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ABSTRACT

A new method, based on partial spline models, is developed for including
specified discontinuities in otherwise smooth two and three dimensional
objective analyses. The method is appropriate for including tropopause
height information in two and three dimensional temperature analyses,
using the 0'Sullivan-Wahba physical variational method for analysis of
satellite radiance data, and may in principle be used in a combined variational
analysis of observed, forecast, and climate information. A numerical method for
its implementation is described and a prototype two dimensional analysis based
on simulated radiosonde and tropopause height data is shown. The method may
also be appropriate for other geophysical problems, such as, modelling the ocean
thermocline, fronts, discontinuities, etc.



1. Introduction

In this paper partial spline models are used to obtain otherwise
smooth analyses of direct and indirectly sensed atmospheric data, which
retain prescribed information concerning the location of certain types of
discontinuities. The focus is on modelling.a jump in the vertical first
derivative of the two and three dimensional atmospheric temperature distribution
which is characteristic of the tropopause and frontal boundaries. It is assumed
that a (spline) analysis of tropopause height (or other inversion layer if used)
is available separately. Such an analysis may be available from radiosonde
data, total ozone content (Munteanu, Westwater and Grody (1984)), VHF radar,
(Gage and Green, (1979)), a forecast, or other information. The objective of
this paper is to show how partial spline models can be used to combine this
information with direct (i.e. radiosonde) and/or indirect (i.e. satellite
radiance) data to obtain a two or three dimensional analysis of atmospheric
temperature. For radiance data a two or three dimensional version of the
0'Sullivan-Wahba (1985) (0'S-W) physical variational method is incorporated into
the partial spline model.

It is conjectured (but not explicitly demonstrated) that early combination
of these different types of information will prove synergistic, since satellite
radiance data has high resolution in the horizontal and low resolution in the
vertical, particularly near the tropopause, while radiosonde data, when
available, has the reverse.

Partial spline models involve functions of one or several variables, which
are the sum of a smoothing spline or ré]ated function plus one or more parametric
functions which carry other information. These models have found a variety of
applications in the statistical literature and may even be used for probability

forecasting (see Wahba (1985a), Shiau (1985) and references cited there).



Partial spline models using thin plate splines in several variables were
proposed in Wahba (1984a,b, 1985a) (see Wahba and Wendelberger (1980) for
a discussion of smoothing thin plate splines). A general theory of otherwise
smooth functions of several variables with sharp edges along specified curves or
boundary layers has been proposed by Shiau (1985). The basic mathematical
theory for the characterization of partial spline models as solutions to
variational problems may be found as special cases of the theory in Kimeldorf
and Wahba (1971),

In Section 2 a one dimensional partial spline model for modelling an otherwise
smooth curve with a jump in the first derivative at a specified point is
presented. Such a model is appropriate to describe a vertical temperature
profile including the first order discontinuity at the tropopause.

In Section 3 the method is extended to perform an otherwise smooth two
dimensional thin plate spline analysis of temperature for a cross section
through the atmosphere from a hypothetical array of radiosondes oriented on a
latitude circle. The longitudinal dependence of the tropopause height as a
discontinuity in the first derivative of temperature is prescribed within the
plane of the cross section. The method immediately extends to a three
dimensional analysis with the height of the discontinuity being specified as a
two dimensional surface representing the tropopause. The methods given in this
section are also appropriate for an analysis of frontal structures and the three
dimensional ocean temperature where it is desired to build in information on the
location of the thermocline; and it may be appropriate for certain other

meteorological and geophysical problems.



In Section 4 a theoretical discussion of partial spline models is presented
to show how these methods may be used in conjunction with general covariance
functions to superimpose two and three dimensional break curves or surfaces on
otherwise smooth fields.

In Section 5 partial spline models are used to merge tropopause height and
frontal boundary information with satellite radiance data to obtain two and
three dimensional temperature retrievals via the physical variational method
proposed by 0'Sullivan and Wahba (1985), and further studied by Wahba (1985b).
Svensson (1985) has already implemented a one dimensional retrieval using this
form of variational method, tropopause height information, and, moreover
imposing a constraint on the dry adiabatic lapse rate.

Sections 2 through 5 end with a variational problem with a finite number of
unknowns to be computed and one or more smoothing parameters to be chosen.

In the appendix we show how these variational problems can be transformed so as

to utilize recently developed transportable code (Bates, Lindstrom, Wahba

and Yandell (1985)) which solves the variational problem and chooses the smoothing
parameter(s) by generalized cross validation, for several hundred unknowns, using

a super mini computer.



