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ABSTRACT

Cox and Koh (August 1986) considered the model y;=f (x (i)) +¢€;, €; i.i.d. N (0,02), with
the (parametric) null hypothesis f (x), x€[0,1] a polynomial of degree m—1 or less, versus the
alternative f is "smooth", based on the Bayesian model for f which leads to polynomial
smoothing spline estimates for . They showed that there was no uniformly most powerful test,
and found the locally most powerful (LMP) test. We extend their result to the generalized
smoothing spline models of Wahba (1985) and to the partial spline models proposed and studied
by Engle et al. (1986), Shiller (1984), Green, Jennison, and Seheult (1985), Wahba (1984),
Heckman (to appear) and others. We also show that the test statistic has an intimate relationship
with the behavior of the generalized cross validation (GCV) function at A = oo, If the GCV func-
tion has a minimum at A = eo, then GCV has chosen the (parametric) model corresponding to the
null hypothesis; we show that if the LMP test statistic is no larger than a certain multiple of the
residual sum of squares after (parametric) regression, then the GCV function will have a (possi-
bly local) minimum at A = e,
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1. Introduction.
Cox and Koh (August 1986) considered the model
yi=f&x@)+g, i=1,...,n (.5

where x€[0,1], e=(g;,...5,) ~ N (0,0‘21 ;9 o2 known, and f (x), x€[0,1] is a Gaussian stochastic
process independent of € satisfying

f @)~ Ton@yx) +5%Z (x), (1.2)

v=1
where here @y, . .., ®,, span the polynomials of degree < m—1 and Z is an m—1-fold integrated
Weiner process (Shepp (1966)). The parameter vector = (0, . . ., 0, ) may be considered as

a fixed vector of unknown parameters or as a random vector having the improper prior distribu-
tion N (0,E7) with E—ee. This model is called the (special) spline model because the Bayes esti-
mate of f is a polynomial spline. Cox and Koh were interested in the (parametric) null
hypothesis Hy: b =0 vs Hq: b >0, equivalently, H,: f is a polynomial of degree at most
m=1vs Hq: f is "smooth", i.e. (1.2) holds. They showed that there is no uniformly most
powerful (UMP) test, and they constructed the locally most powerful (LMP) test. They observed
that the test statistic is a certain quadratic form in y which is related to the polynomial spline

1
penalty functional J,, (f ) = [(f ™)(x))%dx.
0

It is the purpose of this note to show that the Cox-Koh results extend easily to the univari-
ate and multivariate partial spline models proposed by Engle et al. (1986), Shiller (1984) ,
: Green, Jennison, and Seheult (1985), Wahba (1984), Heckman (to appear) and others, and to the
generalized spline models considered in Wahba (1985), and to note an intimate relationship
between the LMP test statistic and the GCV estimate of A = %/nb.

2. Generalized and Partial Spline Models.

To make clear the relationship between the special spline model and the generalizations we
will be interested in, we review a few facts. Let the set {x (1), ...,x(n)} contain at least m dis-
tinct points, and let f be the unique minimizer, in the Sobolev space W7 [0,1], of

w200 =f GOP + M (F). @)

Then it is known that



i3,

f?\,(x)zE(f(x)lyla"'Jyn): (2'2)

if A=0%nb . (See Kimeldorf and Wahba (1971) for o an unknown parameter and Wahba (1978)
for o having an improper prior.)

The general smoothing spline model (see Wahba (1985) for more details) begins with a
reproducing kernel Hilbert space Hy of real valued functions of x for x in some domain

I =E 4 for example), an M -dimensional subspace of Hp spanned by @g,...,®, , and
Ly, ...,L,,n bounded linear functionals on Hg. The model is
yi=Lif +€&, i=l,...,n, (2.3)

where the €;’s are as before. Let T be the nxM matrix with (i,V)th entry L; @,. We shall always

assume that T is of full column rank, that is, the least squares regression of y onto span

{@y, ..., Dy} is unique. Then the generalized spline estimate f, of f is the unique minimizer

in Hg of

1 ¢ 2 2

:Z(}’i ~Lif ) +A|Pf g (2.4)
i=1

where P; is the orthogonal projection of f onto Hg,, the orthocomplement in Hj “of

span {®y, ..., D, }. Equation (2.2) holds here, with the Bayes model

M
f&)~ Fo,dy(x)+b*Z(x) (2.5)

v=1

where now Z(x),xe/ is a family of zero mean Gaussian random variables with the (prior)
covariance

EZ(x)Z(x")=Q(xx"), (2.6)

where 0, is the reproducing kemel for Hy, . This prior differs from the one considered by Cox

and Koh for the setting of Section 1, but only on the space of polynomials of degree <m—1. The
test derived in the next section will be the same, and the prior covariance (2.6) is more con-
venient.

