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SPLINES

UNIVARIATE POLYNOMIAL SPLINES

The name "spine function" was given by I. J. Schoenberg to the piecewise polynomial functions
now known as univariate polynomial splines, because of their resemblance to the curves obtained by
draftsmen using a mechanical spline - a thin flexible rod with weights or "ducks", used to position the rod
at points through which it was desired to draw a smooth interpolating curve. See Schoenberg (1964). A
univariate natural polynomial (unp) spline, f, is a function on [0,1] (any interval will do, of course), with
the following properties: given the positive integer m, and n2>m points 0<t<t,<...<t, <1, called "knots"
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where ¢ is the class of polynomials of at most degree k and C* is the class of functions with k continu-
ous derivatives. Thus, f is a piecewise polynomial of degree 2m—1 with the pieces joined at the knots so
that f has 2m—2 continuous derivatives, and satisfying the m boundary conditions f ®)(¢)=f ®Xt, )=0 for
k=m.m+1,...,2m~-1. "Natural" was the term given by Schoenberg to functions satisfying these (Neu-
mann) boundary conditions which arise "naturally" from the solution to a variational problem, to be
described below.

If f is represented by its polynomial coefficients, it is seen that it requires 2m coefficients to
describe f in [0,4] and f in [¢,,1], (n—1)2m coefficients to describe f in the n—1 intervals
[t .tia], i=1,...,n-1, for a total of 2mn unknowns. The continuity conditions provide (2m—1)n condi-
tions, which can be shown to be linearly independent, leaving n conditions to completely specify f.
These conditions can be provided by specifying the values of f at ¢y,...,,. Other piecewise polyno-
mial functions obtained by modifying the boundary conditions and, or relaxing the continuity conditions
at the knots are sometimes called spline functions. See DeBoor (1978), Schumaker (1981). However the
unp splines have been the splines of greatest interest to statisticians because of their dual role as solutions
to penalized least squares problems (variational problems) and as Bayes estimates.

The variational problem which gives rise to the ump spline takes place in the space of real valued
functions on [0,1] known as W7, the Sobolev space of functions which have m—1 absolutely continuous
derivatives and square integrable mth derivative. Functions in W4 have a Taylor series expansion with
remainder to order m—1,
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where (u),=u for u20 and (u),=0 for u <0. Schoenberg showed that the solution to the following
1

minimization problem: Find f € W%' to minimize [(f “))*dr subject to f (4;)=f:,i=l, ... ,n, is the unique
0

unp spline satisfying the interpolating conditions f (¢; )=f;.

The penalized least squares, or variational problem of interest for smoothing arises from the data
model:

yi=f@)t+eg, i=l,...,n,

where e=(g;, . . . ,€,)~N (0,6°I). One estimates f as the minimizer in W% of
l n
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The minimizer, call it £ , is called a smoothing spline. It is unique and is a unp spline. The visual char-
acter of f, very much depends on the smoothing or bandwidth parameter A. It can be shown that as
A—eo, f4 tends to the least squares regression on the polynomials of degree less than m, that is, on the
null space of the penalty functional J,,, and, as A—0 the solution tends to the unp interpolating spline
mentioned previously.

The minimizer of (2) may be viewed as a generalization of the output of a low pass filter known in
the Engineering literature as a Butterworth filter. To see the nature of this filter, we assume that £ has a
representation as
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where k<n/2. Then
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Letting t,-=i and substituting (3) into (2), one obtains that
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In words, the restriction of the smoothing spline to the periodic, equally spaced data case is obtained by
1
1+AQ2mv) 2™
and taking the resulting downweighted sample Fourier coefficients as the Fourier coefficients of the esti-

mate. For details of this kind of calculation, see Wahba (1982c).

taking the sample Fourier coefficients of the data, downweighting them by the filter weights

SPLINES AS BAYES ESTIMATES

The unp spline is a Bayes estimate under a certain parsimonious prior, as follows: Let
F(t),t€[0,1], be the stochastic process

m-1 ) -1
t
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Here dW is the differential of the Wiener process(see e.g. Parzen (1962)), 0=(8, . ..,0,-;) is a parame-

ter to be discussed, and F () is the m—1 fold integrated Wiener process of Shepp (1966) Reca]]mg (D),
we may, formally, write

FO0)=8,, F™()=b"%aw () ¢
(the mth derivative of F' is "white noise") although dW itself does not properly exist.

