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ABSTRACT

Let z, = f(yl(i),yz(i)) + £ i=1,2,...,n, where f is known to be a
"smooth" function of (yl,yz) and the e; are independent, zero mean random
variables. In addition f is known to satisfy a family of linear inequality
constraints, for example 0 < f(yl,yz) < 1, (yl,yz)eﬂ =g, We propose that f be

estimated as the minimizer of

wy(24=Fly, (1),9,(10% + 23 (F)

=
Ie~—3S

i=1

subject to f satisfying the constraints. Jm is the thin plate penalty
functional. A good value of X is estimated by the method of generalized cross
validation (GCV) for constrained problems. A characterization of the solution
to the minimization problem with the constraints discretized is obtained from
known results. We provide a numerical algorithm for computing the GCV estimate
of ) and the solution to the (discretized) minimization problem. The method is
applied to the estimation of posterior probabilities in the classification

problem. Numerical results for both synthetic and experimental data are given.
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1. INTRODUCTION

The cross validated multidimensional thin plate smoothing spline (Wahba,
1979, Wahba and Wendelberger, 1980) has turned out to be a useful tool to
model a smooth but otherwise unknown function of two or more variables. (See,
for example Hutchinson and Bischof (1983)).

In two variables this smoothing thin plate spline is associated with the

mode 1

2, ™ f(y1(1),y2(1)) ten, =120,

where f is a "smooth" function in a sense to he defined and the e, are
independent, zero mean random variables with common unknown variance. The

estimate fnx of f is the minimizer, in an appropriate space, of

+ % _(F) (=
m

where

308 = 0] L My 2 gy
m e Ll ) i
and a good value of the smoothing parameter X is obtained by the method of
generalized cross validation (GCV). It has occurred to a number of workers that
it would be useful to combine spline smoothing (both univariate and
multivariate) with the imposition of linear inequality constraints, for example
nonnegativity, monotonicity, etc. Although some of the theory for doing this
has been available for some time (see Kimeldorf and Wahba 1971), what is needed
is an efficient computational a1§or1thm. Wegman and Wright (1983), in the

context of isotonic regression, say:



Computational algorithms are clearly the stumbling block
in further development of the theory of isotonic splines.
When such algorithms become available we believe that
smooth, order-preserving non-parametric estimators will
substantially enhance the efficiency of estimation
procedures currently in use.

In this paper we demonstrate the feasibility of doing large multidimensional
smoothing problems like (1.1) with inequality constraints. The computational
algorithm developed here can be used in applications such as survival curve
estimation, logistic regression and the estimation of posterior probabilities.
We develop here an algorithm for an inequality constrained, cross validated
multidimensional smoothing spline and, as an example, we apply it to the
estimation of posterior probabilities.

We believe that the methods presented here will be useful for exploring
properties of the data and presenting them in a way comprehensible to the
layman,

In §2 we will present the general inequality-constrained thin plate spline
smoothing problem, and we will describe the method of generalized
cross-validation for constrained problems to choose the smoothing parameter.

In §3, we discuss the actual computation of the spline.

In §4 we apply the results to the estimation of posterior probabilities in
the classification problem. Two numerical examples, one with synthetic and one

with experimental data are presented.



2. INEQUALITY CONSTRAINED THIN PLATE SPLINES

2.1 The General Minimization Problem

For f a function of d variables, the thin plate spline penalty functional
Jm(f) is defined as

m 2
B 1 dy.s.eesdy,. (2.1)
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We say that f is "smooth" if Jm(f) is not too large. More precisely we will be
assuming that feH(m,d) which is the vector space of all the Schwartz
distributions for which all the partial derivatives in the distributional sense
of total order m are square integrable [see Meinguet (1979)]. Consider the

mode1
i Lif + € i=1,2,...,n (2.2)

where Li is a bounded linear functional on H(m,d) and the Ei are zero mean
. - - 3 4 ‘ © z ]
independent random variables with variance o oy » 1= 1,...,n, where o is an

unknown constant. If 2m-d>0 then the evaluation functionals

i

Lif = f(y(i)), y(i) = (yl(i),...,yd(i)), are all bounded, i = 1,...,n. More
generally if 2m-2k-d>0 then the mixed partial derivatives of total order k are
bounded. (See, e.g. Wahba and Wendelberger (1980)). Suppose it is also known

that f is in some closed convex set C that can be well approximated by the set

= {f: N.fsr,, 3 =1,...,k
Cy { PLALITS |

where Nl""’Nk are also bounded linear functionals. For example suppose

C = {f: 0 < fly), yeR} where @ is some interval in Ed. Then C may be approximated



by Ck

Q. See Wahba (1973) for a partial result concerning the goodness of this
approximation.

Given the data {Zi} and the set C, we will estimate f by f ,, the solution
to problem 2.1:

Problem 2.1: Find feH(m,d) to minimize

li—=
e~ =

25 2
(z;=L; )7 oy + A9, (F)

i=1

subject to Njf<rj Ji= 10k

The solution to problem 2.1 is expressible in terms of polynomials of total
degree less than m, and the fundamental solutions of the iterated Laplacian. We
call the function an that solves problem 2.1 a "constrained thin plate
smoothing spline". Before stating the result we introduce some notation.