A popular example is the thin plate spline case, where I = E<, the Dy, ..., Dy are the
M = [d+r;z—1] polynomials of total degree less than m in d variables (xy,...,x;) with
2m~d >0,and [P, f |2=J2(f) given by
1
Jol= % BEE L WS 27
0’.1+...+(Id=m al! B ad! ( - )
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x_{o...j 9"f iy ik

=2 Bxf‘ i -axd“‘
In the thin plate spline case, the hypothesis that » = 0 can be viewed as the hypothesis that f is a
polynomial in d variables of total degree less than m vs the alternative that f is a fairly arbitrary
"smooth" function. The partial spline model (which is really a special case of the general spline
model) allows a response which is the sum of a "smooth" function of x =(x1,...,x;) and a
parametric function of x and some other concomittant variables s, that is,

Yi=L;g(5;)+¢ (2.8)
where
gis)=f(x)+ fJB,-‘Pj(x;s), (2.9)
. =

here f is as in Eq.(2.5) and the '¥';’s are p linearly independent functions such that L; W;(.5;) is
well defined for each i,/. The vector B =(By, ..., [,)" may be considered as a nuisance parame-
ter or as N (0,&] p) with E—eo, similar to o. Let T be as before, let S be the nxp matrix with
ijthentry L;'¥';=L;¥';(;s;) and suppose X =(T :S) has rank (M +p). Then an estimate g, of g is
obtained by finding f € Hy and ;€ E” as the unique minimizer of

n p
301 ~Lif = SBL¥+AIP S 13 2.10)
i=1 j=1
Then
P
gaxss) =Fal)+ X B a¥iss)=E@@:8) Y1 - -0 Yn) (2.11)
i=l

with A = c?*/nb. We have in fact just relabeled the domain in the general spline model and
adjoined span{¥y,...,¥,} to Hy and called the generic element of this enlarged space g.
Now, the hypothesis that » = 0 is the "null model" hypothesis that g is of the parametric form

v=1

M
gx;s)= Y o,d,(x)+ %B,-‘I’j(x;S),' (212
=1

vs the alternative that g is a "smooth" function of f plus a parametric function of x and s of the
form (2.9).

3. Results.

We are now in a position to reduce the problem of testing that g is of the special parametric
form (2.12) in the model (2.9) to the Cox-Koh setup. We always assume that the "parametric
design matrix" X defined following (2.9) is of full column rank. Let X be the nxn matrix with



ij th entry
ELIZLJ,Z =L‘(x)LJ(x:)Q1(x,x'), (31)

where L;(,y means the linear functional applied to what follows considered as a function of x.
Let 6 = (a:f")". Then if we look at 6 as a fixed, unknown parameter we have

y ~N(X6,b%+ o?) (3.2)
and if we adopt the improper prior 6 ~ N (0,67 ) with E—eo we have
y ~N(, EXX’ +bX + o). (3:3)
Now, let R be any n —(M +p )xn matrix with RR’=I and RX =0, and let
u =Ry. (3.4)
Then
u ~N(0,bRZR’ + c¥) (3.5)

for either model (3.2) or (3.3). Let I'DI” be the eigenvalue-eigenvector decomposition of
RZR’, with A,,,v=1, ..., n—(M+p) the diagonal elements of D. Let

y=I"u, (3.6)
then the y,, are independent with
Yy~ N, A, 062, v=1,...,% (3.7)
where i =n — (M+p).
Theorem:

Letys,...,y, be given by (2.8) where g is given by (2.9). Consider the problem of testing
Hg: g given by (2.12) vs Hy: g given by (2.9) with 5>0 in (2.5). Let A}, ..., L, be the eigen-
values above. Let Y denote the family of tests invariant under translations by vectors in
span {(L Dy, . .., L, D) 1svEM U (L1 ¥;(5s9), ..., L, ¥ (55,)): 1Sj<p ).

(a) If there are at least two distinct eigenvalues A;#A;, then no UMP test exists in Y.

(b) There exists an LMP test in Y ( at b=0). It rejects when

F5) = A2 (3.8)
v=1

is too large.

Proof . Observe that y is a maximal invariant under the group of translations, so tests in Y
are functions of y. The rest of the proof follows as in Cox and Koh (August 1986) using the dis-
tributional results (3.7).
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Substituting ( 3.4) and ( 3.6) into ( 3.5) gives our main result:
Theorem: _

Ty)=T(@y)=yYRRZIR'Ry (3.9)
is the LMP test statistic for H: g has the parametric form (2.12), vs the alternative, g has the
(semiparametric) form (2.9). |

We remark that if RZR’ is not of full rank then the y,’s which correspond to A,=0 do not
appear in (3.8), nevertheless, the right hand side of (3.9) may be used to compute T (v ).

