(lm) (t)1%dt is

r

bounded and I (I-P)x |l = lp.x II? > =. Since IIPx |l 1is
n G -1 n

bounded, g < m and a is continuous, ¥ a polynomial,

M(t), such that MDD (g < (Px_) (@ (1) <MD () te (a,b],

and o < M. Let u_= & Px , yv.=2M - PXx and z = 2M.
n 2--0%n n n

By definition, {yn} is a bounded sequence in Cq o
r

and since

we have that C " indeed satisfies property 1.
I

Theorem 2.2.5.

Let C be a convex subset of H satisfying property
1. Suppose Q satisfies the following conditions:
(i) coercive on [x + HD] n C, for x ¢ H
(ii) gquasi-convex on C
(iii) bounded on bounded subsets of C
(iv) bounded below on C

then IA is coercive on C.
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Proof:

I, (x) = o(x) + Allexll?

T IA is not coercive on C then there is a seguence

{x } in C for which {I,(x_)} is bounded but {x } » =
n XATY n

as 1 i

Case 1: {xn} has a subsequence, {xnk}, for which

IPxn I+ =

Here, since Q 1is bounded below on C, we have that
ot 2 5 E e L
Il(xnk) = Q(xnk) + AHPxnkH + o, contradicting the defini

tion of {x_}.
n
Case 2: {HPan} is bounded.

C satisfies property 1, therefore ¥ sequences

{un} e 0L, {un} c H {yn} cC and =z ¢ H for which

Ol’
Uobiez = 0 2o (l-un)yn

with HunH + o and {yn} bounded. Since Q is quasi-

convex we have that:
Q(un + z) < max(Q(xn), Q(yn))

Since Q is coercive on [z + HO] n C, and bounded on
bounded subsets of C it follows that Q(xn) + @ which

of course contradicts the definition of {xn}. 0
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Corollary 2.2.6.

Let C be a convex set satisfying property 1 and
suppose Q is bounded below and bounded on bounded subsets
of C. If 0 1is strictly tonvex on -C- and has minimizers

on subsets of C of the form [x+H,] n C x e H, then

0
IA is coercive on C.

Proof:

Since Q 1is strictly convex and has a minimum on

[x + HOI n C Q is coercive on sets of this form (see

Lemma 1.A.1). g

The above results obviously hold when the set C
satisfies property 2: the coerciveness of Q need then

only be checked on [z + HO] n C for a fixed z in H.

2.3 APPLICATIONS

Consider the following set up H = HO ] Hl with HO
finite-dimensional, P 1is a projection operator on H
with range space H; and null space Hy. J(x) = Iexll?,
and Li/Ni are continuous linear/non-linear functionals
on H. Finally, C is a closed convex subset of H satis-
fying property 1 of section 2. Within this framework we

investigate the existence of minimizers of the IA'S

arising in a few specific models.
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(i) SILVERMAN'S PENALIZED LIKELIHOOD DENSITY ESTIMATES

Given observations a < Xl < X2 < sese < Xn <b Silverman's

(1982) penalized likelihood estimate for the log density of

the Xi's is prescribed to be the minimizer of

-1

Beslal =5 g{X) & A f; [g(m) te) T de

3

i=1
over C, = {g ¢ W?[a,b}: L? S9 G ke, SoeG il TR e
shown (see Silverman 1982) that minimizing A, over C ig

equivalent to minimizing

-1

A(g) = -n g(x,) + J'; ST E G Ty J’ab [g(m) () 12de

II~13

i=1

over C = {g ¢ Wg[a,b]: Lf eI {8 g¢ < w3 .

Sino e T s Lap A T & ngyE Wg[a,b] then |g| is bounded
and so L? eg(t)dt is finite. Consequently C = W?[a,b].
It follows trivally that C satisfies property 2 of sec-
tionuw2 withaizco= 0.
A is strictly convex and bounded below by zero on C.

Since evaluation is continuous on Wg for mt = l. @and

since fb eJddat is weakly continuous (by continuity of ex),

Il
~-r1-l I g(Xi) + Lf eg(t)dt is weakly continuous and con-
i=1
sequently bounded on bounded subsets of C. Therefore, by
Theorem 2.2.2, A is weakly lower semi-continuous and so

by the Corollary 2.2.6 A has a minimizer in C provided

-1
n

=~

g(x,) + Lf eIt 4t has a minimizer in

i=1
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bt

flofoderl b This provides an alternative justifi-

cation of Theorem 4.1 in Silverman's (1982) paper.

(ii) GENERALIZED LINEAR MODELS

Wedderburn (1976) discusses the existence and unique-
ness of the maximum likelihood estimates for certain gen-
eralized linear models over finite-dimensional parameter
spaces. Here we use some of his results to discuss twa

particular models in some detail.

Log-linear Poisscon regression

This model is especially useful for studying systems
in which the measurement process is subject to shot noise
(see Nicot and Yandell (1983) for an interesting applica-
tion involving the mapping of fungal activity in potato
fields). Barndorff-Nielsen (1978) discusses a parametric
regression form of the model (see also Kalbfleisch and
Sprott 1974). The data consist of independent counts
{Yi' i=1,2,...,n}. Bach Y P(ui} and p, is modeled

log=linearly as:
3. = Lalse e

where Li's are continuous linear functionals of x.

Thus the likelihood of x is given by:

n uYie*ui
d(x) = 1 _i__T__
i:l Yi'



25

from which it follows that IA has the form:

n
= Lix _ 2
I, (x) = z {e yih e log (y, 1)} + Allexll

Let dim(H ) = m; then a{qu.}fjf‘:l:ﬁ(): span  {¢y,65, .00},

Now given x e [z + HO]

m
X = Z Bl =+ %
j=1 33
P m
LietinaE e alie o m e ) Bj¢j+ze[Z+HO]nC}. B is a
j=1
closed convex subset of Rm. Let T be a matrix with

i3™ element Lib. 3= ile2s aenin j =1,2,...,m, then

Tos i Pa B Lo 2
1 1 1

— L]
where Ti = (Li¢l,Li¢2,...,Li¢m) s _If rank (T) =z m then
it follows easily that I, is strictly convex on H. Also,
since the Li‘s are continuous linear functionals, Ik is

bounded on bounded subsets of H and so, by Theorem 2.2.2.,
I, is weakly lower semi-continuous (Ipxll? is continuous

and convex and .E {eLiX-»yiLiX4~log(Yi!)} is weakly con-
tinuous and bounéZé below). Consequently, by the corollary

to Theorem 2.2.5, IA will achieve its minimum on C 1if,

n
dropping extraneous terms, ) {eLlX-yiLix} has a minimum
i=1

n
lne for amy 2 im €. MNow 7 {ele-yiLix}
i=1

in [z+HO

has a minimum in [z+—HO] h. @ if and only if ©Q(B) =

n '

Z {eTlB-yfoB} has a minimum in B, where yf = y./ele.
i=1 ot o s
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Therefore we need only give conditions under which Q has

a minimum in B.

Let 70 be the matrix obtained from T by removing

the rows corresponding to zero y. counts. Following

Wedderburn (1976) we can deduce:

Lemma 2.3.1.

0

If rank (T) 2 m and the row space of T is the same

ds Ehe row space of T ; then Q(Bi has a minimum in B.

Proof:

Q 1is convex and continuous on B, so, we are done
once we establish that Q is coercive on B. Suppose
Igll > ® in B. Then since T is of full rank [TBIl + =,

' .
but this in turn implies that ﬂTO gl » =, that.

1
is ) {eTle-y;Tia} + @, It follows, arguing by con-
i:y. #0
tradict}on, that Q(B) =+ =, 0

Therefore, under the hypotheses of the above lemma,

I, achieves its minimum in C. The uniqueness of this

minimum follows by the strict convexity of IA on €.

The logistic regression model

Cox (1970) discussed this model as a special case of
more general quantal response models. The data in these
models (in the form of vy individuals responding out of

ni) are considered as independent binomial variates whose
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means are functionally related via a common regression.
In the logistic case we observe {yi, i=1,2,...,n} where

v B(ni,pi) and the logits are written as:

P-
log [1—;.1 T cof Tt BE o [ Sl
1

Silverman (1978), Raynor and Bates (1983) and Villalobos
(1983) have considered this model useful in the analysis of
discrimination problems. The likelihood of x 'given the
observed data is: -

d(x) =

¥4 a ni-yi
X p; (1 pi)

18

==

so that Il has the form:

i T 4630 o U 2
1[ni log (L+e ) yiLiX] + Allexll

| 18

Iy (x) =
1

Differentiating w.r.t. x we get for any h e H:

" ? gt ; ]
I,(x)hh = B, ——me (L. h)*+ 2XliPhll
A =1 B (el ory
(%)
n
= 0 HET J (L;h)®% = 0° and’ PHESL04
i=1

Let T be defined as in the Poisson model and suppose we

are interested in minimizing I, over the whole of H.

Equations (*) imply that I, is strictly convex provided

rank (T) 2 m. I, is obviously bounded below, the con-

tinuity of the Li's implies that Iy is weakly lower
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semi-continuous and hence bounded on bounded subsets of H.

It follows from Corollary 2.2.6 that when rank (T) =z m I,
n 1

has a minimizer in H whenever 2 [n. log (1+eT15)..yiT£B]
i=1

has a minimum in Rm. If the rank (T) =z m then

n 1

I [ni log (1+eTlB)-yiTiB] on Rm constitutes a regular
i=1l
exponential family distribution of order m (see Barndorff-
Nielsen 1978) and using the Barndorff-Nielsen theory of such

families we obtain the following result.