Let Ho(m,d) be the space of polynomials on Rd of total degree less than m.

Then Ho(m,d) is an M-dimensional space, where M = (m+g—1).

Let ¢1""’¢M be the M monomials of degree less than m given by

¢2(t) =

i
ot
—
(nd

t = (tls"',td)

Observe that Jm(¢z) =0, £ =1,...,M, so that polynomials of total degree

less than m are considered infinitely smooth by the penalty functional Jm.

= {f: 0 < f(s(j)), § =1,2,...,k} where the {s(j)} form a fine regular grid in



Let the Laplacian A be

nigle

i=1 Gyi

Af =
If f and all its derivatives up to order m-1 are continuous and are zero at

infinity, then, by integration by parts, one has

If s,tst, the fundamental solution of the iterated Laplacian is given by

Em(s,t) defined by

] ![s-tllzm_d1n(||s—t||) if d is even
Esit) = Bl fesa
L emlls—tll if d is odd
where
(_l)d/2+1+m
om=1_d/2 » d even
2 m “(m=1)!{m-d/2)!
3 =
m
T'(d/2-m)
d odd.
22m“d/2(m_1)!

We will assume that the following two conditions hold:

Condition 2.1:

sL.s N

12l 1,...,N

, are linearly independent continuous linear functionals.

Condition 2.2:

The rank of the matrix ¢ = (L1¢j) T = loavasNs § = Licauslt Ts M.



For example, in the case where Lif = f(y(i)), i = 1,...,n and Njf = f(s(3)),
j=1,...,k; if the points y(1),...,y(n), s(1),...,s(k) are all distinct,
condition 2.1 will be satisfied. To satisfy condition 2.2 we need that n>M and

that there is an M-element subset y(il),...,y(iM) of y(1),...,y(n) such that

there is exactly one polynomial in Ho(m,d) interpolating to data given at y(il),n.a

The following theorem gives a representation for the solution of problem
2.1. The proof is a straightforward application of the results in Duchon (1976)
to the results in Kimeldorf and Wahba (1971) and can be found in Villalobos

(1983).

Theorem 2.1. If conditions 2.1 and 2.2 hold, the solution an to problem 2.1 is

of the form

n k
fnx(t) = _E C'L'(s)Em(s’t) + _{ b.N (s,t) (2.4)

.1 2 E
s 1 j=1 9 j(s)™m

? (t)
+ d ¢, (t
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Here the subscript "(s)" indicates that the functional L, (or Nj) is to be
applied to what follows considered as a function of s.
)t

% SRR P (P y
Let D ": = diag ( /cr1 By /on ) and let a = (cl,...,cn, bl,...,b , then

k
it can be shown that the coefficients CpseresCpo bl""’bk and dl""’dM in

Theorem 2.1 are obtained by solving the following quadratic programming:
Problem 2.2,

Minimize G(a,d) subject to g(a,d) < 0 and Tta = 0, where now,

sy(iM).
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Gla,d) = 1

gla,d) = E2a + Tzd—r

where:

= ; M ; x o
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T2 are given in Table 2.1, and r = (rl,...,rk)t,
TABLE 2.1

Ma trix Dimension (i,j)th element

Ell nxn Li(s)Lj(t)Em(s’t) i-= lyesa J & liiieen
E12 nxk Li(s)Nj(t)Em(S’t) i 2 dywast J& Lu6:5k
E22 k xk Ni(s)Nj(t)Em(s’t) i 2 Livewik JI™ 1i.aa.kK
T1 nxM Li¢j T = leean 32 1o M
T2 k xM Ni¢j T =1, mnesll J = L iaig¥

For a given value of A we can solve problem 2.2 using a high quality quadratic

programming routine.

2.2 The Choice of the Smoothing Parameter

In real life problems the correct value of the smoothing parameter X is not

known. Wahba and Wold (1975), Craven and Wahba (1979) and Golub, Heath and Wahba



(1979) have suggested the use of generalized cross-validation to estimate X from
the data in the unconstrained case. In the presence of linear constraints,
Wahba (1980) and (1982) suggested the use of generalized cross-validation for
constrained problems.