We also remark that there is an interesting relationship between J(f ) and T'(y) (also
noticed by Cox and Koh). Let /5 =(Lf» -..,L,f). It can be shown using the usual spline
calculations (see e. g. Wahba (1985)), that

J(f) =f2/R' RIR YRS . (3.10)

Thus, setting T (y )=y'Sy, we have J (f ;L)=fA ) *‘f »» where * denotes the Moore-Penrose general-
ized inverse.

4. A connection between the LMP test and the GCV estimate of A.

There is an interesting relationship between the test statistic f(y’ ) of (3.8), and the GCV
estimate & of A. If X is infinity, then GCV has chosen the null model. X is the minimizer of V(L)
given (see Wahba (1985)) by

V) =1— e (4.1)
n
E[n?\.+?LV“

Theorem:

V (A) has a (possibly local) minimum at A = oo whenever

lv] { iff] . 4.2)

v=1

T()= TAy? s%[i
v=1 nlv=l

n
Note that 3 y‘& is the residual sum of squares after least squares regression on the (parametric)
v=1
null model.

Proof : Lety=1/n )\ and let
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&2,
El[ “""VJ _N®
Vo= [ 2 D)’

say. (4.3)

b3

v=1

1+v?w}

Then V (L) has a minimum at A = e if and only if V (y) has a minimum at y= 0, and this occurs
when V*(0)=0 , equivalently, when

D (0)N’(0) = N (0)D "(0), or (4.4)
23 A2 2 (3F2)20T A,
v=1 v=1 v=1

Note that under the null hypothesis the right and left sides of (4.2) have the same expecta-
tion. Hence there is about a 50% chance that GCV will pick the null model when it is true,
whereas the LMP test will pick the null model 95% of the time in such circumstances, assuming
the usual .05 level of significance. Thus the test of hypothesis is more conservative in rejection
of the null hypothesis, as one would expect. Nonetheless, we conjecture that the model selected
by GCV will probably be not far from the null model when it is true.

We remark that, intuitively, if Q; behaves like a Green’s function, then the y,’s that
correspond to large A,’s generally are measures of the "low frequency" components of y (per-
pendicular to the null model) whereas the y,’s corresponding to small A,’s are measuring the
"high frequency" components. We conjecture that roughly similar (approximate, asymptotic)
results as these can be obtained for the penalized likelihood estimates with GCV of O’Sullivan
(1983), O’Sullivan, Yandell, and Raynor (1986), Green (1985), and O’Sullivan and Wahba
(1985).

5. Some remarks concerning the computation of T.

Let F:G be the QR decomposition of X,

G
X =Fi6 =(F1:F2)[ 01} (.1
where F is orthogonal and G is lower triangular. Then R can be taken as F,". Let the Chole-
sky factorization of F,’~F, be LL’. Then
T()=|LFyy|> (5.2)

Cox and Koh discuss some approximations to the distribution of 7' (y ),which depends on the non
zero values of A, o%v=l,...,n. The A,’s can be computed as the squares of the singular values
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of L'F,’ by using the singular value decomposition in LINPACK (Dongarra et al. (1979)). The
subroutine library GCVPACK ( Bates et al. (November 1985) ) can be used to compute f 5, g,
and the GCV estimate of A and with slight modifications can return T (y ), both in the partial thin
plate spline case with evaluation data, and in general.

6. More on thin plate splines.

In the thin plate spline (TPS) case a reproducing kernel is known, (see for example, Wahba
and Wendelberger (1980)), but it is much easier to work with the so called "semi-kernel"
E, (x x"), given, up to a multiplicative constant, by

E,(xx')=const |x—=x"| oy log|x—x"|, 2m—d an even integer

2md (6.1)

= const | x—x" | , otherwise

where |x |“= 2= Zx The semi-kernel E,, ( also called a "variogram" in the kriging literature )

has the property that it gives the covariances of generalized divided differences. Specifically, we
call (cﬂ, e c,f :x(1),...,x(n)) a generalized divided difference of order m if it annihilates
polynomials of total degree less than m —1, that is, 7c’=0. Then in the Bayes model correspond-
ing to J,fl of (2.7)

E(zc Lf (xm)(zc,ff (x (k) = zc 1e2E,, (x()x (k).

j=1
It can be shown, using the reproducing kernel @, in Wahba and Wendelberger (1980) that the
matrix K with i,jth entry L )Lj\E,, (x ,x") satisfies K =X+ B where F,’BF, =0 so that K
may be used instead of X in (3.9) and elsewhere.
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