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ABSTRACT

By combining ideas from various sources, we propose a class of
physical variational methods for estimating three dimensional
temperature structure from satellite radiance data using many sets of
vertical and/or oblique soundings simultaneously. The class of
methods proposed takes advantage of assumed slowly varying
temperature structure in the horizontal and linearizes the inherently
(mildly) nonlinear problem of temperature retrievals as late as
possible. The method can handle irregularly spaced clear column
radiances. Methods are proposed for the specific inclusion and
weighting of forecast information, radiosonde data and tropopause
height information. Following Smith (1984) it is suggested how
temperature and water vapor may be simultaneously analyzed with the
proposed methods. So long as nature is "smooth" or highly correlated
it is in principle advantageous to build this "smoothness" or
correlation information into the analysis, via analyzing large
quantities of data simultaneously. A method for using GCV
(generalized cross validation) to get (some of) the tuning parameters
adaptively in nonlinear and constrained problems with large data sets
is described. The main drawback to dealing with large sets of data
simultaneously is the computational cost in time and storage.

Various algorithms and shortcuts are proposed for approaching the
computational problem.

1. INTRODUCTION

The approach to non-linear physical variational analysis of
satellite radiance data that is the subject of this paper may be
found in 0'Sullivan (1983) and 0'Sullivan and Wahba (1984) (0'S & W).
This approach is a member of the class of methods known in the
approximation theory literature as regularization methods. Related
ideas have been discussed by Hoffman (1983,1984). The extension here
to two and three dimensions of the one dimensional retrieval method
of 0'S & W may be thought of as a form of "satellite tomography" as
described in Fleming (1983). The approach to combining forecast and
observation is along the lines proposed in Wahba (1982c) and is not
unrelated to Kalman filtering. The class of methods that we propose
are applicable to other remote sensing problems, however, this paper
is written with the specific application to three dimensional
temperature retrievals in mind.
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In this work we are going to ignore the very important problems
of systematic or bias errors in the atmospheric transmittance
functions and elsewhere. See Fleming and Crosby (1983), Fleming,
Crosby and Neuendorffer (1983), Susskind, Rosenfield and Reuter (1983)
and 0'Sullivan (1983) for discussions of bias problems. We are also
going to ignore most of the problems associated with clouds (see
Susskind et al (1983,1984), Hoffman (1983). We will assume that
clear (cloud free) columns can be identified, however, and our three
dimensional retrievals will in principle be able to take advantage of
scattered clear column radiances even though their spacing may be
fairly irregular. The method is expected to provide a reasonable
interpolation between clear column data.

After a brief introduction to radiance data, we will first
describe the 0'S & W physical variational method for single column
(one dimensional) temperature retrievals. Then we show how this
method may be extended to use many scattered clear column radiances
to get a three dimensional temperature analysis. Next we discuss how
forecast, radiosonde and tropopause height information can be
simultaneously incorporated into the analysis. We briefly suggest
how water vapor and temperature may be simultaneously analyzed within
the present class of methods. We conclude with a few remarks
concerning numerical methods for solving the large and huge
variational problems that result from the proposed methods.

2. SATELLITE RADIANCE DATA

A (sihg1e column of) satellite radiance observations may be
modelled as

y; = N(T) + gy 1= 1,2,000m, (1)
where Ni is a non-linear functional of the temperature T, and
= I \

Ni(T) ,ff(v)RUdJ (2)
where fi(v) is the instrument response of the ith channel to the
incident radiation R at frequency v, where

; BTv(p,e)
R (8) = e, (0)B (T )T (p,0) + [B[T(P,p)I—p>— dnp (3)

Eu(e) js the emissivity of the surface s at zenith angle 6, Bv(T) is

the Planck function for emitted radiance of a blackbody at
frequency v and temperature T given by

B, (T) = c,v*/ fexplc,/TI-1] (4)

(where ¢ and c, are constants), and T (p,8) is the atmospheric



transmittance from pressure p to the top of the atmosphere at zenith
angle 6, The integral is taken along the line of sight, which

depends on the subsatellite point and the look direction. Reflected
radiation is being ignored. See Fritz et al (1972), Susskind et al
(1984) for further details. For the purposes of this paper we will
assume that the response function f is narrow. With these simplifying
assumptions the channel response is absorbed into the atmospheric
transmittance function, giving

N, (T) = [B[T(p)IK, 4(p)dp (5)

for "known" K where for simplicity (only) we are assuming that

v, 0

L]

surface quantities have been subtracted out.

