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ABSTRACT
We present a fully automated retrieval algorithm for estimating non-
linearly sensed functions. This algorithm combines a simple Gauss-Newton
‘teration with an extended form of Generalized Cross Validation. The perfor-

mance of the algorithm is illustrated in the context of a remote sensing prob-
lem arising in satellite meteorology.

1. Introduction
Remote sensing experiments may be found in every branch of the physical and biological
sciences. In these experiments, the desired phenomenon cannot be obse/rved directly, rather
remote or indirect observations are available on some functionals of the function of interest.
Some examples are: computerized tomography, recovery of geological structure via seismic
exploration, the recovery of atmospheric vertical temperature structure from satellite-observed
upwelling radiation, and the recovery of particle size distributions from scattered radiation or
cross-sectional information. For these experiments the usual observational model is:
yi= N@@,x) + €;, P2 o ot (D
g(r), for rin Q, is the unknown smooth function it is desired to recover, the €;’s are zero-

mean measurement errors with variance Ee,—2 = w,»"oz, where the scale factor o may be unk-

nown.  could be the real line, Euclidean d-space, the sphere or the atmosphere. The X;'s are



D
the design points, and N(8,x;) is, for each i, a non-linear functional of #. For example

N@,x) = [ K(x,0(0),0) dr. )
The design space, (the space containing the x;'s,) may be quite arbitary.

It is desired to retrieve an estimate of the.function 0 from the observed data. A wealth of
procedures have been proposed for handling such problems. See Backus and Gilbert[2],
Chahine[4], Smith[21], Surmont and Chen[24], and also the books of Anderssen, de Hoog and
Lukas[1], Baker and Miller[3], Deepak[9], Groetschl11], Rall[20], Tikhonov and Arsenin[25]
and Twomey[26]. Recently, Bayesian or Regularization techniques, and especially the cross-
validated spline smoothing methods proposed in Craven and Wahbal6], Golub Heath
Wahba[10] and Wahbal27] have had some popular success in this area, see Crump(7], Hutchin-
son and Bischof[12], Merz[16] and Nychka et al[17]. In a Bayesian framework, the estimation
of a function is done by choosing a value of the function which is probable in the light of the
observed data, but is also in keeping with prior nolions‘ about the behavior of that function.

For the remote-sensing model this reduces to estimating # by minimizing a quantity of the

form

WO = L3 wmly — NOx)+AJ60)  A>0 3)

=1

over some plausible set of candidates ®. The first term measures fidelity to the observed data,
while the second term, J(8), takes the prior information‘ into account. I—lﬁ:rér we let J be a qua-
dratic functional of @ which is zero when @ is the zero function; (e.g. as J(8) = flf)”(t)]2dt).
The smoothing parameter, A, controls the relative weighting given to the prior. Formally, X\ is
a free parameter to be chosen by the analyst, but in practical situations it is convenient to have
a reliable automatic procedure for isolating a ball-park value. In this paper we describe how the

Generalized Cross-Validation of Craven and Wahbal6], can be adapted to handle this problem.

The result is a fully automatic retrieval algorithm for non-linear remote sensing experiments.

Qur analysis could have been carried out in a function space setting, however, we decided

to avoid this generality. Here we suppose that the function 6 can be well approximated by a



finite collection of K basis functions ¢, i.e.

"
0 = Y. Bub. (4)
y=1
where 8 = (8}, - - - ,Bk)' is an element of RX_If nis small, or even of moderate size, K will
generally be larger than n, we discuss the choice of K in a particular example later. With this,
the remote sensing problem is rephrased as the estimation of the coefficients 8 from the data.
Substituting into Eq.(3) and absorbing w; inside the brackets, the estimate of B minimizes:

L3 (zmn(a,x)1* + AB'ER )

=1

K K
where z=v/ Wi, 1(8,x) = \/w,NI3.B,$,,x] and, since J is quadratic, B'Z = J(EB.u,). In

=1 y=]

a practical problem the approximation properties of the basis functions should be carefully con-
sidered in the light of the resolving power of the instrument and, of course, the measurement

noise. In this connection, B-spline basis functions, described in the book by De Boor[8], have

three very attractive features:

(i) Excellent approximation properties.
(ii) Local support which, in integral equation settings, can simplify numerical quadra-
ture.