The Bayesian character of f 5, the minimizer of (2), appears in both of the following situations:

i) Fixed effects model. Let
yi=F@)+g;, i=l,...,n, (8)

where € is as before, and 0 is a fixed, unknown parameter. Let U (¢ )=3u;(t)y; be an estimate of F () in
the model (8), linear in the data. U (¢) will be called conditionally unbiassed with respect to 0 if

E(U(t)-F())/6)=0. 9)

Let F3(¢) be the minimum variance conditionally unbiassed linear estimate of F (¢), given the data y, that
is, E (F(t)=F (t))* is minimized, subject to E ([F a(t)=F (¢))/0)=0. Then

Fa@t)=ra@t), te0,1],
2
for JL:—SE, where f; is the minimizer of (2). See Kimeldorf and Wahba (1971).

if) Random effects model. Same as the fixed effects model except that 6,~N (0,£). Let F {’ (¢) be the con-
ditional expectation of F (¢) given y under this model. Then
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MULTIVARIARIATE SPLINES

Univariate polynomial splines admit (at least) three generalizations to functions of several variables.
They are, tensor product splines (see DeBoor (1978) and below), multivariate B- splines, and thin plate
splines. The multivariate B- splines are generalizations of univariate B-splines (see below), as piecewise
polynomials. They have many elegant properties, and have found recent application in industrial applica-
tions in surface interpolation. However, they do not appear to be related to solutions of variational prob-
lems which will lead to an interpretation as a Bayes estimate and we will not discuss them further. See
Hollig (1986) and references cited there.

THIN PLATE SPLINES

The thin plate splines generalize the unp splines as solutions to a variational problem. In two
dimensions (d=2), with m=2, the variational problem leading to the thinplate splines is: Find f €X to
minimize

L S 07 a3 ), (10)
i=1
where
I3 = [ [ £l 42f X Hf 2 dxy, 1)

X is an abstract function space of functions of two variables defined in Meinguet (1979). In d dimen-
sions with general m , the variational problem becomes: Find f in X, (a space of functions of d variables)
to minimize

L S06F a0, 2P M) 12
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The solution to this variational problem has been given in Duchon (1977) and Meinguet (1979). Letting
t=(xy, ..o, X)) i =(x1(0), . . ., x4 (), and |21=13x21%,
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where ¢y, ...,y are the [d""g_l] monomials in the 4 variables x,, ..., x; of total degree less than

m, and

E, (t,5;)=const 1t—t;1* 4 Inlt—t; |, 2m—d an even integer

E,.(t ;)= const |t—t; 1> otherwise (14b)
It is necessary that 2m—d>0. The coefficients ¢, d satisfy the n+M equations
K+nM) +Td =y

Tc=0 (14c)

where K is the nxn matrix with ijth entry E,, (¢;,¢;), T is the nxn—M matrix with i vth entry ¢,(z;), and
the solution is known to be unique if T is of rank M. (See Wahba and Wendelberger (1980).) As
A—eo,f 5 tends to the least squares regression of the data onto the polynomials of total degree less than M
( that is, onto the null space of J,‘,’,), and as A—0, [, tends to the minimizer of J,ﬁ(f ) subject to the inter-
polating conditions f (¢;)=y;. The special case d=1 can be shown to reduce to the unp spline on [0,1] by
using the fact that in that case f {™ is 0 outside [¢1,t, ].

We remark that E,(-,-) is a Green’s function for the mth iterated Laplacian, A™, where

2 2
A=—éa—-5+...+%, and, if f has compact support, one obtains, by integration by parts that

X1 Xd
Taf)=[-[f-amf

Furthermore, A™ f3(¢)=0 ,for t#ty, . .. ,t,. (Compare the d=1 case.)

The integral over the plane in (11) can be replaced by an integral over a region Q containing the
data points (see Dyn and Wahba (1982)) but then the minimizer is a solution to a partial diffenential
equation with Neumann boundary conditions, on the boundary of €, and the corresponding Bayes esti-
mate will have lost its stationary character.

An intuitive idea of the properties of the thin plate spline as the output of a low pass filter may be
obtained by condsidering f (x,..,x;) to be a multiply periodic function on the d-dimensional torus and
replacing the limits (—ee,e0) by [0,1], and repeating the arguments of (3)-(5). One finds that d,(\) is
replaced by

1 Va

dy,...
"-fv‘,...,vd(l)'*‘ d 2
1+7{ Y @nv; )"*‘
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and so forth.