More generally if e is known the surface temperature can be
included as part of the analysis and will appear in the definition of

Ni' In addition the transmittance has a (usually ignored) dependence

in the unknown T. In a high precision method, we would write
K, 8(T(p),p)dp in (5) instead of K e(p). The transmittance may also

]

be allowed to depend on water vapor, see Section 7.

3. THE PHYSICAL VARIATIONAL METHOD OF 0'S & W

The retrieval algorithm proposed by 0'S & W finds the temperature
analysis T as the minimizer (in an appropriate class of functions+) of
1 2
= T gy =N (M) + A3(T) (6)
gl Jsnd i
where J(T) is a smoothness penalty and the Wy are inversely
proportional to the mean square values of the €se When the smoothness
penalty is a nonnegative quadratic form then the choice of smoothness
penalty is equivalent to treating T as though T were a (Gaussian)
stochastic process with a given prior covariance function. (We will

return to this point with some examples later). 0'S & W used the
smoothness penalty

*1¢ desired, we can expand about climatology TO so that T = T0 +.6

and solve for 6. In that case, the smoothness penalty will be
applied to 6.



IT) = [T (p)) 2 (7)
To avoid further notation we will assume that the W, are absorbed
into y, and N, that is, yi/fW; and Ni//W; are the "data" and
"observational functionals" respectively.

0'Sullivan (1983) discusses the exact minimization of (6) in an
appropriate Hilbert space with J given by (7), but for practical
purposes, it is possible to obtain essentially the same result by a
minimizing (6) in a carefully chosen (sufficiently large) finite
dimensional subspace spanned by appropriately chosen basis functions,

B ’Br' Thus we seek T(p) of the form"

170

"
T(p) = jzlsij(p) (8)

to minimize (6). Substituting (8) into (6) and writing

r
N (8) = Ni(_g

8.B.(p)) gives the problem
i=1 JJ

41 2 ;
min= T (y;=N;(R))" + 28 VR (9)
ni:l

where the jkth entry oy of ¥ is given by
I = fBj (p)Bk (p)dp . (10)
With the penalty functional of (7), it is natural to Tlet the Bj be

a set of cubic B-splines as discussed e.g., in deBoor (1978), see
also Section 4 below.

The problem now is to choose ) and find the g which minimizes
(9). The bandwidth parameter X governs the tradeoff between the
smoothness of the solution and the fidelity to the data. The choice
of the parameter X is well known to be "important" and the
generalized cross validation (GCV) method is known to be an
effective method for choosing A and other certain other tuning
parameters from the data. Hoffman (1984) argues in the variational
problems he tried that a factor of 2 in X is not important in
terms of changing the solution but a change in the order of magnitude

*(T. may be added to the right hand side of (8), to avoid
cumbersgme notation we will omit this in the remainder of this paper.)



of A will change the result. This is not at odds with our own
experience. To be precise, when there is a single tuning parameter X
as we have here, a change in X is large or small in a practical sense
if it is large or small in relation to the natural eigenvalues of the
problem. See Wahba (1983a) especially Fig. 2 for an explanation of
this point. Hoffman tuned his variational problem by trial and error.
In this paper we will assume that it is desirable to use GCV to
retune the method using the data (at least occasionally) and aim
towards providing cheaper approximate methods for implementing it,

on large data sets, and on nonlinear and or constrained problems.
Thus the algorithms proposed here are to some extent motivated by the
requirement that they are compatible with the use of GCV. We believe
that in any situation where repetitive analysis of data sets from
changing atmospheric conditions is to be analyzed, it is appropriate
to check the costs of automatic tuning against the possible benefits.