(iii) Publically available software for computational manipulation.

From a theoretical point of view the introduction of the basis functions is not necessary, it
will, we hope, make the algoritm a bit more transparent. A discussion of the more elaborate
function space theory can be found in O’Sullivan[18] and the references cited therein. The
paper is organized as follows: The retrieval algorithm is presented in Section 2; The algorithm
selects an appropriate value for the smoothing parameter by minimizing an extended General-
ized Cross Validation (GCV) funcliqn. In Section 3 we review the idea of GCV for linear
problems and motivate the extension to the non-linear case. Section 4 talks about a tempera-

ture profile retrieval problem which arises in Satellite Meteorology and reports on a small



4.
Monte Carlo study illustrating the performance of the method.

2. The Automatic Bayesian Retrieval Algorithm

For a given trial value of A, the minimizer of the objective function, Eq.(5), is computed

via a sequence of Gauss-Newton iterates. Let 8" be the I'th approximate minimizer of (5).

At the (1+1)’st step, n(8,x,) is expanded about B8," as:

1(8,x) = nB{",x) + Vn(B{".x) (@ — B\") (6)
and the new iterate is defined to be the minimizer the quadratic function

n
YLz = (B".x) — VnB{" x) (B — B\MI*+ \B'ZB. )
=1
6 ,x,-)
So letting X,-}” = ,37_;.%_43 -0 and z{” = X/"8\" + z; — n(B", x,) the iteration is
J
B = [x Wy 4 ppx]-1x (0,0 il (8)

Once the iteration numerically converges, say at stage L, A is assessed by the extended GCV

function, ¥(\), described in section 3 below.

1—RSS ()

V(\) = Z : 9)
[tr;(]—AL()\))]z

n
where  RSS(\) = Y [z—n(B\,x)]1> is the residual sum of squares and

=l
A, ) = X P xE x4 \3]7'X LY A range of X-values is explored’ and the 'optimal’
value found by minimizing V(\) w.r.t. A. In practice, it has been found that it is best to do
this minimization in log A scale. Dropping superscripts the core of the algorithm can be con-

veniently implemented using Cholesky factorizations:
1. Find the Cholesky factorization of X'X + nAX
RR' = [X'X + nrXl

2. Solve for 8, by back substitution

RR'B) = 'X'_Z
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3.  When convergence is reached compute the GCV

L rsso)

n

[l—l?r((RR')-*X'X)P

V(A) =

The calculation of the X-matrices will necessitate integration of the basis functions when-
ever the functionals N(-,x;) involve integrals of #. Numerically such integrations can be
rapidly performed if the basis functions have local support (such as B-splines). Aside from the
computation of the iterative design matrices, the operation count of the algorithm is dominated
by the O(K?3) Cholesky steps. This is to be expected since the technique ignores any structure
which the matrices [X”" X" + nAZ) may possess. In particular situations it would be desirable

to exploit any structure which these matrices possessed.

3. Generalized Cross Validation

In our retrieval algorithm values of the smoothing parameter are assessed by means of a
Generalized Cross Validation function. Generalized Cross Validation (GCV) was developed by
Craven and Wahbal6], for assessing A in the case where the data functionals were linear. Here
we describe how this technique works and provide an extension to the non-linear case.

3.1. The Linear Case

/
If n(B,x,) is linear then we may write n(8,x;) = X;8 where X; is an element of R¥. It

follows that the estimate, 3,, solves the linear system

[X'X + nAZlB, = X'z (10)

where the rows of X are given by the vectors Xi=(X1,Xn -+, Xi). Assuming

[X'X + uAZ] is of full rank,

B, = [X'X+ mZ]7 X'z, (11

and the predictions are

XB,= XXX+ nZ]7 X'z
= ANz , say. (12)
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In statistical jargon, A is the hat-matrix for the regression problem. With this notation. Craven
and Wahba's GCV function may be written as

‘};2"[21' = XEBJ\]Z

=1

Lk (= A GOI]2
n

V() =

1 rssn)
e i (13)