Lemma 2.3.2.

n
Let S = {s==(sl,,..,sv,...,sm): sv==i£lyiLi¢v;
Y; = O,l,...,ni} and Cg be the closure of the convex’
n v
hull of S. If rank (T) = m then E [nilog(1+eT15)_
i=1l
yiTiB] has a minimum in R if and only if the observed

value of s lies in the interior of Cs'

Proof:

The condition on the rank of T guarantees that

n '
X [ni log (l+eTiB)-yiT£B] constitutes a regular exponential
i=1
family distribution of order m and the result follows by
appealing to Corollary 0.6, p. 153 of Barndorff-Nielsen

(1978) .. 0

Therefore, under the hypotheses of Lemma 2.3.2, IA has
a minimizer in H. The uniqueness of this minimizer

follows from the strict convexity of I, on H s For the
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case in which Li's are evaluations and the ni's are
all 1's, Silverman (1978) and Villalobos (1983) have ob-
tained a more intuitive characterization of the result in

Lemma 2.3.2.

(iii) Cox's Proportional Hazard Regression Model

Suppose the explanatory variables XyrXgepeoor Xy lie
in [a,b]l. Pollowing section 2 of Chapter 1, let the
Penalized (Partial) Likelihood estimator of the proportional
hazard regression function, €, be the minimizer of the func-
tional
0 = Py "} PP D o ™ (x)12ax

h49) jER(i)
over: C.= {8 -0la), 8. ¢ Wg[a,b]} for m =2 1. (The -log

{partial likelihood} evaluated at 6-6(a) is equal to the

- log {partial l1ikelihood} evaluated at 6. Hence, the motiva-

tion minimizing I, over ¢ ) Clearlyr. € satisfies pro-
perty 2 of section 2 with "z=0". B&lso I is bounded
below by zero and since evaluation is continuous (m=21)

the -log {partial likelihood} is weakly continuous.
e '
= (X:])

With Plj (8} = ee (Xk) we have for any 6,9 € C:

kKeR 1y
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I Bon = ) ) maa8e R iixs)
A ieU jéR(i) Jt J

R TR R
: i j
JER 95

+ 2AllPoll2 = 0

=0 iff ix.) =0  for e L R(
J ieU

and P¢® = 0.

it follows that I is strictly convex on C provided

A
there are at least m distinct xj’s in U R(i)’ Hence,
; ; ieU -
by the standard arguments, IA has a minimum in C ' pro-
vided there exist B ¢ R™ 1 to minimize the finite dimen-

sional -log {partial likelihood}:

Q(8) = J {logl ] e'3%1 -z}

ieU jeR(i)
2 m-1
WhHete - B, 0= (%, X e ewpdlis =)
i i’7i i

(iv) THE NON-LINEAR REGRESSION MODEL

The penalized likelihood functional, I is given by

)\F
n
I, (x) = z [z —Ni(x)]2 + AllpxIl 2

where Ni's are non-linear functionals. If the Ni's are
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weakly continuous, then IA is weakly lower semi-con-

tinuous and bounded on bounded subsets of H.
We need to work harder here to develop meaningful con-
ditions under which IA is coercive on H. The conditions

which we come up with are strongly influenced by our ex-

pierence with the radiative transfer equations (see

Chapter 5 and Appendix B). We begin by considering
comparison functionals Is defined on € in the following
manner.
= E * %
IQ(X) @(Nl(x),Nz(x),.cn,Nn(X)) + lIexll fe )
where @ :R" + R is bounded below and satisfies
* * *
@(xl,xz,..,,xn) < @(xl,xz,...,x;) whenever [xi| < |xi[

Veitat i o=will? ol i s

These comparison functionals will be used to establish

the coerciveness of IA for certain classes of non-linear
functionals Ni' Whenever I@ is coercive then so is the
corresponding Ik; the next lemma is needed to prove this

assertion.

Lemma 2.3.3.

If {xk} is any sequence in R" for which @(xk)-HD

as k =+ @ then (the Euclidean norm of xk) also

s |l
k En

tends to infinity as Kk = %,
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Proof:
Suppose ¥ a bounded subsequence of '{xk}, {xk )
i
say, then by definition of @, {@(Xk )} must also be

]
bounded. However, this contradicts the fact that @(xk)-*w

as k = «, Therefore, v M 4 kM such that ¥ k 2 kM

HXkH > M i.e. iiﬁ kaﬂ = o, O

Theorem 2.3.4.

Let C be an unbounded convex set and suppose I,

given by (**) is coercive on C, then Iy is also coer-

cive on C.

Proof:
Suppose not, then for some M > 0 :H{Xg} ccC with

the property that
IA(Xﬁ) < M for HXRH ol B o=k, 2 e
For this sequence we must have, by definition of Ik' that

M ¥ %

>+

<
HPxRH <

However, the coerciveness of I¢ on C implies that

d (N, (x )'Nz(xg)""'Nz(xg)) + o gs L * o«

178

Hence by Lemma 2.3.3.

n n
2 5, » - 2 5 + ©
izlmi(xz)] > iZl[zi N, (x,)] = I, (x))
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This contradicts the definition of {xg}. Therefore
¥ M3 & such that ¥ xeC with =il > & I)\(x) > M d.e.

IA is coercive on C. g

We finish this section by presenting a theorem which
provides a set of conditions under which the functionals
Ni yield coercive IA'S on €., This result will be used
to study the existence of smooth solutions to the ill-pqsed
problem associated with the radiative transfer equations

(see Appendix B).

Theorem 2.3.5.

Let C be a convex subset of H satisfying property
1. Supppge H . ¢z R 7R which is monotonic increasing
(and bounded below) in the modulus of its argument. Sup-

pose further that
n
(s.1) ) ¢[Ni(x)] is strictly convex on C
i=1

n
(8 .2) } ¢[N,(x)] has a proper minimum on
i=1

[+ HO] @, e Hi:

Then Il is coercive on C.

Proof:
n
teb olx) = J ¢(x;). Then @ clearly satisfies
i=1
properties (**) above. Next define I, as follows:



34

n
Io(x) = ] oIN, (x)] + Il pxll 2

By (s.1) Is is convex on: C and since the Ni's are

weakly continuous, Is is bounded on bounded subsets of

n
H. Finally, since ) 9[N, (x)] is convex and has a
i=1
proper minimum in [x + HO} f € % ¢ H, 1t £6llows"that Ige
is coercive on C and so by Theorem 2.3.4. that I is

coercive on C . g
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CHAPTER 3

NUMERICAL ALGORITHMS

3.1 INTRODUCTION

This chapter discusses some numerical methods for min-
imizing the penalized likelihood functionals. Recall that

penalized likelihood functionals have the form:

Iz = glxlz) & AJle) , 320 .

The goal is to develop effective methods for computing
minimizers of such functionals over classes of functions
_of practical interest. Now this task, in even simple
cases, such as the linear regression model with a quadratic
penalty, is not completely trivial. When Q(x|z) 1is not
quadratic these numerical difficulties can be greatly mag-
nified. Our discussion will restrict itself to the cases
where the penalty term, J, is quadratic in X. Extensions
to uniformly positive definite penalties should be fairly
obvious.

To begin with, many numerical minimization algorithms
proceed by successively obtaining quadratic approximations
to the objective function; the minima of these quadratics
are used to define a sequence of iterates which, one hopes,

will converge to a minimizer of the objective function.
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Due care has to be taken to insure that the successive
quadratic approximants are computationally tractable, i.e.
their minimizers are easily obtainable. This consideration
is especially important for infinite dimensional problems.
We restrict ourselves to fixed-step size Newton-like

schemes. Iterates, {Xk}, are defined by:

o - ) 17 ) k=0,1,... (*)

where A(xk) e L(H,H) ¥ k. Obvious choices for A come to

mind. The standard Newton choice is:

k

A(xT) k

H_ (x7)
s

k k
HQ(x ) + AHJ(x )

where H denotes the Hessian. With Fisher's Scoring

Technique A(xk) becomes:

axF)y = B{m. (x5}

B{H, ()} + Ay (")

Here expectation is taken assuming xk is the true wvalue
of x

Finally if Q(x|z) = (F(x|z), F(x|z)) where (-,°) is
some inner product on the range space of F, A(xk) might

be chosen according to a Gauss-Newton formulation i.e.:
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A(xY) = (VF(xklz), VF(xklz)) + HJ(xk).

Our reason for favouring schemes of the above type is that
these methods can often be easily meshed with existing
finite-dimensional software. The final section of this
chapter outlines the implementation of such algorithms in
Generalized Linear Interactive Models and Non-linear Re-
gression Model contexts.

As with any iterative algorithm one is naturally
interested in knowing convergence properties. Does the
process converge to a minimizer of Il? If so, what is
the rate of convergence? Our goal in this chapter is to
show that some basic results concerning the convergence of
Newton-like schemes (*), which have already been established
in finite-dimensional situations, can be generalized to
handle the broad class of minimization problems associated
with penalized likelihood methods. Results about conver-
gence properties are presented in the next section. Some
specifics on implementation of the techniques for General-
ized Linear Models and Non-Linear Regression Models are
outlined in section 3 of this chapter. In Chapter 5, a
non-linear integral equation arising in Satellite Meteor-
ology is numerically inverted using the algorithm discussed
here - the method appears to work quite well in practice.