THE THIN PLATE SPLINE AS A BAYES ESTIMATE



The Bayes estimates which generalize those given in the d=1 case can be established with the help
of the notion of a generalized divided difference (gdd) of order m in 4 variables with repect to the points
t1,...,t,. Recall that an ordinary first order divided diference of a function f of one variable, with
respect to ty,2, is [(f (t)—f (£ D1/(t2—t,), second divided differences are defined as divided differences of
first divided differences, and so forth. If f is a polynomial of degree k, then its divided differences of
order greater than k£ are 0. Let T be the n XM matrix defined in (14), and suppose that T is of rank M . Let
¢ be any n vector satisfying 7'c=0. Then c=(c,...,c,) is called a generalized divided difference (with
respect to ¢y, . . . , t, ) because it annihilates all the polynomials of order less than m in d variables, by the
definition:

n
b)) =0, v=1,... .M.
i=1
Now let F (¢),t € E4 be a Gaussian stochastic process defined as follows:
M
F(£)= 380,01+ "X (1)

v=1

where the 0's are as in either the fixed effects or the random effects model. X (¢),f €[—oo,2] is a zero mean
Gaussian stochastic process such that, for any gdd (c,, . .. ,c,) with respectto (ty, ... ,%,),

EZCE ij(ti )X (IJ) = ZC,‘ CjEm (ti ,fj).,
iJ 2

This can be shown to define a legitimate covariance on the family of all gdd’s of X since E,, (£;—;) is
known to be positive definite on all gdd’s, that is for all ¢ such that T"c=0. See Matheron (1973), Duchon
(1977). Any two zero mean Gaussian stochastic processes with the property that their gdd’s have the
same covariance must differ only by a random polynomial of total degree less than m, thus X is being
defined here only up to a random polynomial.

The theorems are as follows:
i) Let
Yi=F()+¢g

where the €;’s are as before and 0 is fixed. Let F5(¢) be the minimum variance conditionally unbiassed
estimate of F (¢) given the data y. Then

_ _o
F(t)=f(t)for A= =¥

See Kimeldorf and Wahba (1971).

ii) Let y; = f (;) +€; as before except that the 0;’s are i. i. d N (0,£). Let F ;% (¢) be the conditional expec-
tation of of F (¢) given y. Then

e o?
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See Wahba (1978).



SPLINES ON THE CIRCLE AND THE SPHERE

Splines on the circle can be obtained by supposing that f is in the periodic subspace of W4 of func-
tions of the form

f@)=ag+Yacos2nve+Y bysin2nve, ¥ (aZ+b2)2mv)*" <eo,
v=1 v=1 v=1

and finding f to minimize
1
1.2 »
=3 0i—f @) + [(f ™)) du.
nv=l o

The equivalent Bayes model is y; = F (¢;) + €;, where F (¢)=0 + X (¢), and

X(t)= Y oycos2mvt + B,sin2mve

v=1

where the o, B, are independent, zero mean normal random variables with E 0.2=E B2=2nv)™2". A
closed form expression for ', as a piecewise polynomial may be obtained by using the fact that

EX ()X (t)= Y (cos2mvs cos2mvt + sin2mvs sin2mve )(2mv) 2"
v=1

=icos21cv(s—r)(2nv)‘2"'
v=1

and this latter infinite series has a closed form expression in terms of the 2m th Bernoulli polynomial, see
Craven and Wahba (1979).

The spherical harmonics Y ,s=—/,...,!,/=0,1,... play the same role on the sphere as sines and
cosines on the circle. See Sansone (1959) for more on spherical harmonics. The spherical harmonics are
the eigenfunctions of the surface Laplacian A on the sphere, with

AY) =—1(I+1)Y,,

which is analogous to

2
%cos2rcw=—(2mv)2c032nw
t

Splines on the sphere are defined as the solution to the variational problem: find f eX (an appropriate
space) to minimize

%}E(y,-—f POR+A[A2f P (16)
i=1 S

where S is the sphere, P is a point on the sphere, and
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For comparison with the circle note that for periodic functions
1 1

[ ™u)’du = [f -f @au.

0 0

A closed form expression is available for f in the cases m=2,3 (Wendelberger (1982)). Approximate
closed form expressions may be found in Wahba (1981b), Wahba (1982a). The corresponding Bayes
model is

Yi=0+Yf, Y, (P;)+E;
ls

where Ef f_,, =[(I+1)™. Splines on the sphere have a number of interesting applications in geophysics and
meteorology, see for example Shure, Parker, and Backus (1982). Vector smoothing splines can also be
defined on the sphere and are useful in estimating horizontal vector fields from discrete, noisy measure-
ments on, for example, the horizontal wind field, the magnetic field, etc., see Wahba (1982b).