To aid in the description of the method of generalized cross-validation for
constrained problems, which we will refer to as GCVC, we first give a brief

review of the method of generalized cross-validation for unconstrained problems

which will be referred to as GCV.
Let fggjbe the minimizer of

n
% v (L.f—zi)2 + 2xd (f).
i=1,i%q U

If ) is a good choice, then, on the average, (qugglzq)z should be small and so

the ordinary cross-validation function V_(3) defined by

0
n
1 fal
3y = - ¥ i
VO( ) -2 {qunk Zq) (2.5)
g=1
should be small.
Craven and Wahba (1979) and Golub, Heath and Wahba (1979) showed that
2
n (L.f -z.,)
_1 v i nx i
A) = = —_— L
vo() . > (2.6)

i= - A
i=1 (1 aii( ))
where an is the minimizer of

. 2
0,(f) =1 1_=1(L1.f—z1.) + 20 (F)

and aii(k) is the (i,i) entry of the nxn "influence matrix" A(X) satisfying



Craven and Wahba (1979) and Golub, Heath and Wahba (1979) show that from the

point of view of minimizing the predictive mean square error given by

T(X) =

o B |

W —~3

2
Lifa Ly

i=1

VO(A) should be replaced by the generalized cross-validation function V(1) given

by:
g (Lifm-zi)2 2 %II(I-A)(A))ZIIZ
Via) = & T st N Ay 2
i=1 (1-a;. () [otr(I-A(2)]
where
l1-a..(})
w,(A) = 44
1 : n
1-2 Y a..(x)
n j=1 JJ

They showed that the minimizer of (2.6) estimates the minimizer of T(A). Since
then a number of authors have examined properties of the minimizer of V(1A), see
the references in Wahba (1983). 1In addition V(X) is in general substantially
faster to compute than VO(A).

be the minimizer of

Now let C be any closed and convex set in H(m,d), fnx

Q,(f) in C and let fggjbe the minimizer in C of
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% ¥ (Lif_zi)z + AJm(f). (2.7)
i=1;1%#q

The ordinary cross-validation function is given by

n
) §2

q It is obvious that Vo(k) would be prohibitive to
g=1

v () =L T flal
0 n q ni

compute in most cases.

It can be shown by following the proof of lemma 3.1 in Craven and Wahba

(1979) that given the data

[Zl’“"zq-l'qunA 5 Zq+1"“

[q]
the minimizer of Qk(f) in C is an , that is,

; fnl[2+6q] = an [z]-. (2.8)

The notation an[Z+6q] indicates that an is the minimizer in C of Qx(f) based

on the data vector z+5q, where aq is given by:

t

3

5 = (0,...,L fL9[2]-z ,...,0)
q g ni q

and fggjfz] is the minimizer in C of (2.7) based on the data vector z.

Using (2.8), it is not hard to show that the ordinary cross-validation

function Vo in the constrained case can be written as

1 (L fnk—z )2
VO()\) =n Y—j—r‘J—z
(1-a_ (1))
aq
where
a* ) qunx[2+6q]_qunA[z]
qq

Lalr,q-
qunk [z] Z,
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is what Wahba calls the "differential influence" of zq when ) is used.
*
The GCVC function is obtained by replacing aqq by the average "differential

influence", so that the GCVC estimate of X is obtained by minimizing

n
L ¥ (¢ )
[; ey inx 1
¢ i=1
V() =
n
(1-1 7 a0
q=1

As we mentioned earlier we will assume that the convex set C can be well

approximated by the intersection of a finite number of half spaces:

= ¥ < i =
Cp {f: N fer, | Lol

Then, to evaluate VC(A) for a single value of X we need to solve n quadratic
programming problems in n+k-M variables. To avoid this, Wahba (1982) suggested
using the appoximate generalized cross-validation function given by:
n
1 o D
= y g z.)

. 1
Bl e s (2.9)
v = ’
app

n
1 2

(1=% -} a,-(A))
n =1 aq

where
d
A) = — 4
aqq( ) dz qunk Z
q
n
We note that unfortunately ) aqq(k) of (2.9) is not necessarily a
q=1

continuous function of A, A discontinuity will generally occur as X changes,

when the set of active constraints changes. However, this has not caused
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serious problems in the examples tried. Once the set of active constraints for
a fixed A has been determined, it will be seen below that Zaqq(l) in (2.9) can
be found from A(XA), the influence matrix for the corresponding minimization problem

obtained by setting the active inequality constraints as equality constraints.
3. THE ALGORITHM

3.1 Restatement of the problem.

The software written as part of this work was developed for the case where

the functionals Ll""’L and Nl""’Nk are evaluation functionals. That is, we

n

want to minimize

n
: . 2
3 LNz /0.2 + 23 ()

subject to f (s(i)) < res for i = 1,...,k. However, we present the algorithm in
its more general form, where the L, and N, are any continuous Tinear
functionals.