2. Theory of one dimensional smoothing splines with a jump in the first
derivative at a specified location.
The development of the method begins by briefly reviewing some of the
theory of one dimensional smoothing splines. Our discussion will be limited to
certain aspects of univariate splines which generalize to partial thin plate and
other spline models in many dimensions, and is not intended to describe the most
efficient ways of operating with univariate polynomial splines. For a
description of numerical methods which take advantage of the special structure
of one dimensional polynomial splines, see Hutchinson and deHoog (1985), Shiau
(1985) and references cited there.

The data model is
ys il e TN N

where g is a smooth function of the variable z, and the €; are zero mean,
approximately independent disturbances with about the same variance. One
may obtain a smooth estimate g, of g by finding g in the (Sobolev) space W of
all functions with m - 1 continuous derivatives and square integrable mth

derivative which minimizes

n ©

L) tyymaz(i? + a Jtg™(2))dz. (2.1)
1=1 -0

The Timits on the integral may be replaced by any a<z(1l) and b>z(n), if

z(1)<z(2)<...<z(n), and the answer between a and b will be the same. Weights

may also be included in the sum of squares term if appropriate, their discussion

is omitted.



It is well known that, for fixed A>0, with n>m, the minimizer 9, is
unique, and is in a certain n dimensional subspace which is characterized by

the following properties:

(1) g, is a polynomial of degree m-1 for ze(-«,z(1)] and ze[z(n),)

(2) g, is a polynomial of degree 2m-1 in each interval [z(j),z(j+1)],
p IR C e o

(3) The polynomial pieces are joined at each z(1),...,z(n) in such a way that
g, has 2m-2 continuous derivatives.

See e.g. de Boor (1978).

This space is designated{g(nm’l(z(l),...,z(n)). It is assumed that m > 2, and
hence g, will always have a continuous first derivative. In principle one may

construct g, by constructing n linearly independent basis functions for
}fnm’l(z(l),...,z(n)). Substituting a representation for g in terms of the basis
functions into (2.1) results in a quadratic form in the unknown coefficients
which is then minimized to obtain gy. The smoofhing parameter A may be chosen
by generalized cross validation (GCV) (see Craven and Wahba (1979), Wahba and

Wendelberger (1980)). Define the influence matrix A(A) by

g,(z(n))

where y = (yj,...,y)". The GCV estimate of X is the minimizer A of V() defined

by

V(3 = H(1-A0)y 1%/ (Trace (1-a(0)))2, (2.3)



Software for computing A and 9y is available in IMSL (1983) and a very fast
code has recently been developed by Hutchinson (1985). m may also be chosen
by minimizing V with respect to X for several values of m of interest
and then minimizing with respect to m.
By specializing the above variational problem to periodic functions on the
circle and equally spaced data, one can establish that if Yy ® cosZﬁw% then
~

gkt%) ¢A’m(w)c052ﬂ%%, for w=1,2,...,n/2, where the filter function 9y m(w) i

2

o, (w) = 1/(1+r(2mw)2M), (2.4)

A,Mm

Methods for making this calculation may be found in Wahba (1982a). Thus the
smoothing spline may be viewed as a generalization of a low pass filter to the
non periodic, nonequally spaced data case, with frequency response @A’m(w}. As a
Tow pass filter, the output g, can be expected to smooth over sharp corners.

Now suppose that our data model is

v = Ribiloe ey, s LA o

where a possible jump is allowed in the first derivative of f at z = z*,

where z* is fixed value of z. In a partial spline f is modelled as

flz) = glz) + ex(z] , (2.5)
where g(z)eW™ for some m>2 and y(z) = |z-z*|. Then
of of i
- — =28, (2.6)
= z=z* e Z2Z¥

A partial spline estimate of f is obtained by finding fy = g, + 8Y where

gewm and 6 are chosen to minimize
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(v, - glz(iN-ev(z()? + & [(g™ (2)) ¢z, (2.7)
1 -

=
I —3

i

It can be shown, using the theory in Kimeldorf and Wahba (1971), that if there
exists a unique minimizing pair (g,,8), then g, will be inxf;m’l(z(l),...,z(n)),
and there will be a unique minimizer provided that a certain nx(m+l) dimensional
matrix defined below is of rank m+l. Let ¢l(z),...,¢m(z) span the polynomials of
degree less than m and let T be the nxm matrix with ivth entry ¢ (z(i)). Let

T1 be the nxl matrix with ith entry v(z(i)). There will be a unique minimizer

of (2.5) for each A>0 if the matrix (T:Tl) is of rank m + 1. X and m may be

chosen by GCV by defining A(A) now as

£ (z(1))
] = A(X)y

f,(z(n))

and minimizing V(X) as before. The details can be inferred as special cases of
the two and three dimensional partial spline models in the next Section, and in
the Appendix.