ALt E gome
n

The (1 — A(\)) can be viewed as an estimate of degrees of freedom for error. As A—0
the residual sum of squares and the degrees of freedom for error are made small, while as
A—oo both these terms become large. Consequently, V() is an assessment of A which bal-
ances degrees of freedom for error ag_ainst model fit. More formally, Golub, Heath and
Wahball0], motivate V(M) as a rotational invariant version of ordinary cross validation. The

ordinary cross validation function, Vp()), is defined as

Voh) = ¥ [z — XiB8 K12 (14)
k=1
where ,6,{"] is the minimizer of the objective function with the k’th data point omitted, ie. 8 ,!"]
minimizes
1—): [z; — XB]% + \B'LB. 3 (15)
L=y

The idea is that if A is a good choice, then Xkﬁf"] should be, on average, a good predictor of
z.. Let Blu,] be the solution in Eq.(10) with the k’th data point, z, replaced by u;. Then

working from the identity, proven in Lemma 3.1 of[6],

: XkBJ\[zk + Sk] = Xkﬁ_{k] (16}
where &, = Xkﬁ,{“ — zx. One can verify, by direct algebra, that

1i <& [Zk—Xk:BAP
VoA) = =% ——m8M8M8MM™— 17
0 ‘ "El [I—akk(h)]z fn

where

XMBA[Zk + 8;\] = X;‘-_,BA[ZA-]

= A li),

a’kk()\) .




.

. ; 1 & ..
is the k'th diagonal entry of A (A). Finally, if we replace ax(X) by ;E a;(\) then Vpis rota-

=1
tionally invariant, see[10], and we have that
1.4 B Xkﬁn]z
Vold) = =Y ———————w(A) (18)
‘ i = 2T
1 — g ()]
where w;(A) = ] af( , which is the expression for ¥ (\) above.
[] - —Zaﬂ-(}\)}z
nJ-_l

Asymptotically it has been shown that the A which minimizes the GCV function, V(X)) is

a good estimate of the A which minimizes the 'true’ predictive mean square error

RO = %f‘i[X,-BA L (19)
where 8 is the true regression parameter in the model. A discussion of these and other related
issues can be found in Craven and Wahbal6], Li[13], Lukas[15], Ragozin[19], Speckman[23]
and Wz.ihba[27,28, 29]. Moreover it is known that the A which minimizes R(A) frequently

approximately minimizes other quadratic loss functions such as f[GA(s)—B(s)]zds where 6,

estimates the function 8, see Cox[5], Lukas[15] and Wahba[28].

3.2. The Non-Linear Case

When (-, x;) is non-linear, the Bayesian estimator is no longer a simple linear function of
the data. However, by expanding n(8,x;) in a first order Taylor series expansion about B,, we
can write 3, in pseudo-linear form as

By= XX+ "Xz’ (20)

an(B,x;)

—aﬁ——hg-ﬂk and z;/ = X8, + z—m (B, x). To extend the GCV function we
J

where Xj; =

now need to find an appropriate measure for degrees of freedom for error. A natural thing to
do is look at the hat-matrix for the linearized estimator  Eq.(20),
ie. AM) = X(X'X + nAX)~'X', from which we construct an extended GCV function

L rsson)

V) = L 21
[~ir(1 - AO))])?
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n
where RSS(\) = ¥ [z - n(B,,x)1% Again V(X\) can be related to ordinary cross validation:
y=!

With the same definition for B,f"], the ordinary cross validation function VFg(A), is given by:

Vo) = L3 1z = n (@1 x0)2 (22)
k=1
Letting &« be n(8*, x,) — z and B,[z+8 ] be defined as in the linear case, one can prove, by

an argument paralleling Lemma 3.1 of[6], that

(8", x) = n(Bylz+8 ], x0) . (23)
Hence
1 & [z — nBF, x)1?
VolA) = — . (24)
° nkz.:; [1—ag ()12 .
where

'n(Bk[zk-f-S k],xk) = n(ﬁa[zk],xk)
S '

Approximating az(\) by the k’th diagonal element of the linearized hat-matrix, ax(A), we

ag(\) = (25)

have

n e 2 .
Vo(A) = 1_2 [z — (B x)]

26
n 1- akk()\)lz 2

and a relationship between V(\) and ordinary cross validation is obtained as before. By anal-

ogy with the linear case, one would suspect that the minimizer of V(\) ought to come close to