Before solving problem 2.1 we solve the unconstrained problem, estimating the
value of A by generalized cross-validation. The software to solve the
unconstrained problem in the case where the Li’s are evaluation functionals, was
developed originally by Wendelberger (1981) and can be obtained from the Madison
Academic Computing Center (1981). M.F. Hutchinson (1984) has also developed
transportable software, especially suitable for larger data sets, and further
numerical methods have been proposed by Bates and Wahba (1982, 1983).

I1f the solution for the unconstrained problem satisfies all the contraints,

then that is also the solution to problem 2.1.
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If this is not the case, we use the value of A obtained from the solution of
the unconstrained pfob1em, say io as a starting guess for the "correct" X for
problem 2,1. In fact, since the imposition of constraints is in some sense a
kind of smoothing, it is natural to expect that an optimal A for the constrained
problem will be smaller than io' Also, intuitively, the optimal X for the
constrained problem, say 1 should not be "too far away" from io.

There are two important parts in the algorithm to compute the solution to
problem 2.1. One is the solution of a quadratic programming problem of size
n+k-M for each value of X that we consider, and the other is the comptuation of
Vgpp(k) given by (2.9). These two parts are the most intensive in terms of
computational effort and hence it is important to try to make them as efficient
as possible.

For computational convenience suppose that instead of observing z, we

observe the vector
z_ = [Z4/0 z fa. 1"
o il L i

and define the matrices:

<0
8 e g el b
1 1 E
T,
6 . n=d =1 4 ]
Eyp = Dy E11Ps s Egp = D Eyps
Ey = [E]y: E)p), E5 = [E3;: E3,] and
n
EG n El
EU

[p%]
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where E E

11° E120 Bap0 Ty
easy to see that problem 2.2 is equivalent to

Problem 3.1: Minimize

L

% + 7% - z ]t[EGa + 79 -z ] +nrate%
2 a 1o a a a

17« 1 1

subject to

t
E% + T.d-r<0and T°a =0
2 2 o

where a_ = Doa'
t tqt o a )
Llet Q = {Ql - Q2] and R be the Q-R decomposition of T , that is,

i il

Qy O ( nark=M) =M

t
Let e be the n+k-M dimensional vector such that a = Qzed. Since TY B ™ 0,

such a representation always exists. Then, instead of solving problem 3.1 we

solve the equivalent
Problem 3.2: Minimize

o = lrpo &) . troo o
G (eg,d) 2[EleeG + Tld zU] [EleeU + Tld zg]

tatro
4 nAeUQZE QZed .
subject to

a _ O
g (ed,d) = EQe T2d S

Then if (gg,d) solves problem 3.2, (aﬂ,d) solves problem 3.1, where

T, and T2 are given in Table 2.1. After some algebra it is
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A

az = [e:Q; : btl and then solves problem 2.2. Now

]
a oy Oy oy o
1]

g7t

where T is the Hessian and is given by

t 05
3 pielo N o t-a (ol lagh
U5y By% TR 0y e |
TGtEU Q 1970 )
L2 Lo 1]

Finally, we write gﬁ(ec,d) as

i’e i
o) - rpo . o
g (eg,d) = [E202 : T2] {d )

3.2 The Quadratic Programming Algorithm

Let anf given by

=

b X
£ fd) = ! Gl )Em(S,t) £ ij.

L, E {8.1) #
ni PR P 6 jul j(s)™m

d o (t) (8.1}
2=12£

be the solution to problem 2.1 for a given value of ). Suppose that there are 2

active constraints at the solution that correspond to Nv(l)""’Nu(z)’ where
yoes shull i sule)]

is the set of indices of the active constraints.
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If we solve problem 2.1 for some other value of X, say A', then we will get
a possibly different set v' : = fv'(1),...,v'(2)} corresponding to the active
constraints at the solution. If X and X' are relatively close, it is likely
that the sets v and y' will either be the same or at least they will not be Jtoo
different".

It is this feature of our problem that motivated the use of an "active set”
algorithm to solve the quadratic programming problem. The algorithm that we
used was developed by Gill, Gould, Murray, Saunders and Wright (1982, 1984).

The idea behind this algorithm is as follows.

If the correct active set of constraints were known a priori then the
solution to problem 2.1 would be the solution to a problem with equality
constraints. There are several efficient algorithms for solving problems with
equality constraints and, in fact, the presence of equality constraints actually
reduces the dimensionality in which the optimization occurs. Therefore it is
desirable to apply techniques from the equality constrained case to solve
problem 2.1. To do this a subset of the constraints of the original problem,
called a "working set" of constraints is selected to be treated as equality
constraints. Obviously, the feal candidate for the working set would be the
correct active set. Since the correct active set is not available, the method
includes procedures for testing whether the current working set is the correct
one and altering it, adding or deleting constraints if not.