The use of this method is illustrated in the hypothetical vertical
temperature data of Figure 2.1. The solid 1ine is a hypothetical vertical
"true" temperature profile and the circles are (noisy) hypothetical measured
temperature observations. The "true" temperature profile has a jump in the

vertical first derivative at z*. The dashed 1ine represents the estimate fk

obtained by minimizing (2.7) for m = 2 with the true z* given and

A being the GCV estimate of A.



3. Two and three dimensional thin plate partial splines with breaks and jumps

Thin plate smoothing splines appeared in the meteorological literature as a
variational method for objective analysis in Wahba and Wendelberger (1980) based
on mathematical foundations due to Duchon (1976) and Meinquet (1979). Since
then a number of researchers have considered them in meteorological contexts,
i.e. Hoffman (1984), Seaman and Hutchinson (1984), Testud and Chong (1983), Lee
and Houghton (1984) and others. We will first review relevant portions of the
thin plate spline theory and then give the partial spline model.

In the remainder of this paper let s and t be points in Euclidean
d-space, t = (xl,...,xd), t(i) = (xl(i),...,xd(i)) where d = 1,2, or 3 depending
on whether a function of 1,2 or 3 variables is being modelled. If desired, time
may be included as a fourth variable in a straightforward manner. Also, to
distinguish between vertical and one or two horizontal coordinates let
t = (=, 1) or (2,21,22) if there are, respectively, one or two horizontal
(Euclidean) coordinates.

First, the model for the observations is assumed to be
y; = 9(t(i)) + e, 1= 0.2 .50 (3.1)

where g is a smooth function of t = (xl,...,xd) and e; are independent zero

mean measurement errors or high frequency disturbances with about the same
variance. d = 2,3,4 are the cases of most meteoroogical interest. g is

m,d, a space of "smooth" functions of d variables whose

assumed to be in X
derivatives of total order m are square integrable, see Meinguet (1979)

for a rigorous definition. Given the data
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y = (yl,...,yn) , one obtains an analysis as the minimizer in Xm’d of

n

il ~—>

(yo-g(t(i)))% + 2a(g), (3.2)

i=1

where J(g) is the thin plate penalty functional. For d = 2, m = 2,

oF e 2 2 2
J{g) = | [ (g + 29 + g Ydx,dx £3.3a)
. xlxl xlx2 XoXo 1252
and for general m,d
gy = e f ) = ( Y d%ewe el (3.8b)
e 1 d
-0 -0 Zai_m 1 d (o] ad

ax, 1...axd
In order that the minimizer g, be a well defined continuous function it is
necessary that 2m-d>0. The penalty functional is isotropic, but can be made
elliptical by rescaling some of the independent variables X1seeesXy at the
outset.

Let ¢1(t),...,¢M(t) span the M = (m+g-1) polynomials of total degree less
than m in the d variables XpseeosXys and Tet T be the nxM matrix with ivth entry
¢v(t(i)). If T is of rank M then (3.2) will have a unique minimizer; that is
known to be in a certain n dimensional subspace to be ca11ed/£;m’d(t(l),.--,t(n))
which is now described.

For a description of this subspace, let

Em(ltl) = Gm’dllt!lzm"d1og||t|| 2m-d an even integer
= qm,dlltllzm—d 2m-d not an even integer (3.4)
where ||t|] = Hx12+...+xd2]|1/2 and
: . (_1){d/2)+1+m )
md =1 0720 1) 1 (m-a/2) 1 o
r{(d/2)-m)
= d odd.

22mﬂd/2(m_l)!
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xgnm’d(t(l),...,t(n)) consists of all functions g of the form

n M
g(t) = _ElciEm(|t—t(i)|) + uzldu¢v(t) {3,5)

with ¢ = (¢;,...,c,)" satisfying the M conditions T'c = 0. If the {t(i)} are

n
distinct and T is of rank M, thenggnm’d(t(l)s...,t(n)) is of dimension n.