The major reference for this Chapter is Ortega and
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Rheinbold (1970).

3.2 CONVERGENCE PROPERTIES OF THE ALGORITHMS

Asymptotic Root Convergence Factors

Before getting into the convergence analysis, we first
need to introduce a way of measuring the asymptotic rate

of convergence of a convergent sequence.

PDefinition 3.2.1.

Suppose {xk} is a sequence in H converging to a
point x*. The asymptotic root convergence factors,

Rp{xk}, of the seqguence are given by:

lim sup ka-x*ﬂl/k if p=1

Rp{xk}= s g k
lim sup ka-x*ﬁl/p R Bek
k > o

Notice that whenever Rp{xk} < 1, then, for any €= 0
with Rp{xk} + £ < 1, there is a ko > 0, such that ¥ k;ako

either

k *
Ix™=-x"1

IA

Kk k
{Rp{x et - 4F Lpal
or

k ®
Nz -x |l

IA

(Rl{xk}+-e)k if  p=L

In the latter case, the convergence of the sequence is at

least as rapid as a geometric progression with ratio
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By b gos [t 1 oat e Rl{xk} < 1, the convergence is called
R-linear, while for Rl{xk} =1 or Rl{xk} = 0 convergence
is R-sublinear and R-superlinear, respectively. Similarly,

if
0 < R2{xk} 2L

we say that the convergence is R-quadratic.
More detailed information about this measure of asymp-
totic rate of convergence can be found in chapter 9 or

Ortega and Rheinbold (1970).

Convergence Analysis

We now turn to the analysis of the algorithms.
Throughout this discussion the penalty term a{xy = lexl®
where P is, as usuval, a projection operator on H with
finite-dimensional null space. The objective functionals

therefore have the form:
I)\(X)=Q(x)+7\||lelz i>0 and ZeH (3:2.1)

Q will be assumed to be bounded below. We wish to find a

minimizer of IA in a closed convex subset C of H. Let

xk be the current estimate and xk+l the update. We con-

sider iterative schemes of the form:

k

bl (EEqEl jegly. L (3.2.2)

LR [A(xk)]‘lvxl
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where A(xk) ¢ L{H,H) ¥ k.
In this section we prove the following result about

the convergence of iterations of the form (3.2.2.).

Theorem Selwds

Suppose Q in equation (3.2.1) is such that Q" |is

continuous and Q' is weakly continuous on the interior
of C.. Let xg e int C be such that the level set
D=, , 0
L” = {x!IA(X) o, ik

is weakly compact and IA has only finitely many critical
points in LO. Assume that 2:10 » L(H,H) is a continuous
mapping such that & an invertible map B(x) e L(H,H) with
A(x) = B*(x}B(x) (* denotes the édjoint) woxe ¢ 1.9 Sup-
pose also T Hgr My and Y1 all positive with 0 < %Yl <

Mg satisfying
lhll® < <h,A(x)h> < Hqllhll?
and
I, (x)hh < yqlhl?
¥ X .e . and h ¢ H. Consider the process (3.2.2) d.@6.

&t K L e 1T (%) x=0,1,...

*
Then {xk} € LO, lim x* = x , where VIA(X*) = 0, and if

k + o
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H (x*) is nonsingular, then the convergence is at least
A

R-linear.
Comment.
A finite-dimensional version of this Theorem appears
in Chapter 14 of Ortega and Rheinbold (1970). The proof
&e give here parallels their argument. Care, however, is
needed in dealing with the weak compactness of LO. The
convergence properties of the Newton method (A(x) =
HQ(x) + AHJ(X)) in abstract Banach spaces have, of course,
been known for some time. The famous Newton-Kantorovic
Theorem (see Chapter 4 of Rall (1969)) gives conditions
under which the Newton method converges R-quadratically.
In view of this one might expect that the rate of conver-
gence for Fisher's scoring technique is better than R-linear.
We begin the proof of Theorem 3.2.2 by establishing

four lemmas which will be used in the proof.

Temma. 3. 2.3

Eor *o - 0 et S as o(x) + AMlpxll2, x ¢ D ¢ H where
Q: B R1 has a weakly continuous first Frechet derivative
on DO-DO, a weakly compact subset of D. Suppose that
(%51 e D, is any sequence which satisfies lim HVIk(kal=0.
> ®
Then the set f = {x ¢ DO|VIK(X) 2 03, 0f jiitical points

of T in P is non-empty and

A 0
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1im -Inf ka-xH = 0
k+oxel
In particular if Q consists of a single point x Then

lim xk = x* and VIA(X*) = 0.

k > o
Proof:
Since D, is weakly compact {x*} has a weakly con-
ki ; ki W _x *
vergent 'subsequence {x 1} with x 3+ + x*  for some x*eD_
Now VIA(in) = VQ(xki) - ZKkai and so by the weak con-
tamuits of.. 0 . on D0 VIA(xki) ¥ VIA(X*)' Therefore,

[<VIl(x*), VIA(xki)>[ E HVIA(x*)HZ. However

| <V, (x*), VI (x*iy>| < 191, (*)1 HVIA(xki)H (Cauchy-

A

Schwartz Inequality) and since HVIA(in)H + 0 (by defini-

tion of {xki}) we have VIX(X*) = 0. That is to say @

is non-empty. But this also means that

130 HVIA(in
k_+oo
1

) - VIA(X*)II =0.

Now
VIl(xki) - VI, (&%) = V06 Y - Vo(xt) + 24 (PR - px¥)

which implies

2AlExSL - px*l HVIA(in) _ VI (%) - Vo) + voxM)

A

IA

HVIA(xki) - L GO+ 190 (54) - vox™)1l .

Hence, recalling that Q' is weakly continuous, we have
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ks ;
px 1 > px* as i+

But since the null space of P is finite-dimensional and

- W
xkl + x* we have that

(5= ByEot o+ (- PIx® Ay  EH@
Hence xki + ¥ do i > . Tg finish off the proof let
Sk = inf ka-xn and suppose & a subsequence {Sk }
X el ]
such that Gk. = § » 0 ¥ Jj. Then, by an argument similar
J

to that used above, the corresponding sequence of Xx's,
{ij} say, must have a convergent subsequence whose limit
lies in Q@ . But this contradicts the definition of ékj.

Therefore lim Sk =10 O
k > '

The proof of the next two lemmas is practically the
same as the proofs of (14.1.15) and (14.1.16) in Ortega

and Rheinbold (1970). They are included for completeness.

Lemma 3.2.4.

Let Ik' D0 and D be as in Lemma 3.2.3. Suppose
that the set  of eritical points of I is D0 is finite.
fet 1% c D, be any sequence for whidh™ Lim ka-xk+lﬂ==0

k >
and 1lim |IVI (xk)H = @.. Then | lim o WHEVINEY NI =o.
X A
k+e k >
Proof:

Lat T 'be the set of limit points of {xk}. As in
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Lemma 3.2.3, any limit point is also a critical point of

Il so *hat I' € i that is; TI- ig finite: ©Suppose that

P = {zl,zz,...,zm} with m > 1; then
§ =min Hzt=ellls & £ 4, &3 = Liawa il >0
e, 2 i
and we can choose kO > 0 such that x ¢ U S(z7,8/4) and
: i=1
k 1
- < 5/4 for all ok 2k . x e S(z,8/4)

implies that

" . & k+
Nzt - N szt - 2l - 2t e - xS

L))

>§ - 25/4 = 6/2, iz2

and hence, necessarily, that Xk+l € 8(21,6/4). By induc-
tion, therefore, x* ¢ S(z7,8/4) for all k 2 kg, which
contradicts the fact that zz,..,,zm are limit points of
{xk}; therefore, m = 1. 0

Lemma 3.2.5.

Let g: D < R” > R1 be Frechet differentiable on an

open set D, ¢ D and suppose that (x5} < D, converges to

0
w e DO' Assume that Vg(x*) = 0, and g has a second
Frechet derivative at x  and the Hessian Hg(x*) is in-

vertible, and that there is an n > 0 and a ko for which

&) - g& ) 2 nllvgHN?, vk 2k (3.2.3)

0"
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Then the root convergence factor Rl{xk} € 1 That s,

the sequence converges, at least, R-linearly.