In our problem, every time we solve the quadratic programming problem for a
given value of A, say \', we obtain a correct active set for that particular ).
By the argument at the beginning of this section this correct active set will be
a good starting guess for the correct active set for some other value of X close

to A' and therefore once we solve the problem for the first time we can expect
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very fast convergence with this active set algorithm. 1In fact this was what was
observed in our Monte Carlo studies. In the cases where the active set did not
change from one value of X to the following, the quadratic programming routine
converged in one iteration. We will discuss this further in Section 4 where we
will present the results of the Monte Carlo study.

The Fortran routines to solve the quadratic programming problem were kindly
provided by Nicholas I.M. Gould and are based on method 3 of Gill, Gould,

Murray, Saunders and Wright (1982).

3.3 The Computation of the Approximate GCVC.

Let fn given by (3.1) be the solution to problem 2.1. Let

A

N correspond to the 2 active constraints at the solution, then

u(l)""’Nv(ﬁ)

an is also the solution to

Problem 3.3: Minimize

L.

j = CAN ] .=l:°--s
subject to Nv( rU(J) J

j)
The solution to Problem 3.3 is Tinear in the components of the data vector z

and it is now our purpose to exploit this to obtain an algorithm for computing

the term

B

5 e R
3qq'" iz a m

which appears in the denominator of Vg (After the quadratic programming

_ pp’
problem has been solved, the numerator of Vgpp can be computed easily.)
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First we must introduce some more notation. Let the matrices EZZ(Y), Elz(Y)

and TZ(Y) consist of the rows and columns of the matrices E22, ETE and T2,
(v) consists of rows and

corresponding to the active set of constraints, that is, E22
columns v(1),...,v(2) of E22, EfZ(Y) consists of columns v(1),...,v(2) of

consists of rows v(1),...,v(2) of TZ' Also define the matrices:

a
E12 and TZ(Y)
s
a 1 1 o s ki £
T (y) = (T (Y)), Ezl(Y) = Elz(Y) s
2
a - . = g .
El(Y) = [Ef1 x EfZ(Y)], Eg(Y) [EZI(Y) z E22(Y)]
and
et o
’IEll ElZ(Y) \
E(y) = .

where Efl and Tf are as defined in Subsection 3.. Here we use the notation (v)

to emphasize the dependence on the set ¥ of active constraints.

Now we can rewrite problem 3.1 as:

Problem 3.4

Minimize

G-

= - Llipog. g... yEioo
G(ag,d) = Z(F.Zl(;r)a(J + Tld zc) (El(Y)a + T1 zd)

t_ o
+ nAaUE ('Y)aG
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subject to

g(ac,d) = E2(Y)aCr + T2(Y) -r(y) =0

where r(y) = (rv(l),...,rv(z))t.

Let QI(Y)’ 02(Y) and R(y) form the Q-R decompositon of T°(y), that is, they

satisfy
[0,(n % 0,(M*17%m) = R(* : 0%1* (3.3)

where Ql(Y) is M x n+e, Qy(y) is n +2 - Mxn + 2,R(y) is MxM and 0 is an

(n+2-M) x M zero matrix. We assume below that Qz(y)tEc(T)QZ(Y) is positive

definite. This will hold if conditions 2.1 and 2.2 hold (see Dyn and Wahba (1982)).
Using standard methods (see e.g. Wahba (1978,1980)) it can be shown that
a and d satisfy the following system of equations

g a 4 =
[E (%) + nAa_ + T (y)d = i (3.4a)
riy

TG(Y)taU = 0 (3.4b)

where

0 0

0
In nxe )
exn exe

Since a  must be in the column space of Qz(Y)t by (3.4b) we can write = QZ(Y)te

ag
for some n + £ = M column vector €y and (3.4a) can be rewritten
z

02(7)(E°(Y)+nkw)02(v)tec = 0,(y) e

and
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- z ‘ii
a, = 0,(n%e_ = (1 TN (E (MmN, (1) "] IQZ(Y)/r ; ) .