It is known that if g is ind ™7 then
d(g) = c'ke (3.6)

Yo R 35 not &

where K is the nxn matrix with ijth entry Em(lt(i)—t(j)
positive definite matrix but c'Kc will be nonnegative if T'c = 0. Using these
facts, g of the form (3.5) can be substituted into (3.2) and it can be shown

that the c and d = (dl,...,dM)' which minimize (3.2) satisfy

(K+nAl)c + Td

"
<

(3.7)
The

]
[e=]

See Wahba and Wendelberger (1980). The minimizer g, will be continuous and have
a continuous first partial derivative with respect to any one of the variables
Xl,...,xd .if 2m_d > 2-

By an argument similar to the one dimensional case, it can be shown that the
smoothing thin plate spline in d dimensions is a generalization of a Tow pass

filter with filter function

0y plBnesg) = 1/ (1eA(2na])2M), (3.8)

2. 2

where w = (wl +w2 +...+wd2)1/2.
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Thus if the true g in the model has a sharp break, as might occur at the
tropopause or a frontal boundary, it is likely that a smoothing thin plate
spline analysis of the data will smooth it out.

Figure 3.1 gives 10 hypothetical temperature curves (solid 1ines) as might
be observed from 10 hypothetical stations equally spaced along a Tatitude
circle. The curves have been displaced a unit horizontal distance on the page
so that the temperature scale goes with only one of the curves. The horizontal
distance unit £ has been scaled so that the scale length in vertical and
horizontal distance units is about the same. The given temperature scale
actually goes with the Tleftmost curve. Figure 3.2 shows the tropopause height
z%(2). z*(2) may be represented by a univariate spline function. Figure 3.3
shows a function f(z,2) which specifies the sharp temperature minimum at the
tropause and interpolates the 10 "true" vertical profiles of Figure 3.1. This
hypothetical "true" function has been modeled with the aid of a thin plate

spline g(z,%) and a tropopause "break function" y(z,%) defined by
¥lz. b)) = |z ()| (3.9)
where z*(2) is a univariate spline. If
flz.oy = glz )+ 8(L)vlz.L) (3,10

and %% is continuous for each %, then

<00 =
5 26(2)

z=z% (1)

z=z*(2)+ L

Thus the break function 7y carries the location of the discontinuity in the
vertical first derivative of f and the coefficient 6(%) carries the information

concerning its size. Figure 3.4 gives the tropopause break function
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corresponding to the tropopause height of Figure 3.2. If 6(2) = 0 for some &£,
then there is no break in the vertical first derivative of f. We shall see that
if sufficient data is available and suitable assumptions are made on 6(2&), then
8(2) can be treated as an unknown and estimated from the data.
Only the location z*(2) of the break is assumed known a priori.

The small circles in Figure 3.1 give the hypothetical data as might be observed
by 10 (rather noisy) radiosondes at the stations of Figure 3.1. Figure 3.5
présents an analysis of the temperature given the location z*(%) of the tropopause
of Figure 3.2 and the data of Figure 3.1. Temperature measurements at the
tropopause are not assumed. For comparison the dashed lines in Figure 3.1 are
cross sections of the two dimensional analysis of Figure 3.5. In the analysis
it was assumed that tropopause height was known exactly.

Figure 3.6 presents a cross section of the "true" and estimated temperature
as a function of z and £ while Figure 3.7 shows the true and estimated
potential temperature. Results in practice will be degraded further to the
extent that an erroneous tropopause height is prescribed.

We now describe the partial spline objective analysis which was used to

obtain the temperature analysis of Figure 3.5. The data model is

y; = f(z2(1),2(0) + ¢

where
Tz 2) = glzat) 4 Bleiviz . pl, (3.11)

and where geXm’d with m = 2, d = 2. The break function coefficient was modelled by

B(e) = 6, + 622, where 6, and 6, are to be estimated, see Shiau (1985). Then

1 1 2
Gy 61 and 6, were obtained as the solution to the minimization problem:



-

Find gexz’z, 91 and 82 to minimize

) (ymalz(i),800) = (040,01 ¥(2(1),8(1)))% + N(g),  (3.12)
s

Np—>

1

and X was obtained by GCV. The n = 150 = 10 x 15 data points t{(i) = (z(i),2(i))
were the 15 data points associated with each of the 10 "true" curves of Figure
W

Let v;(t) = ¥(t), v,(t) = 2¥(t) and T; be the n x 2 matrix with igth entry
Yq(t(i)). If the n x (M+2) matrix (T:T;) has rank M + 2 then it can again be
shown, using the methods in Kimeldorf and Wahba (1971), that (3.12) has a unique
minimizer (gA,Gl,BZ) and that g, must be inéf;m’z(t(l),...,t(n)). fA is then of
the form

n ; M 2
Folt) = e E LJe=tliy]) = L d ¢t + T 8.y (%)
) et el g=1 99

where ¢, d and 6 = (81,92) minimize

Lity - ke = Td = T 6|2 # %c'Ke (3,14
n 1

subject to T'c = 0.