Properties of GCY are fairly well known in the case that Nf is

linear in B, see Craven and Wahba (1979), Wahba and Wendelberger
(1980), Wahba (1977). To motivate the generalization of GCV to the
nonlinear case we review its operation in the linear case. In the
linear case we have

r

N;(R) = Z X; 3 e
for some xij' Letting X be the n x r matrix with ijth entry xij’
then (9) becomes

1 2 '

il o i ’8 (12)

where [|.|| is the Euclidean norm. The minimizer g, of (12) is given
by

= (x'x+ma D) X'y, (13)
The influence matrix A(X) which relates the data vector y to the
predicted data vector ; = XBA(=A(R)Y) is
A(A) = X(X X+ T) 72X (14)

and the GCV estimate of X is given by the minimizer of V(A) given by



1
ERSS(K)

V(1) = (15)

" Clrrace(1-A(01°

where RSS()\) is the residual sum of squares when X is used, and is
given by

RSS(A) = ||{I-A(1))y||2. (16)

Background on the extension of GCV to nonlinear problems such as
the one described here may be found in Wahba (198la) and 0'Sullivan
(1983). The extension implemented in 0'S & W which we will describe
here is obtained by observing that the iith entry a..(}) of A(}) is
given by Lk

T = a..(1) ' (17)

and the right hand side is independent of ¥; since the relationship

be tween Ys and y is linear. In the nonlinear case 0'S & W let aii(k)

~

Y .
be an approximation to 3§l evaluated at the minimizer ey of

1

of (9). This is obtained as follows: First, for fixed A, the
minimizer BA is obtained (approximately!) by an iterative method (to

be described). Then, take the Taylor series expansion of Ni(B) about
B viz:
l,

N, (8) = N.(B,) + TN (8,)(8-8,) (18)
where
BNT 3Ni
VN.(B ) = (_,--o’—_) (19)
§ A 881 BBr & BA

Letting X(8,) be the n x r matrix with ijth entry



aNi
X.. = — (20)
14 By g
B = BA
and
n
zg =¥y = N8 + ) x5y (21)
i=1
we have, that the minimizer of
1
Sl1z - x(8,)8]|% + 28'Te (22)
n
is, to a good approximation, £,. The (approximate) GCV function V(X)
is then defined as
Lrss(n)
| [ﬁTr(I—A(A,BA))]
where
i 2
RSS(A) = T (y.-N.(8,)) (24)
: T J
i=1
and
ACx,B,) = X(8,)(X"(8,)X(8,) + nXI)-lX'(BX). (25)

A range of X-values is explored and the "optimal value" found by
minimizing V(X) with respect to X. 1In practice it has been found
that it is best to do the minimization in a log) scale. A
justification for this procedure may be found in 0'S & W.

In 0'S & W there were n = 15 data points, (= number of channels
used for a single column) and a basis of r = 29 (>15!) B splines was
chosen. The knots of the B-splines were chosen equally spaced in
pressure, with multiplicities at the top and bottom. The motivating
choice for r was as follows: If r was chosen any larger than 29, it
was believed that the estimate of T would not be changed much (that
is, minimizing (9) in a collection of functions of the form (8) is
just as good as minimizing (9) in the relevant function space), while
if r was chosen much smaller, r would act as a smoothing parameter
(in addition to the smoothing parameter X). The following algorithm
from 0'S & W is probably satisfactory in problems with n and r as
large as 100. We shall discuss much larger problems later.



For a given trial value of A, the minimizer of the objective
function (9) is computed via a sequence of Gauss-Newton iterates.