Proof:

For XA e L{H,H)

| <y,Ay>|

Nall = sup FE

y € H

1,-1

Set a = HHg(x*)_ . Then for given e e¢ (0,0) we may

choose 6 > 0 so that 8 = 6(x*,98) e D, and
lvg (x) -Hg(x*) G =yl a2, ¥ e S

Hence

\

Ivg (%)l = IIHg(x*) (x-x*)ll - IVvg(x) - Hg(x*) (x-x5) Il

te - e)¥liz = x*I; ¥ x € S

v

Consequently in view of equation (3.2.3), there is a

kG so that with YO = [mles= E)Z]_l

IA

3E < 1 = o =e) 2MTgl= )02

Ly

IA

YOEg(xk)--g(xk+ [ L5 kzko.(3.2.4)

Now note that the mean-value Theorem 1.A.8 ensures that

g(xk) - g(x*) < Ylllxk-—x*!!z, ¥k 2k,,
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where Y, = %HHg(x*)H + ¢, and k2 Bk is sufficiently

. 0

large. Hence, we obtain, using 3.2.3 and 3.2.4,

0 sg(xk+l) - g(x*) S_g(xk) - g(x*) - nii‘i'g(z‘:k)ll2
< gty - gte®) = vy lix® - 22
k *

< nlgtx™) - g(x™)1, vV k = kg, (3.2.5)

where u =1 - (YOYl)_l. Clearly (by a suitable choice of
: . L
n) 0 < u < 1. Now letting ek==[g(xk)~—g(x*)]2 for
k=1,2,..., we have for Kk = k2
5
®r+1 = H %

so by induction

o plkke) /2y o (KRN 2 e

e, < <
k k2 k2
Therefore
(e )l/k " U(k_kZ)/Zk[l+e ]l/k’
k k
‘ 2
which implies
lim sup (e )1/k < lim sup u(k_kZ)/zk[l+e ll/k
E K K X

L
R I

IA

That is Rl{{g(xk)-—g(x*)]%j-<l. Therefore, by (3.2.4)

and remembering that g(xk)-q(xk+l) = g(Xk)-g(X*),
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R'l{xk} < Rl{[g(xk) -,g(x*)]%} e al g

Lemma 3.2.6.

Let g: D ¢ H~> R be continuous on an open set D

and Frechet differentiable on

L0 = Lo[g(xo)] = {x ¢ D|g(x) < g(xo)}

for some XO I esh. ¢ Suppese L0 is weakly compact. Then
for any x € LO and p € H with <Vg(x),p> > 0 there is

an a* > 0 such that

g(®) = glx-o*p) and [x,x-07p] < i

Tn particular Af o> 0 48 any number with the property

that

glix-opl ¢« glx)] ¥ Xx-op & (%x,x-npl n LO

then  [x;x—1p) = 1A
Proof:
et a* = sup J where

J={a>0|[x,x-aplcD and g(x-Bp) <glx), VB e (0,00}

The function z(a) = g(x-ap) - g(x), ae B dg continuous,

z(0) =0 and r'(0) = -g'(x)p= -<Vg(x),p> < 0. Hence
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o 0 8ot F Bk {0,al; i) = 057 Tt Eolkows from
this and the openness of D that J is non-empty and so
o* is well-defined. Consider the half line &= {x-op,
i B PHinee 4° U weakly compact, ¥ st dig compact.
Therefore the set {a > 0: x-o0p ¢ LO} must also be compact.
Which of course means that o* < « and [x,x-—d*p] < LO.
Now suppose that g(x-a*p) < g(x). Here since D is
open and g 1is continuous ¥ § > 0 such that x-ap ¢ D
and g(x-ap) < g(x) ¥ a ¢ [a*,a*+8]. But this contradicts
the definition of a* and so g(x-a*p) = g(x).
The last statement follows immediately since if n=za*

then g(x-a*p) < g(x) which contradicts the definition

of T o* g

We are now ready to prove Theorem 3.2.2. Recall the

statement.

Theorem 3.2.2.

Suppose Q in equation (3.2.1) is such that Q" |is

continuous and Q' is weakly continuous on the interior
of C. Let xg ¢ int C be such that the level set
0 _ 0
L = {x € C|I)L(x) < I;\(X;\)}

is weakly compact and Ik has only finitely many critical
0

points in LO. Assume that A: L ~+ L(H,H) is a continuous
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mapping such that & an invertible map B(x) ¢ L(H,H)

with A(x) = B*(x)B(x) (* denotes the adjoint) ¥ x ¢ LO.

Suppose also Hor Mg and Yl all positive with

0 < %Yl < My satisfying
uollRll® < <h,A(x)h> < uylihl?
and
" 2
Ik(x)hh < Ylﬂhﬂ

V¥ X € L0 and .k verE Consider the process (3.2.2) i.e.

Lt TR s S e
k 0 . k * * — \ 3
Then 1x F = L, lim X = x*, whére Vlk(x Yy =80, and '1E
k—)-oo
Ho (x*) 1is nonsingular, then the convergence is at least
A

R-linear.
Proof:
For ease of notation let g = Ik i.e.
g(x) = Q(x) = Alpxl?.

For any X e LO and h € H

uollhll2 = <hiAltzih> < ulﬂhﬂz. (3.2.6)

1E xk € Lq B(xk) is invertible, so
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pk = a(x®) "lvg () = B*(xk)—lB(xk)_1Vg(xk)

1

is well-defined. Letting h = B(xk)_ Vg(xk) we have from

{3.2.6) that
<B(xk)-1Vg(xk),A(XR)B(xkﬁ7g(Xk)> < u1<B(xk)‘1Vg(Xk),B(Xk)—IVg(Xk)>

which by the Cauchy-Schwartz inequality implies that

ﬁl—l 196 5y < 15l . similarly letting h=a(x")  vg(x")
in {(3.2.1) we obtain that Hpkﬂ < ﬁk-HVg(xk)H. Hence
0
) Mg < 151 < ) THVg G L (3.2.7)

It is also clear that <pk,Vg(xk)> > 0 unless

HA(xk)_IVg(xk)H =0 i.e. Vg(xk) = 0. In other words,
<pk,Vg(xk)> > 0 unless the process terminates at xko Now
let o ¢ (0,1] be such that [xk,xk-mpk] = LO. Then, by

the mean-value Theorem 1.A.7, there is an & ¢ (0,a] so that

g - g - aph) = a<Vg (£5) ,p> - %a2<pk,Hg(xk - 4P

But since <Vg(xk),pk> = <pk, A(xk)pk> and by hypothesis,

<pk, Hg(xk - apk)pk> < %YalkH2 since x* - &pk ol

% g(xk) - g(xk - Cka) = iy = %Yl]lipkﬂ2 - T ¢ {(3:0.8)

It follows from Lemma 3.2.2 that xk+l = xk - pk € L0 and,

by induction, that {Xk} e,
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Qembining (3.2.7) .and (3.2.8) we get

k+1

gty = g(HLEE RS SYiG S P S0 9)

L

So, since {g(xk)} is a monotonic decreasing sequence which

is bounded below, the left hand side converges to zero.

Hence 1lim Vg(xk) = 0. Consequently, since pk = xk - xk+l,
e e RO RS
(3.2.7) shows that 1lim (x =~ - x7) = 0, and the result
k >+
follows by Lemmas 3.2.4 and 3.2.5. g

3.3 SPECIFIC IMPLEMENTATIONS OF THE ALGORITHM

We now give some details on the implementation of

iterative minimization methods of the form

k+1 k k

X = x" - [A(xk)]_lVIA(x )

in Generalized Linear Interative Models and Non-linear
Regression models. Let xo be the current iterate. The
following describes how the next iterate, xl, is obtained.

We begin by describing a Newton-Raphson method for use with

Generalized Linear Interactive Models.

GENERALIZED LINEAR INTERACTIVE MODELS

Recall from Chapter 1 that IA has the form:

n
L (=) = z [b(e,) - y;6,1/a, (¢) + AT (x) =0(x|ly) + AT(x)
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We will show that minimizing the Newton-Raphson approxi-

mation (with Fisher's Scoring technigque)

I, (), & Q(xo) #. O (xo) (x - xo) + %E(Q" (XO)) (x - XO) (x - XO)

+ AT (x) (*)

is equivalent to minimizing IO given by:

A
n
%(x) = ) LS g S R
A LLoou, 1 i
i=1 "1
where
an . an. 2
_ 0 1 o 1
Zy T RyEa ooty = o) g 1% T R YR Ty ) sl

i
One should note from this that the determination of the
next iterate, xl, reduces to a generalized spline smooth-
ing problem (see Wendelberger 1982). The derivation
essentially follows Nelder and Wedderburn (1972).

Let the contribution of ¥ to I, be denoted Ri

Ri = [b(ei) - yiei]/ai(¢).
Recall the following relations:
) , Uy
E(y.) = b'(ei) = ui,var'(yi) =k)(81)aﬁe)= §§; aiuﬂ

and
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(See Chapter 1 for more details.) By the chain rule, the
Frechet derivative of Ri Ay % i O < 2; is given by

ali
g = s

1 Bui al

= 5

var (yi) any .

[ui-yil AU,

Similarly the second Frechet derivative is

= ST, AL,
Py By
DEL. o, O B,
o i i Li i 1 3 Li anl Li
2 .
aui Bni Bui Bniaui . 1
_ aai
Using the fact that E i = 0 we obtain
i
; Bzﬂi Iy &
Big.) =& P
1 auz an A =0
s i
2
e T e a7 .
and E =B which in turn is equal

2

duy Bui var (yi)

to 1/var (y.). By the preceding remarks, we have that
' y

0

Q‘(xo)(x - x)

Il
I~

ii (x - XO)
y=1
el e aui L.(X-xo)

iélvar(yi) ang
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and aiso that

n
El0" (x") 1 (x-x%) (x-x%) = ] 1] ()1 (x-x% (x-x"
=1
2 0
121 (aul) [L, (x-x ¥~

Combining terms it follows that minimizing (*) w.r.t. =x

is equivalent to minimizing I0 given by

A
n ~
0 il 1 2
Ik(x) = -z o [zi-Lix] + AJ (%)
i=1 i
where Zs and u, are as given. a

NON-LINEAR REGRESSION MODELS
In these models we have that

n
I, (x) = Z [zi—-Ni(x)]2 + AT (%) .