Now, by substitution in (3.1) we have

. Llfnk
z . " s
( = . = E(vla  + T (v)d
r(y) L fa
r(vy)
and (3.4) gives
z a a
: , = (E7(y) + mia_ + T (v)d
irv)]
)
Z=Z - z 1
= i = (1) T, (N (E°(Y) + i, (0 F17 ()
0 | riv) |
Let

B B -
B = ( 11 12) = 0,00 L0, (E°() + mm) (1) 170, (y)

where B11 is nxn and 822 is &x&, Then
z -z =nA(Byyz + Blzr(Y))
giving
) ( (
A) = Tr(I_-nAB
qzlaqq ) A TMB )

or
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Now

Tr‘B11 = TrWB
= Tra(o+nia) L
where A and ® are the n + 2 - M square matrices
A =Q (Y)tWQ (v)
2 2
2 t.o
b = QZ(Y) E (Y)QZ(Y)
and it follows that
-1 n+2-M pi
TrA(o+nAA) = 5 5 T (3.5)
i=1 i

where pyoee are the eigenvalues of the real symmetric eigenvalue problem

Pt

Azi = piéﬁi, 12 L2y sh#l=M.

Using (3.5) we need only solve the generalized eigenvalue problem when the set

of active constraints changes from one value of A to the next.

3.4 Details of the Computational Algorithm

After the unconstrained problem has been solved we have an estimate of A,

say AO. The algorithm to compute the constrained spline uses this value of ) as

; : ? i c
a starting point to get the estimate » that minimizes Vapp'

If AO = « the algorithm also requires the largest eigenvalue of the

a.

matrix QtEd Q. where 02 is obtained from the Q-R decomposition of Tl

2 1172
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The eigenvalue, call it p*, is available from the routine that computes the
unconstrained spline using Wendelberger's (1981) algorithm (see Madison Academic
Computing Center, 1981).

The basic steps of the algorithm are as follows:

(1) Compute the quantities and matrices needed to solve the quadratic
programming problem 3.2.

(2) Construct a regular grid of values of X and ;0 in logarithmic units, in
increments of 0.1 (see details at the end of the algorithm).

(3) For each value of A do the following:

(3.1) Solve quadratic programming problem to obtain e and d, using
the set of active constraints at the solution for the previous
value of X as initial guess.

{3.2) Cbmpute Vgpp given by (2.9).

(3.2.1) If the set of active constraints is the same as for previous
value of X go to step (3.2.3), otherwise

(3.2.2) Solve the generalized eigenvalue problem (3.6) to obtain

pl"°"pn+R-M

(3.2.3) Compute Vg (A) using (3.5) to compute the denominator.

PP

A

(4) Find min VC (r). Sete =-e_and d =d using the minimizer, A.
,  app o o

£
02e

(5) Compute [cot : bt]t . to obtain the coefficients of the spline

c = D_lc , b and d.
a
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In step (2) of the algorithm, the number of values of A for which we solve the
quadratic programming problem and evaluate Vgpp(k) is given as an input parameter.
The user can specify the number of values to the left (nz) and to the right

(nr) of AO. We recommend that n, be greater than n. since in all our simulation

L

studies the "minimizer" of Vgpp(k) was to the left of Ayr

Most of our simulations were done with I F 15 and nr = 10. One should be

careful in choosing n, and n. because if the total number of values of A

2
considered is too large the computation of the spline could be very expensive.
As a rule of thumb and based only on our simulation study, we would suggest
considering between 15 to 20 values to the left and between 6 and 10 to the
right.

The grid of values of X is constructed as follows (in units of logarithm of

If AO < = the grid is constructed in equally spaced intervals of size 0.1,
that is the grid consists of the following values:

~

1og(A0)-0.1n2,...,1og(Ao)—O.l,Tog(AO),1og(Ao) + D,l,...,1og(ko) + D.lnr.

A

If AO = « then we use the sample size n and the largest eigenvalue p* from
the unconstrained problem to determine an upper bound for the values of ) that
will be considered. This upper bound, call it A* is computed as A* =
103(n+k)p* and the values of )X considered are from largest to smallest:

* * * * *

Tog(A ), Tog(x )-2.0, log(r )-3.0, Tog(r )-4.0, (log(r )-4.0)-0.1,

* *

(log(A )-4.0)-0.2,...,(Tog(A )—4.0)—0.2(n2—3).
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In step (3.1) we use the routine QPFC to solve the quadratic programming
probTem.

In step (3.2.2) we use the EISPACK routines REDUC, TRED1 and TQLRAT (see
Boyle, Dongarra, Garbow and Molder (1977)) to solve the generalized eigenvalue
problem.

The routines DSCOMP and DSEVAL to compute and evaluate the spline are
written in Ratfor (Kernighan and Plauger (1976)). The Ratfor listings are
available from the first author.

A11 the computations are done in double precision and the routines are
self-documented.

Routine DSCOMP is the routine that the user should call to solve problem
(3.1).

Routine DSEVAL evaluates the spline computed by DSCOMP at a set of points in
Rd. The called sequence for DSCOMP and DSEVAL as well as explanation of the
variables that appear in the calling sequence are listed as comments in the
source code.