Let BA(Z) be the 2th approximate minimizer of (9). At the (2+l)st

step, Ni(B) is expanded about El(£) as
v (8) = N (8 ) e e, B geg, 1) (26)
Setting
xij(ﬁ) - ;%% " and
B = BA
zi(z) -y - Ni(BA(E)) ' _Elxij(z)ﬁlj(z),

J

the iteration is

B)\(’Q"!'l) = [X(E)'X(R) + nAE]-IX(“z(“, L =1,2,...

where
L
x4 = xes, ).
Once the iteration converges, say at stage L, the GCV function given
by (23) with By = BAL is computed, and XA selected as the minimizer of

V. Dropping the superscript (%), the core of the algorithm can be
conveniently implemented using Cholesky factorizations:

1. Find the Cholesky factorization of X'X + mA] ,
RR' = [X'X + nA)]
2. Solve for B by back substitution,
1 - 1
RR BA X'z

3. When convergence is reached compute the GCV function

%RSS(A)
[1%Tr((RR')'1x'X)]2

V(A) =



oN.,
The "forward" calculations of Ni(BA(g)) and EEl were done

J B=8,
using a 40 point quadrature formula to avoid introducing further
errors due the numerical analysis. It is known that the solution of
i11 posed problems can be sensitive to the quality of the quadrature
used and we feel it is important not to introduce unnecessary errors
at this stage.

4., THREE DIMENSIONAL RETRIEVALS
4.1 EXTENSION OF 0'S & W TO THREE DIMENSIONS

Figure 1 presents a schematic diagram of the footprint of
TIROS-N, adapted from Susskind et al (1983). Shaded spots represent
a hypothetical collection of clear column radiances. Only those
clear column radiances will be used to get a three dimensional
analysis of temperature in the method proposed below. It is assumed
that clear columns can be identified in a separate process. Let P =
(1at.,long.) and p be a vertical coordinate. First, we will suppose
that any atmospheric temperature distribution T can be well
approximated, for all (P,p) in some volume 2 of the atmosphere by

i
T(P.p) = J B.B.(P,p) ‘ (27)
a1 44

where the Bj are some appropriately chosen three dimensional basis

functions covering the space within the satellite scan region. We
will discuss the choice of the B. later. The data are modelled as
before: J

Y5 = Ni(T) *en s 0 S,

where now, however, i indexes both the spot and the channel number.
If there are S spots with C channels per spot, then there will be n =
SC observations. Given a penalty functional J(T) of the form

HT) = g"}e,

r :
HwTE Bij, the principle in 0'S & W is unchanged although in
J=1
practice the computational burden will be much greater, and
furthermore, approximations and numerical methods appropriate for
very large data sets will have to be employed. Accurate feasible
quadrature will be required. For given (fixed, or trial) value of A

a numerical method for finding Bys the minimizer of
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FIGURE 1. TIROS-N footprint

1Y 2
=V (y.-No(B))S + Ag']8 (28)
nj=yp | i

is required, and if it is required to adaptively tune X, then it is
necessary to evaluate V(A) for several trial values of A,

Before going on to discuss numerical methods, we will first
discuss the choice of the B, and ).

J
4.2 SPHERICAL HARMONIC EXPANSIONS
Let j be a value of {%s,k} and Tet
By k(PsD) = Yy g(P) 6y (D) (29)

where the st are spherical harmonics and the ¢k are vertical basis

functions, possibly B-splines. There should be enough vertical basis
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functions so that any reasonable vertical profile can be adequately
approximated by some linear combination of them. A similar
observation applies to the number of spherical harmonics. This
probably means that there are more vertical basis functions at this
stage than model levels.

If

T(P,p) = Rsfkﬁﬂs’k Yo (Plo(p), (30)

then a penalty functional of the form

2
J(g) = ] 8 /X (31)
s,k ey

: : +
corresponds to a prior covariance on T of

ET(P,P)T(P',p") = T Ape \Yas(Plop(P)Y, (P)o (p'). (32)
s,k >

(See e.g. Wahba (1979, 1982d), Kimeldorf and Wahba (1971)).