Ni's are non-linear functionals of x contaminated by
noise. In the Gauss-Newton algorithm Ni's are linearized

about the current iterate as
N. (x) =~ N.(xo) +- Nf(xo)(x - XO)
i i R

and the next iterate, xl, is the minimizer of the func-

tional Ig given by:
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0 1 0 Qs w0
l[zi - Ni(x ) - Ni(x Y (x=-x")1° + AT (x)

Il o~—13

0 =
IA(X) B
i
Again one should note from this that the determination of

the next iterate, xl, reduces to a generalized spline

smoothing problem.
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CHAPTER 4

ESTIMATION OF THE SMOOTHING PARAMETER

4.1 INTRODUCTION

Recall that the penalized likelihood estimator, X,

is the minimizer of the functional
I.(x) = 0(x|z) + AJ(x) A>0.

The smoothing parameter A controls the relative weighting
given to the penalty term, large values of X giving the
penalty more weight.

There is a growing literature on methods for estimating
smoothing parameters (see Atilgan 1983, Anderssen and
Bloomfield 1974, Leonard 1982, Silverman 1978, and Stone
1974), one of the most popular of these methods is cross-
validation. The cross-validatory procedure tries to choose
a value of the smoothing parameter which is optimal for
some specified predictive criterion (see Stone 1974).
Roughly, the method works as follows: Data are divided into
subsamples; for a given value of the smoothing parameter
the estimator is computed on each of the subsamples and,
using the predictive criterion, its performance is evaluated
on the remaining subsamples. The "cross-validatory" assess-

ment of A is the combined performance of the estimator
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over all the subsamples. Using this technique the value
of the smoothing parameter with the best cross-validatory
assessment can be isolated.

Since Stone's 1974 paper, cross-validation has been
widely applied in a number of diverse statistical contexts.
Wahba and Wold (1975) were the first to use the method in
a penalized likelihood setting. However, tﬁe method they
proposed was computationally intensive and in 1979 Craven
and Wahba came up with a refined procedure, Generalized
Cross Validation, which has decided computational advantages
over the Wahba and Wold proposal.

In this chapter we extend the Generalized Cross Valida-
tion (GCV) estimator to general penalized likelihood func-
tionals. The estimator is described in the next séction
and some favourable heuristics are given in section 3. Al-
though the results are of a preliminary nature, they suggest

that the technique may have promise.

4.2 THE GENERALIZED CROSS VALIDATION PROCEDURE

Generalized Cross-Validation (GCV) was developed by
Craven and Wahba (1979) to estimate a smoothing parameter
similar to A in a linear regression model context. In
their model, the ocbservations z, are noise contaminated

linear functionals of an unknown function, X, of interest.
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z, = Lix + noise, Fa=ak 2000,

where the Li‘s are linear functionals. The estimator,

b of x is the minimizer of the functional

)\F

1 = m

= ¥ [z, -5u.x1% + & [ [=V(§)1%ae 50

n =& i i

i=1
It turns out that the residuals, zi - %i’ can be written
as a linear transform of the data.
z - 2z = [I - a{X)]z
where A(A) is an n n matrix defined in terms of the
9L,
linear functionals. Formally A(?\)ij = 533-(xk). The GCV
j .

estimate of A 1is the minimizer of the function

n
z I [z.-—%.]2
n . i 1
i i=1

(%tr [T =A(A)1)2

1
e
2

[l—ul{k)]

RSS (A)

v(r)

V()\) is an assessment of XA combining goodness of
fit and model complexity. The goodness of fit is measured
by the residual sum of squares, % RSS(A), while the com-

plexity of Xy is measured by the "effective" number of
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parameters describing X relative to the sample size,

A
i.e. ul(K). (See Wahba (1979) for an equivalent degrees-
of-freedom interpretation of tr[I-A(A)].) As A * =, X,

tends to an m-1'th degree polynomial regression making

% RSS(A) take on its maximum and ul(l) be a minimum.

On the other hand, as X =+ 0, Xy tends to a data inter-
polant minimizing % RSS(A) and maximizing ul(l). It has
been shoﬁn that the GCV estimate of A, for large sample

sizes, comes close to minimizing the integrated squared

error, R(A), between x and Xy

R(X) =

s B
e~

2
l[Lix Lixk] 2

i
For further discussion see articles by Craven and Wahba
(1979) and Speckman (1982). Wahba (1982) proposed a GCV
based estimator of A in a constrained version of the
linear regression model. In order to extend the GCV pro-

cedure to general penalized likelihoods, we need to intro-

duce some additional notation.

Some Notation and Mild Assumptions

Let X, be the true value of the function, i.e. the

value corresponding to the observed data z. Define the

following information operators on H by
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i Isp(xo) = EHQ[xO] + AHJEXO]
. S Is(xo) = EHQ[XO]
HQ is the Hessian of Q, HJ the Hessian of J and ex-

pectations are taken with respect to the probability distri-

bution of =z .
We assume that Is(xo) and ISP(XO} (and their in-
verses) have cholesky-like decompositions (i.e. Is(xo) =

IZ(XO)IE(XO)) and that Q satisfies:

q.l E[VQ(XOIZ)] =0
G2 Var[VQ(xolz)l = I_(x,)

g.3  ENTR(xp)V0lxgl2)N® = vy <

where the inverses are generalized inverses.

Finally let ul(l) = vl(k)/vo and uz(A)/v0 where Vg
and v, are given by:
vo (h) = ENT 39Q(x,|2zl?
1 sp 0
= tr{I_(x Y1l x 0}
s 0" 7sp 0
Vo) = EITE(x) IoE (%) 7Q (x4 ] 2) 112
2 s 70" "sp "0 0

s -2
tr{Is(XD)ISp(XO)}

(We tacitly assume the commutivity of the I-operators.)
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The Proposed GCV Estimator

In the above notation, Craven and Wahba's GCV estimator

is the minimizer of:

Q(xAIZ)
Wilexh [T-1u, N T

where x, is the minimizer of I,, and Q(xk1z) is given

by:

Il o~ 3

alx,|2) = = ] [z, -L;x17%.

i=1
This suggests that a plausible GCV estimator for general

Penalized Likelihoods is

Q(x, [2)
Wibh) = e e
[l—-ul(l)]
where Wy is now evaluated at Xy
& -1
uy (A = tr[Is(xk)Isp(xl)]/vO'

The matrices required to calculate u, are usually at
the final stage of the iterative procedure used to calcu-

late x, (see Chapter 5 for an example).

4.3 SOME JUSTIFICATION FOR USING THE GCV ESTIMATOR

We now give some heuristic arguments in favour of the
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GCV estimator of A proposed above. The argument relies

heavily on how well X, can be approximated by x;:

~ i
0 = &y = T GBI, 825

0
A

Loosely, one can show (under suitable regularity conditions)

b4 also comes up in the asymptotic analysis of X, .

that if A = 0 at an appropriate rate, the distance be-

tween x; and x is 0P of distance between x, and

0

x; (see Cox and O'Sullivan 1983). By strengthening such

results it may be possible to rigourize the heuristics
which follow.

Suppose we say that:
- 0
EQ(xA|z)‘-EQ(x0|z)4-E <VQ(x0|z), X5 >
L - o
+ %E <Is(XO)(Xl xo), (Xk x0)>
and
() = eI (I >(x )1/
H1 B s 70’ “sp 70 0 °

Then 2EV(A) can be written as:

_ 2EQ(xo]z) - 2u1(A)ve + ER(A) Ve
(1 - u(M)1°?

2EV ()

in which ER(X)
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ER(A) = E <Is(xo)(xk-x0), (xk--x0)>/v0
Tt 2
= b (XA) + vz(xx)
= bias + vartability
where
2 e i %
b (Xl) = <Is(x0)(Exk xo), (Exl x0)>/\)O
and
\)2(}{)\) = E <IS(X0) (X)\-EXA); (X)\—Exl)>/\)0

Notice how the information operator enters naturally into
ER()A). For example, in the logistic regression model of

section 3 of Chapter 2, R(A) takes the form:

R(A) = % nipi(l-"pi)[Lixh-Lixo]z'

Il o—13

qe=di
% Y 1] £ .
Assuming vz(xl) ~ vz(xk) uz(A) we get (using Craven

and Wahba arguments) that:

ER(\) + 2E0(%o]2) = 2BV(A) _ =mi(2 - w) 1 M

ER(A) (L-p1)? b2+, (L-m1)?

from which it follows that

ER(A) + 2EQ(x,[2z) - 2EV(N) |
ER(A)

Z i)

where
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2
ul(l) 1

" Z
Wy (A | L =py)

h(Ar) = Zul(k) +
These considerations lead us to the following proposition.

Proposition 4.3.1.