CHOOSING THE SMOOTHING PARAMETER, DIAGNOSTICS,CONFIDENCE INTERVALS

Generalized cross validation(GCV) appears to be the most popular mehtod for choosing the smooth-
ing parameter A from the data in the context of smoothing splines, for various theoretical and practical
reasons, see Craven and Wahba (1979), Li (1986), Speckman (1982), Utreras (1978), Wahba (1975),
Wahba (1985b). GCV is obtained from an ordinary leaving out one or ordinary cross validation pro-
cedure by an invariance argument.(Ordinary leaving out one is not invariant under rotations of the obser-
vation coordinate system.)

Let A (A) be the influence matrix associated with f ;, that is, A (A) satisfies
Falty) Y1
: i k
3 xétn) y;,
The GCV estimate A of A is obtained as the minimizer of

Lig-a Ay 112
V= -2 .
[ %Tr (I-A (x))J

A (M) has many of the properties of the influence or hat matrix in ordinary least squares regression, and
this can be used to build a theory of spline regression diagnostics. Sce Eubank (1986).

Trace A (7:) can be viewed as the "degrees of freedom for signal” The posterior covariance matrix of
(FaltD), ... Fa(t)) is 6*A(A) and this fact has been used to propose posterior "confidence intervals”
based on G%A(X) where 6?=RSS (X)/Tr(I-A(K)). See Wahba (1983). These "confidence intervals"



appear to have useful frequentist properties if interpreted "across the function", rather than pointwise, see
Hall and Titterington (Nov. 1985), Nychka (1986), Silverman (1985), Wahba (1985a).

PARTIAL SPLINES
Consider the model
P
Yi =f(t£) + Eej(bj(t, ,Zi) gt
j=1
Here t;EEd,ziz(zl(i)., R (@)Y, f is assumed to be "smooth" and the ij’s are known functions of

teE? and the comcommittant variables z. An estimate of 0 and S may be obtained by finding f €X and
0 E? to minimize

1< 4 g gind
;Z@i_f(ti)—zej(bj(ti’zi)) +Ju(F).

Let S,, be the matrix with i,jth entry D;(2;,z;). If the nX(M+p ) matrix (T':S) is of full column rank,
then there will be a unique minimizer (f ,6), and f » Will be a thin plate spline (in the case d=1, a unp
spline). Such models are extremely flexible and are attractive in a variety of applications, see Engle et al.
(1986), Ansley and Wecker (1981), Shiau, Wahba, and Johnson (1986), Wahba (1984) and references
cited there. Properties of the estimate of © are an area of active research, see, for example, Heckman
(1986), Rice (1986).

SPLINES AS PENALIZED LIKELIHOOD ESTIMATES
Let

¥; ~Binomial (1, p (t;)),

where the logit £ (t)=p (¢)/(1-p (¢).teE? is assumed to be a smooth function of ¢. The likelihood of y is
1 y_lL—Inl_l_ In(1+e/
pY(1-p)V=e’ 1P 1P =¥ -Inl+¢)) Tne Jog likelihood of y4, . . . ,y, then becomes

logL =Q(y f) =Xy f (& )-n(1+e’ ®).

A penalized log likelihood estimate of f is then the minimizer in X of

QO .f)+MAF). (15)

The minimizer f, can be shown to be a thin plate spline. If z&S, then the spline penalty functional on the
sphere can be used, and the solution is a spline on the sphere, and so forth. The binomial distribution
above can be replaced by the Poisson distribution A(t) or, any member of the exponential family. These
penalized likelihood estimates generalize the GLIM (generalized linear) models described in McCullagh
and Nelder (1983), and reduce to the parametric GLIM model in the null space of the penalty functional
in the case A=ee. Equation (15) generally has to be solved by numerical methods, typically in a
sufficiently large but finite dimensional space of convenient basis functions. GCV estimates of A are
defined for these models as follows: For a trial value of A, (15) is minimized by a Gauss-Newton itera-
tion, equivalently, by minimizing an approximating sequence of quadratic optimization problems. At
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convergence, one evaluates the GCV function V (A) for the final quadratic optimization problem, repeats
the calculation for another trial value of A, until a minimizer is found, see O’Sullivan, Yandell, and Ray-
nor (1986). A discussion of thin plate basis functions is in Wahba (1980). Silverman (1982) has proposed
a density estimate in the context of penalized likelikhood with the spline penalty functional.