. . i o
A convenient choice is 25,k

A = [2°2+1] M

2s,k k
for some appropriately chosen m and vertical weights Wy There

(33)

appears to be some reason to believe that m = 3 or 4 is a

good choice, see Stanford (1979). In principle, m can be chosen by
GCV along with A, see Wahba and Wendelberger (1980). In Wahba
(1982d) it is shown how the MNs b for fixed k can be chosen with the
help of data such as that collected by Stanford (1979) and others.
In the (unrealistic) case W, = 1, J(8);0f (31) with (33). wouid

correspond to
3T = [/1a™(P,p)1%dPdp,

where the integration is taken over the atmosphere. The parameter m
embodies information concerning the rate of decay of (horizontal)
energy with wavenumber. This expansion has a major numerical
advantage, in that the matrix ) is now diagonal (more on this later)
and the covariance function (32) may be chosen with the help of
existing meteorological data. For a global analysis or an analysis
over a large part of the sphere, it is to be recommended.

"We are assuming here and Tlater that the mean has been subtracted out.
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In Wahba (1982d) a horizontal wind field analysis from

simulated North American radiosonde network data was successfully
performed using spherical harmonic representations of the stream
function and velocity potential. For a more local analysis, such as
over a volume of space above part of the satellite footprint, an
expansion in spherical harmonics is still theoretically o.k. The
main practical drawback is that a large number of terms (comparable
to that for a global analysis) may still be required to maintain
numerical accuracy. In this case sensible temperature estimates can
be obtained for P,p in the region of dense data, (i.e. estimates of
certain linear combinations of the By k's are good) but a Targe

number of possibly meaningless estimates of individual st k's are

computed as an intermediate step. In this case the matrix playing
the role of X will have many very small eigenvalues. The methods
proposed in Bates and Wahba (1983) may alleviate this problem.

4.3 APPROXIMATION BY THIN PLATE SPLINE BASIS FUNCTIONS

The thin plate spline basis functions (TPBF) (Wahba (1980b)) are
appropriate when the penalty functional associated with thin plate
splines (Wahba and Wendelberger (1980)) is used and data sets are
very large. This penalty functional may be suitable when the volume
of space in which temperature is to be analyzed is small enough so
that the curvature of the earth may be neglected. The TPBF's have
been successfully used by Hutchinson and Bischof (1983) and others.

4.4 APPROXIMATIONS BY SECTIONS OF REPRODUCING KERNELS
Suppose that one has a prior covariance in three dimensions
ET(P,p)T(P',p') = R(P,p; P'p').

One example is the right hand side of (32).

Let s = (P,p) be a point in the atmosphere and Tet

S1sSps+-+s5, be a regular three dimensional lattice of points in the

atmosphere over the region where a temperature analysis is desired.
For example a typical S is of the form S; = (Pg,pk) where the Pl's

are a regular grid in latitude and Tongtitude and the pk's are

regularly spaced in the vertical. Let us define
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Bj(P,p) = Bj(s) = Ris,s;).

This notation is intended to mean that sj is kept fixed and we view R

as a function of s. In the approximation theory literature, Bj would

be known as a section of the reproducing kernel R - the terminology
"reproducing kernel" refers to any positive definite function (i.e.
any covariance), but this terminology in addition implies association
with a particular Hilbert space of functions (one for each R) known
as a reproducing kernel Hilbert space (these spaces are discussed in
Aronszajn (1950) see also Kimeldorf and Wahba (1971)). It can be
shown that an appropriate penalty functional for this covariance,
call it JR(f) is in fact the square norm of f with the norm of the

reproducing kernel space associated with R, and, furthermore, if

= FBJBJ,
then
=V
Jp(T) 1§B BR(ss, J) (34)