~

Letting A* and A be the minimizers of ER(A) and

EV(X) respectively, the expected inefficiency I* defined

by:
gtee ER (1)
ER(A*)
satisfies:
e h(A™%)
1-h(X)
and if uq and ui/uz tend to zero along the sequences
k*(vo) and i(vo) then
¥ > 1 as B 7 5
Proof:

In view of the approximating assumptions, the proof
is identical to Theorem 4.2 of Craven and Wahba's paper. 0
A NUMERICAL EXPERIMENT

The heuristics are now supplemented by some numerical

examples. Two separate logistic regression models were



simulated; independent binomial observations

were generated according to:

- o
log [‘l—-_—l?]z X(ti) i=1,2,...,80
1

The test logit function, x, was:

2
x(ti) = -3.0 + 4.386 emtl

2(1=1)

75 G = L2000 B0

where ti = =1 +

65

vy, ~B(n,py)

For the first experiment n = 10, for the second

n = 1. 1In each case the logit was estimated as the mini-

mizer in W;[ul,l] of:

80

1
1 () = I fnlsg L+e*E ] - yx(e) )42 J [x" () ]2dt

i=1 -1
with ) chosen by the GCV method proposed in

For the logistic model V(A) reduces to:

80
.Z {nlog[l-kex(ti)] - yix(ti)}
Wiy = - :
(tr[I-2(A)1)
where A(A) is the A-matrix (see section 5.2)

the final Newton-Raphson minimization problem
3..3)5 Laes
1

80 1
) o [zi - x(ti)]2-+A [ fxM(t)]%de
i=l A &1

section 2.

arising in

(see section
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where
(Yi_npi)
& s Ul RN
—"l P ~ Nl ~
and
i exx(ti)
B = - o
= l%—exk(tl)

Figure 4.3.1 and 4.3.2 summarize the results of the
study. Figure 4.3.1 plots the true and estimated logits

while Figure 4.3.2 gives scaled plots of the functions

v(x) and R(X). R(A) is given by:
80
RO =1 vaps (@ -p ) teley) —x (B)) %
i=1

These plots show that the generalized cross-validation
function, V(A), chooses the smoothing parameter quite well

in both cases.
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CHAPTER 5
A BAYESIAN METHOD FOR INVERTING SATELLITE

RADIANCE DATA

5.1 INTRODUCTION

Remote sensing of the atmosphere is a rapidly develop-
ing science. Today's meteorological satellites, such as
those in the TIROS-N series, have high resolution instru-
ments on board, which measure the intensity of upwelling
radiation at selected channel frequencies. An in-depth
description of the data retrieved by the radiometers on the
TTIROS-N satellites can be found in Smith et. al. (1979).
Satellite radiance data make it possible to obtain informa-
tion on the atmosphere's temperature, moisture, and wind
structure. One of the goals of the current Satellite
Meteorology programme is to substantially upgrade the
quality of the atmospheric information obtained from satel-
lite soundings. A major challenge in this direction is to
develop more refined numerical and statistical techniques
for inverting the equations of radiative transfer.

For a non-scattering atmosphere in local thermodynamic
equilibrium the radiative transfer equations (RTE's) (see
Liou 1979) describe how the satellite up-welling radiance

measurements relate to the underlying atmospheric tempera-
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ture distribution T:
Po
e i ]
Rv(TJ = Bv(T(po))Tv(PO) L Bv[T(p)]Tv(p)dp
where p, is the surface pressure, Tv(p) is the trans-

mittance of the atmosphere above pressure p at wavenumber

v, and Bv is Plank's function given by:

3 3 ol
Bv[T(p)] = ¢V /[exp(czv/T(p)) 1]
ke L oIl ey e o = e
c, = 1.43868cm - deg(K)

The RTE's are, of course, an idealization. They des-
cribe the radiances which the satellite radiometer would
record in the absence of such things as atmospheric attenu-
ation due to clouds or instrument noise. Various clevei
techniques are used to correct for the cloud attenuation
problem, after which it is reasonable to model the satellite
data as:
zvi = Rvi(T) + €y doime a2y e s M
where z is the satellite "cloud corrected" radiance
measureme;t at wavenumber vi, and Ei is the deviation
of z from the true radiance measurement Rv.(T)' These
deviations are probably best thought of as rand;m variables

having distributions which can be modeled from practical
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experience with the radiometer.

A number of procedures have been proposed to retrieve
temperature profiles from satellite radiance data (see
Fleming (1982) and references cited therein). The Statis-
tical Eigenvector method of Smith and Woolf (X976 1is
currently favoured? Recently Purser (1983) has pushed for
a Bayesian synthesis of meteorological data. In this paper
we desribe some Bayesian methods for estimating temperature
profiles form the satellite radiance data. Prior informa-
tion about atmospheric temperature profile structure,
channel noise characteristics, and the non-linear dependence
of the radiance measurements on temperature are explicitly
téken into account. The discussion is restricted to the
single profile case but extensions to the estimation of
global temperature fields are quite feasible. The basic
technique is presented in section 2; in section 3 we ex-
amine how a crude version of the Bayesian technique per-

forms on real and simulated satellite radiance data.

5.2 THE BAYESIAN INVERSION TECHNIQUE

5.2.1 GENERAL FORMULATION

Let the temperature profile, T, be written as

1) Note added in proof: see also Smith(1983) .



72

where T0 ig an initial guess for - T "‘(for example the

regional climatology profile) and & 1is the update to TO
which is to be estimated from the data in hand. Our method
of estimation consists of considering the functional:
m
Lo 8L sk A lEs =R (T #6) Tk AS(EL . 0D
m = e V. 0
i=1 i
and choosing the update, Gk, which minimizes IA over an
appropriate space, C, of plausible candidates. The weighted
: m
residual sum of squares L z w.lz %R '"1* 7ig 'designed to
mi=1 X 1y \)i
model the information contained in the observed radiance
data - there is an implicit assumption that the distribution
of the € in (5.1.2) is approximately Gaussian, with mean
zero and variance w;l. The second term, J, models past
information or apriori beliefs about the behaviour of atmo-
spheric temperature profile structure. 1In a strict Bayesian
formulation, J behaves like the -2 loglprior probability
density of 8] (see Box and Tiao 1973). The parameter A
specifies the relative weighting given to past and present

information. A data-based method for choosing A 1is given

in section 3.2.

5.2.2 THE CHOICE OF PRIOR

Case A. Smoothness Prior

A general purpose smoothness prior for § can be



13

specified by settinj
P, .
J(8) =J [§" (p)1%dp .
0

In probabilistic terms (see Kimeldorf and Wahba 1970) this

choice of prior says that apriori we believe:
8" (p) = white noise.

The Bayes estimator of § corresponding to this prior is

the minimizer of Ik given by:

P
0
2 n 2
; wi[zi—-Rvi(TO-+5)] + A JO [8%(p) ] dp .

=N
Il ~18

T obs) =iz
1

From a practical point of view, however, the general purpose
prior is suboptimal, since a more appropriate representa-
tion of prior information would be in terms of regional

climatology.

Case B. Extracting a Prior from Regional Climatology

Suppose we represent profiles as a.linear combination
of basis functions {¢j}. The deviations of a profile from
regional climatology can then be written as:

8§ = z aj¢j.
J
Regional climatology data bases can now be used to model

the distribution of the basis coefficient vector, ao. If
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the number of basis functions is finite, and the distribu-

tion of o was modelled by a multivariate normal distri-

bution
a = N(O,Ea)

where Za is the sample covariance matrix obtained from
the regional climatology data base, the resulting Bayesian

estimator of & would be:

B, =3 B.ubs
B ia
.

~

where o 1s the minimizer of:

1 3 2 £ =l
IA(a) = = Elw,[z.-Rvi(TO+-§ aj¢j)] +la" I a.

Under either of the above two priors, the iterative
scheme used to approximate Gl is essentially the same.
At each stage the non-linear radiance functionals, Rv (T0+

8), are linearized about the current iterate, Sk, and the

resulting quadratic minimization problem is solved.

5.3 COMPUTATIONAL METHODS

5.3.1 THE GAUSS-NEWTON ALGORITHM

An iterative Gauss-Newton procedure can be used to

obtain the optimal correction defined by the minimizer of

I Let Tk be the temperature profile estimate at the

e
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kth iteration.

The iterative algorithm for obtaining the Bayes estimate

can be stated as follows:

Iterative Gauss-Newton Procedure

while [convergence criteria fail to be met] do

{

Linearize the radiance functionals

Solve for 6k+l

Update convergence indicators
}

end

A detailed description of the iterative steps follows.

STEP 1: LINEARIZATION OF THE RADIANCE FUNCTIONALS

Linearizing Rv-(T) about Tk we obtain:
il

5

3 k ; 5
R .(T) = Rv.(T ) + Rv.(Tk)(G §
al i 1

where the action of the linear functional RG (Tk) on a

1
function h is given by:

1 ] PO
R' (A h = Ks(vi,po)h(po) = f

0 K(vi,p)h(p)dp



The kernels KS and K are:

Il

B! [T(p)17, (p,)

Ks(vi'PO) :
1 1

1 k
Bv_[T (p)]Tv (po)

K(vi,p) ]
3 B a8

STEP 2: SOLVING FOR THE NEXT ITERATE

After the linearization we get the next iterate,

§¥"1 by minimizing the functional
(k) Rt k o e
16 5y = T w 2§ - Ry (TF)81% + A3 (8)
i=1l ¥
e e L Y i ST e T
h fu b \)i \)i

Two cases corresponding to the smoothnesss and regional

climatology priors will be considered.

solution for the Smoothness Prior:

P
Here 6k+l is the minimizer in C=={6:f00 [6" (p)]1%dp

< ©»} of the functional:

(k s T k k Fo 5
gy =L F w, 2F-r! (TM)812+2 [ [8"(p)]1%Ap.
A m .- 1 1 V.
i=1 i 0

; k+1
It follows by straightforward calculus that § can be
written as:

m
5k+l(p) =d, + dp + Z P g
1 2 127 373
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Pzr/z 7 r3/61 P