As we mentioned before, the algorithm is written for the case where

are evaluation functionals, for example,

L .,Ln and N oN

12e” 1277k
Lif = f(y(i)), i = 1,...,n and Njf = f(s(j)), j =1,...,k. It is assumed that the
n + k points are different so that the generalized eigenvalue prob]em in step
(3.2.2) can be solved. In the near future we plan to incorporate the handling
of replicates in the algorithm. One possible strategy to handle replicates is

the following: suppose that we have ns replicates at the point Y5 and denote

e 4 4 k
them as Zi(1) Z1(n) then take the average
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and let a? = l/ni' Then use (E},y(i)), i=1,...,n as the data with
; ; 2 2 ; F
relative weights (ol,...,un). The grid of points s(1),...,s(k) can always be

chosen so that s(j) # ¥{1) = liweesty 37 lywessk.
In the example with real data in section 4.3 the replicates were handled

using the strategy mentioned above.

4. NUMERICAL EXAMPLES: CONSTRAINED SPLINE ESTIMATES OF POSTERIOR PROBABILITIES

In this section we apply the cross-validated, constrained thin plate spline
to the estimation of a bivariate posterior probability in the classification
problem.

Suppose there are two populations, Al and A2. If the d-dimensional random

vector Y is an observation from Al it has the density function flty) and if it

is from Az it has the density function fz(y). Let the prior probability of

be gq.. Then the posterior probability of A., given an observation

population Al 1

1,
Y =y, is

P(A1|Y=y) = p,(¥) = a f (y)/(a,f (y)+a,f,(y))

Suppose that there is a training set of ny observations Yll""’Yln from
1

population A and n, observations Y21,.. ¥ from population A We want to

°? 2n2
estimate p(y) = pl(y) given this training set.

o
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let Y Yoo ni=ny + 0y denote the combined sample

1°°°°?'n

Yll""’Ylnl; Y21"“’Y2n2 from the two populations A, and AZ’ and define the

random variable
1 if Y, € A
Lt 1 1

; ) ;
0 if Y_i € AZ

Since in applications the prior probabilities a9 and q, are usually unknown,

we consider the estimation of

wify

e Suldlel ol
wify Wt

where Wy = nlln and W, = nZ/n. Then if % is an estimate of h,

(qI/wl)B

p = = =
(ay/w )+ (ay/uy) (1)

is an estimate of the posterior probability p.

t

We can think of the vector Z = (Z;,...,Z )~ of zeros and ones as noisy

n
observations on the values h(y(1)),...,h(y(n)). To see this, note that, if we draw
an observation Y from the density fj with probability wj, h =1,2, and Z is the
random variable which is 1 or 0 according as j is 1 or 2, then E(Z|Y=y) = h(y).

Our estimate of h(y) is the solution h, to the minimization problem: find

heH(2,2) to minimize

3

n
_Zl(zi—h(y(i))z + 2, (h), (4.1)
'I:

subject to 0 < h(s(j)) < 1, for a set s(1),...,s(k) to be described below, and X is
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chosen by GCV for constrained problems. Here Z; is 1 or 0 according as the
observation Yi = y(i) is from population 1 or not.

In Villalobos (1983) a Monte Carlo study comparing the efficacy of this
method as compared to the use of (parametric) normal theory, was carried out.
When the underlying populations had fl and f2 substantially different from
normal the spline estimate lead to substantially improved correct classification
rates, while the spline estimate is nearly as good when the two populations are
normal. In this section we will only present a single example taken from that
Monte Carlo study, and another example using real data. For more details and
further examples, see Villalobos (1983). In the examples below we will take
™ %, ny = n, so that h = p.

We remark that iterative reweighting of the sum of squares term in (4.1)
could have been implemented to take into account an estimate of the variance of
Zss but this did not Tead to better estimates of p in the examples tried. Using
the notation Nz(ul,uz;cll,azz) for the uncorrelated bivariate normal

distribution, the distributions fl and fz for the example to be presented are:

fl ~ N2(0,0;1,1)

! B2 : L .
iy, N2(1.5, <8I 0 g 5 N2(1.5,2.5,1,1)

Figure 1 gives a plot of the true posterior probability
ply) = pyly) = f(¥)/(F{y) + f(¥)).

Figure 2 gives a plot of a pseudo-random sample of ny = 70 observations from
fy (crosses) and n, = 70 observations from f, (circles). Thus y(1),...,y(140) are
the n = 140 coordinate pairs in Figure 2 and ZyseeesZyyq are 1's or 0's

according as the corresponding y(i) came from population Al or AZ' These
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observations were generated using the IMSL (1983) routfnes GGNSM and GGUBS.