Thus } will be the rxr matrix with ijth entry R(si,sj). (This

formula is related to the terminology "reproducing".) These
assertions are easy to check with the specific reproducing kernel
given by the right hand side of (32). The reproducing kernel space
in question consists of all functions of the form (30) for which (31)
is finite. If T1 = Zst,kst¢k and T2 = f ZS k g ¢k, then the inner

production this space is

it ﬁs,k Es,k

1" 2 xls K

and J(T) = <T,T>.+ These arguments are of interest in a

practical sense since it can be shown (by, for example, using the
methods in Wahba (1973)) that any T for which J of (31) is finite can
be approximated to a good degree of accuracy in a volume of interest,
call it @, by some linear combinations of the Bj's, just provided

there are enough of them with the sj's spread around over Q. We

& J(T) may be modified so that there is no penalty associated with
the constant function or a few very Tow wavenumbers, see Wahba
(1979).
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remark that, for the penmalty functional J(f) = f(f{m)(x))zdx the

B-splines of degree 2m-1 may be obtained as linear combinations of
sections of a reproducing kernel and the TPBF's of Section 4.3 can
also be shown to be linear combinations of sections of a reproducing
kernel. The good approximation-theoretic properties of B-splines are
well known. These results give us a tool for approximation. For
$222p1e, suppose that Als,k in (32) has the special form Aﬂs,k = Ank'

R(P,p;P',p") ) AEkYQS(P)YES(P')¢k(p)¢k(p')

2s,k
= E Rk(P,P')¢j(P)¢j(p'), say, (35)
where
R (P,P') = gg MY s (PIY g (PT) (36)
Then, for example, for s; = (Pg,pk) we have
B(P,p) = ERJ(P,P2)¢j(p)¢v(pk). (37)

Note that each Bj has its maximum at (P,p) = (Px’pk) =55 and near
s = sj it behaves 1like a hill function.

In general, it may be mathematically more convenient to represent
this basis set by

B;(P.p) = R (P,p,) o, (p). (38)
Then, if j = (%,k) and j' = (2',k'), the jj'th entry of ] is 0 if
k # k' and Rk(Pl'Pz‘) if k = k'. Some closed form formulae for
Rk(P,P') which approximate R(P,P') with A, = [2(2+1)1"

may be found in Wahba (1981b,1982b). These basis functions appear to
be well suited for the purpose of extrapolating over "holes" in the
data in a way that uses the information in the prior covariance in a
natural way. Their major drawback is that they do not have local
support, which means that computing with them is relatively
expensive. In one dimension the local support B-splines may be
obtained as linear combinations of a reproducing kernel (associated

with f(fm(x))zdx) but it does not appear that this is possible
(exactly) in more than one dimension). Some approximations will have
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to be made to obtain local support bases well suited to the penalty
functionals considered here. Dierckx (1983) has recently proposed
tensor products of B-splines as basis functions on the sphere.
Further research in connection with the choice of basis functions is
clearly warranted.

5. SIMULTANEOUS ANALYSIS OF FORECAST, RADIOSONDE
- AND RADIANCE INFORMATION

5.1 RADIOSONDE DATA

Suppose radiosonde data at points t = (P,p), t t, are

tl""’

available in the volume of space over which temperature is to be
analyzed. Letting the BJ s be as in Section 4, the radiance data is

modelled as

¥y = T(tl) t ey, L= 1.2 it
= Bt.) ¥ € 39
jEIBJ J( o) g (39)
and the variational problem of (28) can be modified to
. :
7 N8N+ g f(yJa T,(8))% + a8'Je (40)
= 21
nl
where T,(8) = § BJBJ(t ), scaling factors similar to the w; of (6)
j=1

which reflect relative accuracy in the temperature measurements have
been absorbed into the notation and Wp is a tuning parameter governing

the relative weight to be given to radiance and radiosonde
information. In theory one should be able to specify W a priori but

in practice unknown variations in the accuracy in measuring (and
mode11ing) the radiances probably make it appropriate to leave Wp as
a tuning parameter.
5.2 FORECAST DATA

Suppose one has a spectral model expanded in terms of the Bj's.

(This is conceivable if spherical harmonics are used.) Then one has

"forecasts" B.F of the B.'s. In this case one can add a term of the
form J c
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F_ F_
wF§qjj,(Bj sj)(sj. Bj.) (41)

to (40). Here the qjj' are based on some (multiple of) the presumed

F

covariance matrix of the Bj 's compared to the "true" Bj's. In this

case qjj' may be 0 for j # j', which would introduce a simplification.