2 )
Q (r) =
p 2 3
pre/2 Spr/eyippmEnt
. pO n " . .
Letting Kij==<Ei,£j> = IO EiEjdp for d,d = dpZipeeepy
g, S e R;‘(Tk)p BeY W= lem o the

i
coefficients d and & are the solution to the linear

system:

[K + mAI]le + T4

Il
N

th = 0

Taking a QR-decomposition of the T matrix (T==[Q1:Q2]

t

R swith =R+ = [Rl:O] see Bunch et. al (1979)) 4d

and c are given by the formulae:

c = Q;[QSI(QZ i mAI]_lgzzk

fok e el o il "
di= Rl Ql[z - K2l

Note that the calculation of Kij can be done by first

fitting cubic spline interpolants, Ej, to Ej evaluated

on a fine grid and proceeding to approximate Kij as:

o o >
Rig % <By08s

This method of approximation is used by Nychka (1983).
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Solution for the Regional Climatology Prior:

6k+l is now given by

5k+l g Z a$+l b
3 J

J
where ak+l is the minimizer of:
m ;
Ik(u) s ) wolgs o Bnigl? o+ % ab Z_l Q.
A m ., P 1 i o
i=1
so oFL - xtp x + mr z7H % 2¥ where X and D
w Wi w w
are:
PO 4
gl Ks(vi,po)¢j(p0) - % K(vi,p)¢j(p) p
Dm = diag(wl,wz,...,wm).

The kernels KS and K are given above.

STEP 3: CONVERGENCE CRITERIA

Standard convergence criteria can be used in the

above iterations. We have used:

k+1 k+1 k

el e s e 8 T
k+

a Lo ous™ o s®insk

where ||l is an appropriate norm.
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5.3.2 CHOICE OF THE SMOOTHING PARAMETER

An extension of Generalized Cross Validation (GCV)
can be used to estimate the smoothing parameter, Ai
empirically from the data. GCV was developed by Craven
and Wahba (1979) to estimate a smoothing parameter similar
to A in a linear functional model context. In their
model, the observations zi are noise contaminated linear

functionals of an unknown function, x, of interest.
z, = Lix + noagse, 1 = 1,255,

where the Li's are linear functionals. The estimator,

of x is the minimizer of the functional

Xy r
1 m :
2 L 2
= lza= Dl ) o Ixite)lsde  Aa0..
i=1l
It turns out that the residuals, z:.L - Ei' can be written

as a linear transform of the data.
2 = 2 = [T = A(X}]1z

where A()) is an mxm matrix defined in terms of the

linear functionals. Formally A(A}ij = = i (Xk) : The
Zz.

J
GCV estimate of A is the minimizer of the function

1 A
LA T e
i=i

(= tr(1 - A0

v(x) =
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= RSS (A)
m

[1-p(X)1?

V(A) 4is an assessment of A combining goodness of fit
and model dimensionality (Wahba refers to tr[I-A(A)] as
the "equivalent degrees of freedom" of RSS()A)) of model.
The goodness of fit is measured by the residual sum of
squares, % RSS(A), while the dimensionality of Xy is

measured by the "effective" number of parameters describ-

ing Xy relative to the sample size, i.e. p(A). As
A e oy Xy tends to a straight line regression making
% RSS()A) take on its maximum and p(X) be a minimum.

A

polant minimizing = RSS(X) and maximizing p(X). It
m

On the other hand, as X - 0, X tends to a data inter-

has been shown that the GCV estimate of A, for large
sample sizes, comes close to minimizing the integrated

squared error between x and %

R(A) =

=N

i 2
izl[Lix - Lixk]

For further discussion see Craven and Wahba (1979),

Speckman (1983) and Wahba (1982).

Extended GCV Estimator of the Smoothing Parameter

In the linear functional model the definition of
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dimensionality is facilitated by linearity. Even though
the radiance functionals are not linear a simple approxi-
mation can be used to develop a dimensionality measure
similar in spirit to p(A) above. This approximation
makes use of the fact that the optimal correction under
the smoothness and regional climatology priors minimize

quadratic functionals:

=
RS==]

] T 2
wi[zi-Rv.(Tl)4—Rvi(TA)6l-uRvi(TA)6] + AT (8) (*)

i=1 3.

so that the residuals are defined, implicitly, by a linear

equation.
e Al *
z - Rv(TA) e Al(k)]z
i 1 i
where 2z: = z, =~ Rvi(Tk) + Rvi(Tk)GA and Al(k) is the
A-matrix arising in the minimization of (*).

We therefore have, that to a first order approxima-
tion, the effective number of parameters in 6A relative

to the sample size is given by:
py (V) = tr(a; ) 1/m
which leads us to the GCV-type assessment of A as

&
= REE(2)

V() = ———
[l—pl(h)]2
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Note that the matrix Al(l) is already available
from the final stage of the Gauss-Newton iteration. After
some algebra one can show that V(A) for the smoothness
prior is given by:

2
HcHRm

V(r) =
1 t =1
= [tr(QZKQZ + mAI)

]2
and for the regional climatology prior V(A) becomes:

m
ey Y son [oahemy s (EIAE
m . L B Vi A
1=1. 1

V(A) =
1 -1...t -1.-1
[= tx Za [X DmX-thEa 1

]2

5.4 PERFORMANCE OF THE TECHNIQUE

In order to assess the potential of the Bayesian
method described in section 2, analyses with real and
simulated radiance measurements were performed. For each
of 15 locations shown in Figure 5.4.1, ~an operational profile
(obtained via the statistical eigenvector method of Smith and Woolf 1976)
and a verification profile (obtained from radiosonde data) were kindly
made available to us by Dr. Tom Koehler of the Meteorology
Department at UW-Madison. Dr. Koehler also provided us

with the HIRS (the seven 15um and five 4.3um band

channels) and MSU (the three O2 channels) satellite



Figure 5.4.1

0027 January 1980 TIROS-N Sounding Locations
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The 15 shaded circles were the locations used in the study.
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radiance data corresponding to the operational profile. These soundings

were given "cloud free" classification by the HIRS radio-

meter.
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The radiance data appeared to have systematic biases
by channel. Figure 5.4.2 plots the equivalent brightnéss
temperature differences between the observed radiance
measurements and their "true" values, i.e. the radiances
predicted by the verification profile. (The brightness
temperature of a radiance measurement 2z at wavenumber v
is defined to be B '(z) i.e. the equivalent black-body
temperature corresponding to z .) Table 5.4.1 gives the
median bias and the scale of measurement error computed from
Figure 5.4.2. Using the table below, a simple correction
was made to the radiance data - a raw radiance measure-
ment was corrected by subtracting off the median bias
found in the channel. In addition to these bias corrected
radiance data, simulated radiance measurements were gen-

erated from the verification profile at each location

according to:

where e, ~ N{0,l) and the /ﬁ;‘s corresponded to the
standard channel weights given in column 4 of Table 5.4.1
i.e. column 4 converted into radiance units. T is the

verification profile.
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Brightness temperature differences between
satellite radiance measurements and "true"
radiance i.e. those predicted by the verifi-
cation profiles.
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TABLE 5:4.1

SUMMARY STATISTICS FROM FIGURE 5.4.2

87

Channel Channel Estimated Estimated Noise Level
Number Wave Bias from Noise level fram Past
from Smith Number Figure 1 from Experience
et al (1979) Figure 1
HIRS Channels
il 668 -0.62 1.54 2:50
2 679 -1.38 1.32 1.20
3 691 -0.68 0.68 1..30
4 704 -0.38 0.38 0.75
5 716 -1.02 0.47 1.00
6 732 -1.34 0.66 1.00
7 748 -2.25 1.49 1.50
13 2190 -0.40 1.74 1.00
14 2213 -0.30 1.14 0.70
15 2240 0.08 0.82 1.00
16 2276 3.16 3.46 1.40
17 2361 4.07 4,34 3.00
MSU Channels
2 1.792 0.11 1.12 0.60
3 1<833 0.52 1.01 0.50
4 1.933 -0.84 0.50 1.00
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Using the algorithm in section 2, with the general
purpose prior and- A chosen by the modified GCV cri-
terion, two temperature profiles were estimated at each
location - one from bias corrected satellite data, and the
other from simulated radiances. Throughout these calcula-
tions transmittances corresponding to the verification
profile were used, and the surface pressure was set at
1000mb. The operational sounding was used as the first

guess.

The individual retrievals are given in an appendix
at the end of this chapter. Figures 5.4.3 - 5.4.5
summarize the results of the study; three average bias
and variability plots are presented. Bias and variability
were computed as follows: for the ith'map location, let
Si be the difference between the verification profile
and the retrieved profile. The bias, b(p), at pressure
p is the 20% trimmed mean (mean taken over the middle
60% of values) of {ai(P)}ffl’ while the variability is
the 20% trimmed mean of the absolute deviations
{[Si(p) - b(p)l}ifl. Because of the presence of a few
"wild" 6i's it was felt that these were more accurate
estimates of bias and variability than the usual mean and

standard deviation (see Tukey 1977).
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Figure 5.4.4

Performance of the Operational Method

on Actual Satellite Radiance Data
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Figure 5.4.5

Performance of the Bayesian Method on

Bias-corrected Satellite Radiance Data
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The Bayesian retrievals perform quite well, especial-
ly since no real regional climatology has been incorpor-
ated into the prior specification. While the operational
retrieval has a large bias in the neighbourhood of the
tropopause, the Bayesian retrievals are much less biased
at this level. At other levels the Bayesiaﬁ method (at
least with simulated noisy radiance data) does just as
well as the operational retrieval. The level ot vari-
ability in all three retrieval methods iz approximately
2°K. The variability in the Bayesian retrieval with
satellite (bias corrected) radiances has a peak near the
surface. This peak may be due, in part, to the fact that
we assumed surface pressure was 1000mb which for retrievals
near the Rockies is somewhat suspect.