3 |~

minimizing the true predictive mean square error R(\) =

3 [n(B,x) —n(B.x)1% In the
=1

next section we provide some numerical justification for this.
4. Remote Sensing Atmospheric Temperature Profiles

4.1. Description of the Problem

In order to illustrate the performance of our automatic Bayesian retrieval algorithm, we
consider a remote sensing problem arising in satellite meteorology. Modern meteorological

satellites, such as those in the TIROS-N series, have high resolution instruments on board,
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‘which measure the intensity of up-welling radiation at selected channel frequencies. The basic
features of these measurement systems are described in Smith er all22]. The inversion prob-
lem is to retrieve an estimate of the atmospheric temperature profile, beneath the satellite,
from the noisy upwelling radiance measurements. To proceed one needs to have some under-
standing of how atmospheric temperature profile information is manifested in the radiance data.
For a non-scattering atmosphere in local thermodynamic equilibrium the radiative transfer
equations, Liou[l14], describe how the satellite up-welling radiance measurements relate to the

underlying atmospheric temperature distribution 7
XS
R(T) = B(T(x)r,(x) — [ BIT())7,'(x) dx @7)

where x is some monotone transformation of pressure p; x; corresponding to the surface and
xo corresponding to the top of the atmosphere. Meteorologists often work in kappa units, iLe.
x(p) = ps"8 since atmospheric variations are believed to be roughly constant in this scale.

b

7,(x) is the transmittance of the atmosphere above x at wavenumber v, and B, is Plank’s func-

tion given by:

B,,[T] o C[V3/[£’Xp((‘2v,/ T)"'l]

where

1

¢ = 1.1906x 10 erg— cm*—sec™

and

c; = 1.43868 cm—deg(K). (28)
To an approximation one can use the radiative transfer equations to model satellite radi-

ance data as:
yi= R,,‘(T) + €; =12 -, m (29)

where y; is the satellite radiance measurement at wavenumber v ; in units of mW/(m2srlcm_').

The errors €; having mean zero and standard deviation w;%c. The relative weights, w;, are
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known but the scale factor o is usually not known. In practice one typically has a good starting
guess, T,, for the temperature profile, either from the regional climatology or a meteorological
forecast. Consequently the problem is to estimate an update or correction, 6, to this initial
profile on the basis of given radiance data. In the notation of section 1, the objective is to esti-

mate @ given measurements

Yi= N(G,V,') + € 1'-=1,2, et ,m (30)

where N(@,»;) = R,(T,+8) and e; are mean zero random errors with standard deviation

2
LA AO’ »

4.2. Monte Carlo Evaluation of the Retrieval Algorithm

We decided to study the behavior of the retrieval algorithm on the TIROS-N measure-
ment system. The basic characteristics of the fifteen temperature sounding channels on this
system are given in table I. These channels correspond to HIRS channels 1-7 and 13-17, and
MSU channels 2-4 given in[22].

.
A more comprehensive description of these channels can be found in the Smith er al paper.
To study the performance of the algorithm we conducted a small Monte Carlo experiment.
Three real atmospheric temperature profiles, obtained direct]y from radiosonias, and correspond-
ing atmospheric transmission characteristics were kindly provided to us by Dr Thomas Koehler
of the Meteorology Department at the University of Wisconsin - Madison. These profiles and
the regional climatology are graphed in figure 1. For each profile, T, ten sets of simulated radi-

ance measurements were generated according to

yi=R,(T) +e, i=12 -++.15 _ (31)

1

where €; is drawn from a normal distribution with mean zero and variance w; . Working from

the simulated radiance data and using climatology as the initial guess, the retrieval algorithm

was used to estimate the underlying temperature profile. The prior functional J which we used

X,

was J(0) = f[e"(x)]zdr, reflecting the fact that apriori we thought the correction, resolvable

X0



.11 -

Tablel  Characteristics of the Temperature Sounding Channels on TIROS-N.