The three dimensional partial spline model is constructed the same way. Let
21 and L, be horizontal distance coordinates and let the tropopause height be
z*(zl,zz). The tropopause break function y(t), t = (21,21,22), is

Y(t) = |z - z*(21,2,) | . (3.14)

In practice z* would be obtained by a separate analysis of tropopause height

data. The partial spline model is



f(t) = g(t) + B(RI.RZ)Y(t).

m,3

geX and 6(£,,%,) is modelled as

p
8(%;,4,) = q£16q¢q(£1’22) (3.15]

1

where the wq are given. With Yq(t) wq(zl,zz)Y(t), and data assumed

to be given from the model

y'i = ‘F(t(‘i)) + E_i, 'i = 1,2,.-.,", (3-16)
Tet fA Sl ) Bqu where 95 in Xm’3 and 6 = (81,...,9r) are the minimizers
of
3 I PR
= ) (ye-glnl1)) =) & x (t(1)])° + Mdla).
i=1 gel o 8

If the nx(M+r) matrix (T:Tl), where T, is the nxr matrix with iqth entry Bq(t(i))

is of rank M + r, then there will be a unique minimizer, N which is in

/ﬁnm’?’(t(l),...,t(n)), %

M 3
g =) e ) g0 () -+ ) ey (4]

gl E) =
; = h a1 99

i

Il —3

while ¢, d and © are the minimizers of

Llly - ke - Td - T,8[|% + Ac'Ke

with T'c = 0.
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4, General partial spline models for modelling discontinuities of the vertical
first derivative in 2 and 3 dimensions

4.1 General Theory

In this section a general theory of partial spline models which may be used
with a wide class of penalty functionals is described. The choice of penalty
functional can be related to a choice of prior covariance. Thin plate spline penalty
functionals have proved to be good first approximations to describe atmospheric
phenomena in rectangular coordinates, with an isotropic or elliptical covariance
such that the energy decay with wavenumber depends on m. Splines on the sphere
(Wahba (1981a)) have the same properties. However, partial spline models can be
built around general covariances, and the theory may be described here in its
natural context of general reproducing kerneT.Hi1bert spaces (r.kih.s. ). Some
mathematical background on r.k.h.s. may be found in Aronzajn (1950) and
Kimeldorf and Wahba (1971),

Partial spline models can be used with general bounded linear functionals,

y-i = L—if + E-i: -i = 1,2,...,” (4-1.1)
not just evaluation functionals,
y-i = f(t(i)) + E.i- (4-1.2)

The interesting bounded l1inear functionals are typically of the form
Lif = jK(ti,s)f(s)ds. The evaluation functionals are bounded in r.k.h.s.'s and

thus these spaces play a key role when it is desired to combine direct data as
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in (4.1.2) with indirect data as in {4.1.1). -In an r.k.K.5., (4.1.2) 18 Just a
special case of (4.1.1).

In the remainder of this paper P will stand for 1 or 2 horizontal
coordinates, t = (z,P), in particular P may be (latitude, longitude).

The function f(t), tef to be estimated is modelled as
flt) = gltt] + BPY¥(E) . (4.1.3)

In this equation Y(t) = |z-z*(P)|, and the break function coefficient 8(P) is
parameterized as ) eqwq(P) where the ¢q are given functions. @ is some region
containing the region of interest. A second break function e.g. |z-z**(P)]|,

may be added if there is a second break, we omit the details. g is assumed to

be in an r.k.h.s. of real valued functions defined for all teR which have all
their first derivatives everywhere continuous. ?% is decomposed into two orthogonal
subspaces,@{l andéyo, whereQ}O is an M dimensional subspace such that the

desired penalty functional J(g) is 0 if g is inQ{O. Forma]]y%?,}%l and

§40 are chosen so that J(g) = ||Plg][2, where P; is the orthongonal projection

ontdﬁ{l 1n3{ and

'%40, the model is expressed as

| is the norm in%. Letting {¢1,...,¢M} be a basis for

.

M r
FLEY =y L) LB e e 18

Yq(t), (4.1.4)
v=] g=1

q

where gle%i and Yq(t) = wq(P)Y(t). It is assumed that % is not in%¥. Now

consider data Y; of the form

¥y = Lif + e T % 125y sl (4.1.5)

-i,

where Li is a bounded linear functional on@ﬁ@{Yq}. f is estimated by finding



i

94 in?{l and d = (dl""’dM and 6 = (8 ...,Br) to minimize

1,

yins)
(y.-L.(g,+ ) d_ o +

g 01 1\)=1\J‘\J

1

i

N ~—>=

Yooy 112 + aalg,). (4.1.6)
q=1 qq 1
(A concrete example of J(gl) is found in Section 4.4.)