Overall the plots are encouraging and suggest that
it may be worthwhile investing some more time into de-
veloping a Bayesian retrieval method using a prior derived

from regional climatology.



APPENDIX B. RESULTS OF INDIVIDUAL RETRIEVALS

Fifteen figures follow. Each figure has two plots
corresponding to the retrievals from simulated radiance
data and bias-corrected satellite radiance data respec-
tively. The true profile (solid), the operational pro-
file (dot), and the estimated profile (dash) are all
given.

The latitude (degrees North) énd'longitﬁde (degrees

East) corresponding to each retrieval are as follows:

Retrieval # Latitude Longitude
1 30.48 95.36
2 31.28 92.51
3 31.68 89.95 .
4 31.99 : 85.99
5 32:83 95.41
6 8397 94.08
7 34.41 85.15
8 37,78 105.27
9 39.52 98.05

10 39.95 96.15
11 39.04 106.74
iz 39.91 99.51
13 47.39 109.69
14 48.73 110. 28
15 51,36 101.99

9.3



Figure 5.A.l: Results for Retrieval 1
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Results for Retrieval 2

Figure 5.A.2
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Figure 5.A.3:

Results for Retrieval 3
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Figure 5.A.4:

Results for Retrieval 4
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Figure 5.A.5: Results for Retrieval 5
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Figure 5.A.6:

Results for Retrieval 6
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Figure 5.A.7: Results for Retrieval 7
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Figure 5.A.8: Results for Retrieval 8
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Figure 5.A.9: Results for Retrieval 9
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Figure 5.A.10: Results for Retrieval 10
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Results for Retrieval 11l

Figure 5.A.1l1
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Results for Retrieval 12

Figure 5.A.12
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Fighre 5.A.13: Results for Retrieval 13
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Pigure 5.8.14: Resulks For Retrieval 14
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Results for Retrieval 15

Figure 5.A.15
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APPENDIX C
EXISTENCE OF SMOOTH SOLUTIONS TO:THE

RADIATIVE TRANSFER EQUATIONS

Here we show how the non-linear regression theory
developed in section 3 of Chapter 2 can be used to estab-
lish the existence of smooth (smoothness prior) solutions
to the ill posed problem associated with the radiative
transfer equations. Recall that the objective functional
here has the form

n

P
0
} [zy =R, (To+8)12 41 [ (s ™ (py12¢p  (B.1)

I.(8) =
A g=1 i 0

and we are looking for minimizer of this functional in

CTO where CT0= {5E‘W§[0,90][T0-+6 -8 & TO is the initial

guess profile and Rv(T) is given by:

P
0 T
R, (T) = B [T(py) 1t (py) - [j~ B,IT(IT, (p)dp

where Bu is Plank's function and Ty is atmospheric
transmittance as a function of pressure.

We note from physical considerations that atmospheric
transmittance is a continuously differentiable and mono-
tonic decreasing function of pressure. We assume that the

initial guess profile is continuous in pressure. These
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facts will be made use of in the sequel.

For-each® mizal, Cop is clearly a convex set but
0

since evaluation is a continuous linear functional in Wg

for m =1 it follows that C is also weakly closed.

To

Let us now make the following three claims:

(c. k) Rv is weakly continuous on C, V v>0
0

{T-+6) 0 ¥ 8eC with equality iff
v a0 TO

+ § =
TO 8 0

(c.3) R\)(T0 + &) is convex as a functional of §

(e.2) R

on &
Gy
0 .

Our existence result will follow from these claims.

Theorem B.1l.

If (c.l)=(c.3) are true then H SA € CT such that
0

Yiu= = 4min IA(S) 5
(SECT
0

Proof:
From (c¢.l) we have by Theorem 2.2 that IA is weakly

lower semi-cContinuous on Cg also using the continuity
0
of evaluation Cop satisfies property 2 of section 2 with
0
2 = -Tg.. Tetting ¢(x) = |x| in Theorem 2.3.5 we have
n
from fe.2) and (=.3) that ) ¢ IR, (T0-¥6)] is convex
n i=1 I n
and E $IR (T FE] = Ve TP K550~ (d2en z Bl +8)
g il i=l i
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has a proper minimizer, —TO, in {=T. o+ H0] n Cn ). Hence

0
; 0
IA is coercive on CT ~and the result follows by Theorem

0
22 g

The remainder will be devoted to proving (c.l)-(c.3).
We begin with a few elementary lemmas concerning the

Plank's function Bv‘
Lemma B.2.
150 ST - is a convex function on [0,®).

Proof:

2 3 -
Bv(t) = cqV /[exp(czv/t) 153 .
Clearly it is enough to show that
f(x) = 1/[exp(l/x) - 1] 1is convex for x = 0.

A direct calculation reveals that

£ (x) = exp(l/x) g(1/x)
x3 [exp(1/x)-112

where

gly) = -2-y+ 2y exply)/lexp(y) - 1]

[(y - 2) (exp(y) - 1) + 2y]l/ftexp(y) - 1]

but 1/[exp(y)-1] >0 ¥ y>0 and
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(=]

Yt 2¢§ =1

(y - 2) [exp(y) - 1] + 2y

% Lf yj(j-Z)
23 31

3

A%

0Ty =0

Consequently g(l/x) 2 0 ¥ x 2 0 and this implies that
f"(x) 2 0 ¥ ¥ 2 0. It follows that £ and therefore Bv

are convex on [0,®). O

Lemma B.3.
BG is bounded on [0,=)}.
Proof:
i
clqzv exp(czv/t)
tz[exp(czv/t)- 1]

B\')(t) =

This is continuous in t and tends to clvz/c2 as t o,

Consequently B; is bounded on [0,). O

Lemma B.4.
[Justification of (c.1l)] ¥ v > 0, Rv(TO4-5) is

weakly continuous on Cg, .
0

Proof:

P L
R (T) = B [T(p,) 1t (p,) - [,OB,[T(p)I7) (p)ap
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Now evaluation is a continuous linear functional on
W?[O,pol and B is continuous on [0,®) it follows

that Bv[T(pO)]Tv(pO) ;s weakly continuous on CTO. TE
remains to show that IOO Bv[T{p)]TL(p)dp is weakly

continuous. Let {Gn} be a sequence of functions in C,
0
converging weakly to ¢ (6 must also lie in G by weak
0

closedness) and let T_ =T, + & and T. + 6.
n 0 n 0

Py Po
L 7By T3 RV 125 tpide - IO B, [T @)1t (p)dp]

Po
< [ "B i (221 ~ B IT(p) Ilzg (pykdp
0
Po
< constant [ |Tn(p)-T(p)HTG(p)|dP
0

by Taylor's theorem and the boundedness of B; (Lemma B. 3).
Ty is a transmittance function so T; is continuous
which implies that TG is bounded on [0,p0]. Conse-

quently

p P
IOOITn(p)-T(p)nT;(p)Idp s constant [, °|T_(p) - T(p) |dp

Hence

po po i
ﬂ) Bv[Tn(P)]T p)dp -+ IO BU[T(p)]Tv(p)dp as n -+ ©

s
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p .
i, IOOBu[T(p)]T;(p)dp is weakly continuous on Cg, .

0
Finally since the sum of two weakly continuous functionals
is weakly continuous it follows that R, is weakly con-

tinuous oen. C. . g
To

Lemma B.5.

[Justificationtof (ei2)l] Yedi 2 0y B T0-+6) > 0

s

¥ 8 e CT with equality iff T0 + § = 0.
0

Proof:

Positivity follows from the positivity of B\J on [0,x)
and the fact that L is a positive strictly monotonic
decreasing function of pressure. Clearly Rv(O) =0
since Bv(O) = 0. Now suppose Rv(T0-+6) =0 for some
§ eCTo_ Then Bv[gO(PO) +5(p0)]1v(p0) =0 (=:’T0(p0) *
8(py) = 0) and IOOBv[TO(p)-FG(p)]TG(P)dp‘= 0. If
TP e [0,p,) such that To(p*)-ké(p*) >0 then by con-
tinuity of TO +8 de > 0 such that ¥ p e[p*,p*-+e]
To(p)-+6(p) >0 BUt, since B and -TG are both strictly

positive functions on their respective ranges, we would

tilell have that
0 \) 0 p p AV} p P -\) O -

This is a contradiction. Consegquently Rv(T0-+6) =0 iff
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ABSTRACT

There are many areas in applied science where the non-parametric
estimation of regression functions is important..

In this thesis a general penalized likelihood method for non-parametrically
estimating regression functions under a variety of observational models is
developed. The existence and numerical approximation of the estimators is
studied and a cross-validatory method for estimating the smoothing parameter
is presented. Implementation of the method is algorithmically straight-
forward.

The procedures developed are applied to the estimation of atmospheric
temperature profiles from satellite radiance data and are found to compare
favorably with the currently used methodology.