Channel Number Wave:umber Nois: _I;Eeve]
1 668 2.9257
2 679 1.4018
3 691 1.5142
4 704 0.8697
5 716 1.1538
6 732 1.1443
7 748 1.6995
8 2190 0.01706
9 2213 0.01088
10 2240 0.01392
1] 2276 0.01682
12 2361 0.02533
13 1.792 0.1595 x10~*
14 1.833 0.1391 x10~*
15 1.933 0.3092 x10~*

Figure 1 -ABOUT HERE-

by the instrument, should be smooth. Retrievals were done in a space of K=29 cubic B-splines
which had knots of multiplicity three at the surface (p=1000mb) and top(p=0mb) of the atmo-
sphere. The remaining 27 interior knots were roughly equispaced in kappa units. One wants to
use a sufficient number K of B-splines so that no important resolution is lost due to approxima-
tion error. In general for a picture to be drawn on 8'2x11 page, K=40 to 80 corresponds to the
resolution of plotter pens and the human eye. However, the quality of the measurement sys-
tem must also be taken into account. In the present application, due to the extreme ill-
posedness of the problem, relatively little fine scale structure can be recovered. Consequently,
it is believed that the choice of K=29 B-splines represented no tangible loss of accuracy over

solving the problem with, say K=80. Our computations made extensive use of B-spline

software originally written by De Boor[8].
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The performance of the algorithm can be assessed in a variety of ways. First we look at
the RMS errors in the estimated profile and compare these errors to the corresponding errors in

the first guess. The RMS error for an estimated profile, T, is defined to be

RMS ='\/11_5§1 wiR, (P-R, (T))? (32)
where T is the true temperature profile; the RMS for the initial guess profile is similarly
defined. Table II gives the median of the ten RMS values obtained on each of the three tem-
perature profiles. One can see that the retrieval algorithm achieves a substantial reduction in
this RMS error in all cases. The efficacy of the GCV procedure is measured by looking at the

square of the ratio of the RMS error for the best possible choice of A, to the RMS error

corresponding to the value of A minimizing the GCV j.e.

efficacy = [m)jnRMS(.’x)/RMS()Ht)]2 (33)
Table II summarizes these efficacy numbers; for each profile the median efficacy is very close to
1.00 demonstrating that the GCV procedure does a good job of picking a value of A which

minimizes the RMS prediction error.

Table I  Performance of the Retrieval Algorithm

RMS
Profile | Initial Guess Retrieved Estimate | Efficacy of GCV
1 3.26 .65 .98
11 3.24 .58 .96
111 7.83 57 .95

The bias and variability characteristics of the retrieved estimates are plotted in the figure

Figure 2 -ABOUT HERE-
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These bias and variability measures were constructed as follows: For a particular atmospheric
level, x, corresponding to the ten sets of simulated radiance data, we have ten differences, e,
between the estimated and true temperature profiles

ei=T/(x) = T(x)  i=1,2,..,10. (34)
Since the distribution of these errors tends to be somewhat non-Gaussian, bias is defined to be
the median, rather than the mean, of these differences and variability to be the median absolute
deviation (MAD) of the differences divided by .6745. The factor 6745 is used so that if the
e;’s were Gaussian lhen the variability measure would consistently estimate the standard devia-

ti_on.

bias = med|{ e, , =12 ---10}
.i“b-
variability = med| %, j=1,2, »~ 20}, (35)

Figure 3 shows a retrieved profile and the corresponding true profile from a trial based on

Profile IIl. The 5°th best case (based on RMS error) was chosen for display.

s

Figure 3 -ABOUT HERE-

Figures 2 and 3 indicate that the retrieval algorithm performs quite well. In all cases the bias is
on the order of one degree while the variability is on the order of two to three degrees. These
results are encouraging especially when one considers that we are using only fifteen noisy
integral measurements. In fact if the radiative transfer equations are linearized about a stan-
dard atmosphere, approximate "transmission windows", W, for the fifteen channels can be
found. These windows are plotted in figure 1 of Smith er @/[22). Channel measurements can
roughly be represented as:

NG6,x) = [ W(x)6(x) ax. | (36)
Smith‘s plot shows that the transmission windows are broad and overlap, making the retrieval

problem quite ill-posed. A reasonably good starting guess is required in this application but this
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is typically available. The modest improvements over the starting guess which we obtain above
are, economically, very important. Incorporating additional information such as the location of
the tropopause or surface information ought to further improve the performance of the
method. Even with the small numb.er of measurements thé GCV clearly emerges as a valuable

technique for choosing the smoothing parameter.
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Figure 3:
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