Let Q(s,t), s,teQ be the reproducing kernel forﬁﬂi. (Q is also a prior
covariance, see Section 4.2 below.)
Let Ej(t) = LJ(S)Q(t,s) where Lj(s) means that Lj is to be

applied to what follows considered as a function of s. Then it can be shown

that if there is a unique minimizer of (4.1.6), then gy must be of the form

n
91 = -21ngj- (4.1-7)

(See, e.g. Kimeldorf and Wahba (1971)).

Let T be the nxM matrix with ivth entry L1¢U, Tet T1 be the nxr matrix with iqth
entry Lqu and Tet ) be the nxn matrix with ijth entry

Ej £ <£i’gj>’ where <e,> is the inner product 1n?#1. If
(T:Tl) has rank M+r and ) has rank n, then (4.1.6) will have a unique minimizer

Lis)by(p) st = Ly

and the minimization of (4.1.6) reduces to finding c, d, and 6 to minimize

ly - Je - Td - T19||2 +30lc, (4.1.8)

4.2 Partial splines as Bayes (Gandin) estimates

Let f, be the estimate of f obtained by minimizing (4.1.6). It can be

shown that f, is a Bayes (Gandin) estimate for f under the model

yi = f(ti) + Ei, i= l,2,...,n
M r
Bl = gyte) & ) dongft) -+ ) Byl

'\):1 q:l q q
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where gl(t) is a zero mean normally distributed stochastic process with
Egl(s)gl(t) = bQ(s,t), and the e; are independent normal random variables with

variance 02, and A = oz/nb (see Kimeldorf and Wahba (1971), Wahba (1978)).
4,3 Use of basis functions for computational efficiency

If n is very large, instead of attempting to obtain the exact minimizer of
(4.1.6) by minimizing (4.1.8), it may be adequate to minimize (4.1.6) by
approximating 9 by a Tinear combination of N << n basis functions. Basis
functions which have generally good approximation-theoretic properties in

#ﬁ are: the first n eigenfunctions of the r.k. Q (see, e.g. Micchelli and Wahba
(1981)) and representers of evaluation {qs(z) 22102, 0 e lt] iﬁ%“, where
qs(z)(t) = Q(t,s(%)) (also known as "sections of the r.k." and as "structure
functions")and s(1),...,s(N) are spread throughout the region of interest.
It can be shown that the N dimensional space of thin plate basis functions
Xgnm’d(s(l),...,s(N)) span the same N dimensional space as sections of r.k. for

d

XM , thus the thin plate basis functions make a good set.

(See Wahba (1980), Hutchinson (1984)). A sufficiently large number N of basis
functions should be used to avoid losing resolution that may be contained in the
data. Let Bl""’BN be the  basis functions. If O(s,t) = ) ijj(s)Bj(t), that s,

the Bj's are eigenfunctions of Q, then J( ) c.Bj) = 5 cjz/lj. If Bj(t) = q {t],

s(J)

N
that is, a section of the r.k., then J( ) Cidg(3)) = ) c.c, Qls(J),s(k)).
313 Jek=l -7

If the thin plate penalty functional is used we let g = 99 + ) dv¢v and then we

minimize for g inxg;m’d(S(l),...,s(N)), thus

g(t) = ) ¢4Eq (-t ) + ) dv¢v t) with S'c = 0, S being the N>xM matrix with

~

jvth entry ¢u(s(j)), and J{(g) = c'Kc where K is the NxN matrix with ijth entry

Em(|s(i)-s(j)]|). See Hutchinson (1984).
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Letting T and T1 be as before, and letting X be the nxN matrix with ijth
entry LiBj’ we obtain
N

M r
f= YeoB.4% )deo + ) oy (4.3.1)
j=1 JJ v=1 MY q=1 q q

by finding ¢, d and & to minimize

= [y-Xc-Td-TleII2 + ac'Jde (4.3.2)
N
where now J is the NxN matrix such that J( ) ciBy) = g'de. - 1F thin plate
i1

basis functions are used, then Bj(t) = E ([t=s(3)]) in (4.3.1) and c must satisfy
the side condition S'c = 0. Numerical methods for obtaining c, d and 6 in

(4,3.2) along with the GCV estimate of A are discussed in the Appendix.