See Wahba (1982c) for a justification of this procedure. We believe
that an automatic tuning procedure for choosing Wo and W based on

a GCV-1ike statistic can be found (work in progress). The argument
here and in Wahba (1982c) leads us to believe that available
heterogeneous data sets may be combined in a single variational
problem along with forecasts of the spectral coefficients in a
spectral model to update the coefficients in a spectral model.

6. TROPOPAUSE HEIGHT INFORMATION

Suppose tropopause height is known on, say a regular grid
Pl,...,PL in P. If tropopause height is observed on an irregular
grid e.g. by the radiosonde network an analysis to arbitrary points
may be obtained e.g. by using either the TPS of Wahba and
Wendelberger (1980) or the splines on the sphere of Wahba (1981b),
that is, the approach described here reduced to the two dimensional,
linear case. Consider the following side condition:

,g% p+i?‘0p"5 P = PlyeeesPy (42)
Al »0 P = PyonensPys (43)
dp | pttrop+s

If TOP,.p] = EBij(Pg,p), the inequality (42) becomes
1853583 (PosP) S0 H=EFak (44)

ptrop—é

which is a set of linear inequality constraints on the Bj‘ Similarly

for (43). In principle the variational problem (40), with the
possible inclusion of the term (41) can be solved subject to
these linear inequality constraints (provided there are sufficient
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vertical basis functions). For a good answer, there should be
sufficiently many vertical basis functions so that the minimum at the
tropopause can be described without undue distortion to the remainder
of the vertical profiles. In practice Villalobos (1983) and
Yillalobos and Wahba (in preparation) have solved such problems with
Tinear data functionals (Ni's) and several hundred data points and

inequality constraints, using a form of GCV adapted to linear
inequality constraints, and the algorithm of Gill et al (1984). We
believe that numerical methods may be developed to handle larger data
sets and numbers of linear inequality constraints.

7. SIMULTANEOUS ANALYSIS OF TEMPERATURE AND WATER VAPOR

Bi11 Smith (this volume, and personal communication) has proposed
a simultaneous analysis of water vapor and temperature. Some of his
ideas can be incorporated into the present approach as follows. Let
U(P,p) be the water vapor and suppose the water vapor is expanded in
some basis functions {Bj} which may or may not be the same basis

functions as used for temperature:

UlPp) = JaB (P, PR (45)
J'JJ

The dependence of transmittance il of Section 2 on water vapor is now
explicitly modelled, and Ni(T) = Ni(B) of Sections 2 and 3 is now
replaced by Ni(T,U) = Ni(B,a).

The analysis problem of (9) now becomes, in its simplest form:
Minimize

>3

2 ' '
i l(yi N;(B,@))}™ + X B'] B + A a'] a (46)
In (46) known relations between U and T are being ignored, they may
be inserted by replacing the simplified penalty functional of (46) by
a more general suitable quadratic form involving cross terms in « and
B and/or by including linear inequality relations known to hold
between temperature and water vapor content. If radiosonde data of
the form

, PRE Ug(a) + €

L £

is available, where Ug(a) = }aij(tz), then a term of the form

?'( U (a))?
w i 7 A Q
RyUpoy 722
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may be added to (46), similarly if forecast information is available
a term of the form analogous to (41) may be added to (46), along with
the analogous temperature terms. For example one possibility 182
minimize
Ty, N, (8,a))2 + w, Jly,-T, (812 + w, , T(z,-U,(a))?
i s Rl o RUZL 7L

F_ E_
F'
* eyl 0oy ey leg mey)

+ AJ(B,a) (47)

where J is a suitable penalty functional in 8 and a which may contain
one or more additional tuning parameters.