Figure 3 gives a plot of the constrained, cross-validated spline estimate p. of
A

p which is the minimizer of

-3

(2,-p(y;))% + 23, (p)

1
n 2

i=1
subject to

D < pi{s(i)) <1 15 124 vus22h

~

with A = X taken as the minimizer of Vgpp(k) of (2.9). The s(i) form a regular

grid of 15x15 = 225 points in the range of the data. The unconstrained spline
was evaluated at 225 points. If the constraints were violated at some of these
225 points then the constrained problem was solved using ; from the
unconstrained problem as initial value for X for the constrained problem. The
set of points s(1),...,s(k) at which the constraints were enforced consisted of the
subset of the 225 points at which the unconstrained solution was outside
the interval [.1,.9]. 1In all the simulations this was sufficient to ensure that
the resulting solution satisfied the constraints at all 225 points, and it was
sufficient to restrict k to be less than 100,

Figure 4 presents a plot of the level curves of p. superimposed on the

A

pseudo-data. Figure 5 presents a plot of the level curves of p. along with those
)

of the true p (corresponding to Figure 1).
Figure 6 gives a plot of Vgpp(l). Computed values are indicated by either
a "+" or a "0". These symbols are used to indicate when the set of active

constraints changes. If for two consecutive values of X the symbol changes,
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this indicates that the set of active constraints is different for those two
values of A, If values of Vgpp(x) had been computed on a finer grid, (small)
Jumps would have been evident when the set of active constraints changed. This
did not turn out to be a serious practical problem, however.

Next we apply the method to some data from a psychological test of a group
of 25 normal persons and 25 psychotics. We obtained this set of data from
Smith (1947). The psychotics will be population A1 and the normals AZ' ¥q is a
score related to "size" obtained by Penrose's method (Penrose 1945) and Yy is a
score related to "shape".

Figure 7 gives a plot of the data, level curves for the spline estimate of
p; (assuming 9

p obtained by assuming that fl and f2 are bivariate normal and estimating their

=q2=.5), solid 1ines, and level curves for the (usual) estimate of

parameters from the data.

: 5 G
Figure 8 gives V
g g app

in Figure 6. The discontinuities are fairly apparent, but there was no

(A), with the symboTs[I and * having the same meaning as

practical problem in selecting the global minimum. Figure 9 shows p., looking
from the southeast corner of Figure 7. :

We were pleasantly surprised at how good this estimate was, considering that
a sum of squares of residuals is being applied to the binomial data zs.

The penalized Tikelihood estimate of 0'Sullivan (1983) and 0'Sullivan,

Yande1l1l and Raynor (1984) is a competitor of the estimate of this chapter for

the posterior probability p. These authors estimate the logit # defined by
6 = log(p/(1-p))

by minimizing
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p.s from the southeast corner of Figure 7.

Figure 9.
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8(y.)
0,(8) = - ‘

Il 3

[z.e(yi—1og(l+e

, )1+ AJ(8)

=}

i=1

and using a GCV for nonlinear problems to obtain A. The first term is just the
log likelihood log ¢(zi) where
z 1~z
@(zi) = Py (l-pi)

expressed in terms of 6. We remark that the estimates are not directly
comparable in the sense that the smoothing penalty here is applied to 6 while in
the constrained spline it is applied to p. However, we believe that the present
algorithm may well be the method of choice for the nonparametric estimation of f

in the model

Zi = f(y(i)) o+ Ei, i = 1,2,.,.,n
f "smooth"
L&) & fls) Suuls), T eed

g ~ N(O,UZI)

for smooth upper and lower bounding functions 2(s) and u(s).
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Inequality-Constrained Multivariate
Smoothing Splines with Application to
the Estimation of Posterior Probabilities

Miguel A, Villalobos Grace Wahba
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IBM Mexico University of Wisconsin
ABSTRACT

.s 1 =1,2,...,n, where f is known to be a

Let z; = Fly,(1),y,(1)) + e,

“smooth" function of (yl,yz) and the e, are independent, zero mean random
variables. In addition f is known to satisfy a family of linear inequality
constraints, for example 0 < f(yl,yz) €1 (yl,yz)eﬂ c:Ez. We propose that f be

estimated as the minimizer of

ln. : Y
x _E wi(zi-f(y1(1),y2(1}) + lJm(f)

i=1

subject to f satisfying the constraints. Jm is the thin plate penalty
functional. A good value of X is estimated by the method of generalized cross
validation (GCY) for constrained problems. A characterization of the solution
to the minimization problem with the constraints discretized is obtained from
known results. We provide a numerical algorithm for computing the GCV estimate
of A and the solution to the (discretized) minimization problem. The method is
applied to the estimation of posterior probabilities in the classification

problem. Numerical results for both synthetic and experimental data are given.

Key Words: thin plate splines; inequality constraints; cross validation:
constrained surface estimation
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