4.4 Example: Global partial splines

BB e R
LettOlE 60w = B ) R o etali L )Y SR Y
2=1 s=-2 j=1 k=1 QS,J,k J k s L

]
AR s
where t = (z,P) and s = (z',P') and the hj are q linearly independent
continuously differentiable vertical basis functions and the YRS are (surface)

spherical harmonics. The stochastic model associated with Q(s,t) is

572 ] gy ghylzdt, (P) (4.4.2)

g.(t)
1 s j

where EQRS,j 2 Os Egzs,jgglsl,k i O! 45 % L8 Egﬁs,jgzs’k = k (1.9.,

lzs,j,
Egy(s)gy(t) = bQ(s,t)). The penalty functional is



el =
Jg,) = ) } A jkg (4.4.3)
1 P kgis,j Ls  VALs,k il

where {A Jk} are the entries of A

05 gs» the gxq matrix with jkth entry A

25,j,k"
The r.k.h.s.%#l consists of functions possessing a representation of the form
(4.4.2) with (4.4.3) finite. In this examp]e?{o might be span {hj(z)YOO(P)}.
There should be more vertical basis functions than the vertical resolution
desired to avoid losing information at this stage. The eigenfunctions of Q are

~ ~

{hj Z)st(P)} where the {hj} are linear combinations of the hj such that

~

(
) h 2(2)6

; o B (hl(z),...,h (z))'Azs(hl(z)s...,h (z)). Conditions on the

q q

rate of decay of the 6£sj with horizontal wavenumber %s that are characteristic

of the atmosphere should be assumed, see. e.g. Wahba (1982d).

5. Analysis of two and three dimensional atmospheric temperature distributions
from satellite radiance data
An important potential application of partial spline theory is to the
analysis of two and three dimensional atmospheric temperature fields via the
physical variational method of 0'Sullivan and Wahba (1985) (0'S-W).
The observed radiance Y5 from a particular channel and look direction indexed by
i is modelled as
AT 8 T8 1.0, sl
where f is the two or three dimensional atmospheric temperature distribution,
Ni is a nonlinear functional, involving the radiative transfer equation with an
integral over f along the line of sight and the €s represent measurement noise or
other high frequency phenomena it is desired to eliminate. Dependence on
surface temperature and atmospheric water vapor is included but we omit explicit
expression of this dependency. (See Smith, Woolf and Schreiner (1985) or

Svensson (1985)).
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Merging the 0'S-W method with partial spline theory, in 2 or 3 dimensions,
and assuming suitable basis functions, f is modelled as
N r

M
Fomodoedi f g g E ) B (5.1)
SEL ATl N S e

Then, following 0'S-W one finds f of the form (5.1) to minimize

(Y--Ni(f))z + Ac'dc. (5.2}

1
e

Il ~—3

.i
Goldberg et al (1985) have recently argued that choice of an appropriate J is
important. 0'S-W use a Gauss-Newton iteration to minimize expressions

like (5.2) and an extended form of GCV to choose A. The method goes as follows:

k k k .
T and Tl,nxr be matrices whose

Write Ni(f) = N;(c,d,8) and Tet X %5 Ty

dimensions are indicated by the subscripts axb with entries

aN BN N
5| . 3| e g
95| k vk q| k

respectively where the subscript k indicates that the partial derivative is to

kzek).

be evaluated at (c:d:8) = (ck:d Expanding N_I to first order in a Taylor

series expansion gives

N 9N,
N1_(Ck+1,dk+1,ek+l) G Ni(ck,dk,ek) £ _El (Cjk+l_cgk)
j=1 |k
M 8N £ aN.
& l '3?1' (d\)k'l'l_dvk) 4L 2 391 ( 8qk+1_e k)
v=] vk g=1
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N 9N, M 9N, r oN.
; k Jk
Letting 2, = vy (chsdts ) + ) ZT] et ) gl afr )| o
j=1 j k v=] Vv k q:l q
and z* = (zlk,...,znk)', and substituing (5.3) into (5.2) gives:
1
L jkoxk kHLrkgktlp Kgk¥l |2 oy k¥’ poksl, 5

k+1 k

ck+1,dk+1 and 6 are obtained given ck,dk and 6" by minimizing (5.4). For

fixed A, given c?,d%, 8%, jterative minimization of (5.2) takes place by
minimizing (5.4) for k = 0,1,2,..., then the GCV function V(X) is evaluated
for the quadratic minimization problem of (5.4) at convergence. The process
is repeated with a different value of A, until the A which minimizes

V(A) is found. If thin plate basis functions are used then at each

stage ck+1 must satisfy S'ck+1

= 0 where S is as before. The methods in the
appendix can be used for each step in the iteration (5.4). An additonal useful
feature of the 0'S-W method is its ability to accommodate side conditions.