8. NUMERICAL METHODS FOR LARGE, CONSTRAINED VARIATIONAL PROBLEMS

In its most general form the variational problem to be solved is
of the form: find vy = (Yl,...,YR)‘ to minimize

N :
{1 §=l(yT'Li(Y))qij(w)(yj"Lj(Y))} + xJ(v,8) (48)

(possibly) subject to the linear inequality constraints

. > 8, JEI T P
§°1JYJ > 6, i=12 N (49)

where y., i=1,...,N are "observations" (which includes scaled

observations as well as forecasts), Li is a linear or nonlinear

functional of the unknown "state" vector v, the qij(W) represent a

positive definite quadratic form which may depend on one or more
weights (w) to be chosen, and J(v,8) is a nonnegative definite
quadratic form in y which may further depend on some tuning
parameters 6. Similar variational problems are proposed in Hoffman
(this volume). If the L, are linear and the term in brackets has a

unique minimizer in the null space of J (or, if J is strictly
positive definite) then (48) will have a unique minimizer for all y,
and it will also have a unique minimizer among all y satisfying the
constraints (49). Some conditions for the existence of a minimizer
when the Li are nonlinear are given in 0'Sullivan (1983).
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GCV may be used to find a good value of A and (usually) 6 in the
constrained, not necessarily quadratic problem defined by (48) and
(49), by combining the GCV for nonlinear data functionals in 0'S and W
with the GCV for constrained problems in Wahba (1980,1982e) and
Yillalobos (1983). The general idea is as follows: The solution
Y, to the variational problem of (48) and (49) is found for a trial

value of A. Then an equality-constrained quadratic problem
approximating the problem of (48) and (49) at v, is found. (A change
of variables should be made so that the quadrat%c form approximating
the term in brackets in (48) is a sum of squares). Then the A(})
matrix for this problem is used to compute V(A).

In general, the numerator RSS(A) will usually be available once
Wy is found. It may be a major expense to compute

%IrA(A) = %- aii(k). A relatively cheap shortcut using

1

il p~=

.i
bidiagonalization appears in Elden (1983). The aii(k) are all between

N
0 and 1. An estimate of %— Y a;;(}) may be made, if N is very large
i=1

by computing a random or a stratified sample of the aii(k) and
averaging.

If wis fixed, and the Li linear the unconstrained problem (48)

with GCV may be computed for R of the order of a few hundred by the
methods in Bates and Wahba (1983). It is probably possible to
combine the Gauss-Newton iteration in 0'S and W (1984)

with those methods to solve the unconstrained nonlinear problem.
Hoffman (1984) and Testud and Chong (1983) have solved problems
similar to the unconstrained problem with N of the order to several
thousand and R of the order of 1,000 with sparse matrices by
conjugate gradient methods. Herman, Lent and Hurwitz (1980) provide

a storage efficient method of minimizing ||y-XY||2 + Afyjz which they
J

claim has been used with N~200,000 and R~600,000. Iterative row
action methods for solving large linear systems like those used by
Fleming (1983), see Censor (1981) may possibly provide the core of an
optimization algorithm suitable for (48) and (49) with very large N
and R. As Fleming has observed, stopping the iteration early in
these methods is a form of regularization, and it may be possible to
exploit this fact. (See Wahba (1980a, Section 7). In general,
sequential quadratic programming methods, e.g. as discussed by Gill,
Murray and Wright (1981) are appropriate for the constrained
optimization problem, particularly when the GCV function is to be
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computed. Although we do not know just how large a problem can be
handled by those methods it is quite 1ikely that R of 1,000 or more
is feasible with parallel processing. It is observed that these
problems with non sparse matrices are quite suitable for parallel
processing.

We remark that under some circumstances, techniques for outlier
detection and confidence intervals are available in conjunction with
these variational methods, but we omit the details. (See, for
example Wahba (1983b), Eubank (1984).

Clearly further research on numerical methods for these problems
is needed but we believe it will bear fruit.

We would 1ike to thank Don Johnson, Bill Smith, Walter Murray and
Doug Bates for helpful conversations and Ross Hoffman for providing
us early drafts of his work.
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