REGRESSION SPLINES

Retuming to the univariate case, let >0 and consider the density function obtained as the convolu-
tion of 2m uniform density functions on [0,4 ]. This density is supported on [0,2m ], and can in fact be
shown to be a piecewise polynomial of degree 2m—1 with knots at h,24,...,(2m—1)kh and having 2m—2
continuous derivatives. For m greater than 2 or 3 this density very much resembles a normal curve over
most of its support. Such piecewise polynomials satisfying continuity conditions and having compact
support are known as B-splines, and can be defined for arbitrarily spaced knots, see DeBoor (1978),
Lyche and Schumaker (1973). The B-splines are chosen so that their supports are overlapping and so that
they have common knots wherever possible. Shifted and scaled B-splines are frequently used as basis
functions to obtain approximate solutions to variational problems. Consider the model

=)y re, =100,

where f is "smooth". Various authors have considered estimating f by doing ordinary least squares
regression on a set of N B-splines, where N <<n. Here the number N of B-splines acts as a smoothing
parameter, if N is small then the estimate of f will be very smooth, while if N is sufficiently large, the
data can be interpolated. Such splines are known as regression splines (as opposed to smoothing splines).
If f eW#, then as n —eo, the optimal value of N' for integrated mean square error is O (%), see Agarwal
and Studden (1980), so that for n of the order of 100, typically the optimal value of N may be as small as
3 or 4. In this kind of situation smoothing splines are likely to provide better resolution of multiple peaks
in f than regression splines. If f is already near the span of a small number of basis functions, or n is
extremely large, the results with the two kinds of splines is likely to be similar, given that A and N are
both chosen optimally. Given N, it has been suggested that the knots in a B-spline basis for regression
splines be chosen by least squares. Although apparently it is possible to choose knots by "eyeball", this is
a notoriously difficult numerical problem even for a small number of knots, and multiple minima of the
objective function and other problems can be expected.

INTERACTION SPLINES
Let t=(x,, ...,x;) be in the unit cube in E?. Stone (1985) and others have suggested modeling f

d
FOu....xp))=fo+ Xfalxe)

a=1

1
where '[fa(x dx =0, o=1, ...,d. This idea has been extended to model f as
0
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d
F@u..x)=fo+ Tfalx)+ X f pxaxp) + %qfaﬁy(xarxﬂ»xy)"'

a=1 a<f

where appropriate marginal integrals are O to guarantee identifiability, and the number of terms to be
included is to be determined. Such splines are known as interaction splines, by analogy with analysis of
variance. The individual component functions S opSf apy €lC. are tensor product splines. See Barry
(1983),Barry (1986), Wahba (1986), Chen (October 1986).

SPLINES WITH LINEAR INEQUALITY CONSTRAINTS

Splines satisfying a family of linear inequality constraints can be found as the solution to the prob-
lem: Find f X to minimize

L0 @)
subject to
a;<L;f sb;,

where L; is is a bounded linear functional. Included are discretized positivity and monotonicity con-
straints, see Utreras (1985), Villalobos and Wahba (March 1987).

HISTOSPLINES
Histosplines arise when one observes
yi=|[fdt +g;
Q,
and chooses f as the minimizer of
1 n
B (y,-—_[f(t)dt)z-i—lf,‘,f(f), (16)
i=1 Q

See Wahba (1981a), Dyn, Wahba, and Wong (1979) and references cited there.
INDIRECT SENSING PROBLEMS

These occur when one observes
Yi = [K(;.8)f (s)dt+e;

and are of major practica importance. f can be estimated by solving a variational problem analogous to
(16). See O’Sullivan (1986) and references cited there.

ALGORITHMS AND SOFTWARE

This is an area of active research and we only briefly mention a few results. In one dimension the
unp spline has special structure which allows fast algorithms for computing both the spline and the GCV
estimate of A. Transportable code CUBGCV based on the fast algorithm proposed by Hutchinson and
deHoog (1985) may be found in Hutchinson (1985), this algorithm with some additions i$ incorporated in
GCVSPL of Woltring (1986). Literature connecting the Markov properties of the unp spline and its
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relationship to Kalman filtering has suggested fast algorithms, an early reference is Weinert and Kailath
(1974). Older code (ICSSCV) for the unp spline with the GCV estimate of A can be found in the IMSL
library (1986). In more than one variable, the special structure of the one dimensional case does not
appear to exist and more general methods are required. The bidiagonalization approach of Elden (1984 )
and the truncated singular value decomposition, Bates and Wahba (1982) may be used to speed the calcu-
lation. Transportable code for thin plate splines using thin plate basis functions is available in Hutchinson
(April 1984), and for partial thin plate splines and general problems using the truncated singular value
decomposition, in GCVPACK (Bates et al. (October 1986)). GCVSPL, GCVPACK, code for generating
B-splines based on DeBoor (1978) and other spline code may be obtained via an electronic mail daemon
on the arpanet by writing netlit@anl-mcs.arpa. The message "send index" will cause instructions for the
use of the system to be returned to the sender.
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