Svensson (1985) has implemented this approach in one dimension (a single column)
and has imposed inequality constraints resulting from constraints on the dry
adiabatic lapse rate. (For use of GCV when inequality constraints are present, see
Villalobos and Wahba (1985), Wahba (1982a)). In a 2 or 3 dimensional analysis,
occasional radiosonde data may provide a very important complement to the

radiance data, particularly since the radiosonde data has high vertical resolution
and poor horizontal resolution, whereas the radiance data has high horizontal
resolution and poor vertical resolution. If some radiosonde data is available
within the region and time of interest, this data can be analyzed simultaneously by
including it in the sum of squares term in (5.2) with appropriate weights, that

~ -~

18, Yys-eesy are direct temperature observations at (zﬁ,Pz), R & 1.2, . nisls This



-TEE93.

L
adds a term%— L (y,~f(z,,P,)) %0 to the Teft hand side of (5.2), where w is an
2=1

appropriate weight. It is also possible to include forecast information in the
same variational problem, see Wahba (1982c, 1985b, Section 5).

It is not known a priori whether or not it is worthwhile to reestimate X with
each new data set, or whether the same X may be used for similar data sets.
Seaman and Hutchinson (1985) have recently suggested (in another context) that
reestimation with each data set may provide some ability to compensate for a

suboptimal covariance (Q).
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APPENDIX
A numerical algorithm for medium sized data sets

Bates, Lindstrom, Wahba and Yandell (1985) (BLWY) have developed
transportable code for certain core calculations that are common to the
variational problems described here. The methods use matrix decompositions
in LINPACK (Dongarra, et. al. (1979), and appear to be quite satisfactory for
several hundred unknowns (i.e. state variables) on the U.W. Madison Statistics

Department VAX 11/750 running UNIX. BLWY find §, to minimize
2 '
= Yal ™ 2 x8")s, (A.1)

where y s ¥ and szp have the given dimensions, and ) is symmetric

nxp* Spx
non-negative. p may be larger than n, and neither Y nor ) is required to be of
full rank although the program requires the intersection of the nullspace of Y
and ) to be empty. (If it is not, the minimizer & is not unique. The minimal
norm & could be taken but this is not done.) The program computes the GCV
estimate of x (or uses a fixed value, if requested) and also returns certain
singular values and other diagnostic information. The code uses the truncated
singular value decompositon of Bates and Wahba (1983), to speed up the
calculation and is based on the algorithm given there. The minimization problems

of (3.13), (4.1.,8), (4.3.2) and (5.4) can be reduced to this form. First

consider the minimization of

L1z - xc - Td - ;8117 + Ac'dc (A.2)

with no side conditions on c. Then (A.2) is of the form (A.1l) with



e
!

O
n

If ¢ must satisfy the side condition T'c = 0, then take a QR decompositon of

T as

n =M
Ry

TR = (a0,

where Q is orthogonal and Rl is lower triangular MxM. The n-M columns of 02 are
all perpendicular to the columns of T so we can set c = Q¥ where v is n-M, this

insures that T'c = 0. Substituting into (A.2) gives

1 2 1 1
=z = XUsv = Td-= T,80]" * 2v°0,5' 30,

which is of the form of (A.1) with

—
1]
—
>
f)
~no
=y
—
—
—

o G %
B2 o/
6| — (Yl:dl:ei).

Hoffman (1984), Testud and Chong (1983) and others have solved very large

optimization problems with thin plate penalty functionals using conjugate



S
gradient algorithms. Purser (1985) has proposed multigrid methods for solving
similar problems. It remains to be seen whether conjugate gradient, multigrid
or other methods suitable for very large state vectors can be applied to the

inclusion of break functions and the GCV choice of A in very large problems.
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Figure Captions

Figure 2.1. True (simulated) temperature, (simulated) data, and estimated temperature with a break in the
first derivative at the tropopause.

Figure 3.1. True (simulated) temperature, simulated data, and estimated temperature curves, with a break in
the first derivative, for 10 observing locations equally spaced along a fixed latitude.

Figure 3.2, The tropopause, z*(¢).

Figure 3.3. True (simulated) temperature, as a function of z and 4.,

Figure 3.4. The tropopause break function Y(z,?).

Figure 3.5. Analysis of the temperature data of Figure 3.1, with the use of z*(£), the tropopause height.
Figure 3.6. True (a) and estimated (b) temperature contour plots corresponding to Figures 3.3 and 3.5.
Figure 3.7. True (a) and estimated (b) potential temperature.
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Figure 2.1 True (simulated) temperature, (simulated) data, and
estimated temperature with a break in the first
derivative at the tropopause. '
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Figure 3.5 Analysis of the temperature data of Figure 3.1, with
the use of z*(2), the tropopause height.
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