DEPARTMENT OF STATISTICS

University of Wisconsin
1210 West Dayton St.
Madison, WI 53706

TECHNICAL REPORT NO. 847

December 1988

Minimizing GCV /GML scores
with multiple smoothing parameters
via the Newton method !

by

Chong Gu and Grace Wahba

!Research supported in part by AFOSR under grant AFOSR-87-0171, by NASA under contract NAG5-
316, and by NSF under grant ATM-8410373.

Minimizing GCV /GML scores

with multiple smoothing parameters

via the Newton method *

Chong Gu and Grace Wahba
Department of Statistics

University of Wisconsin-Madison

December 1988

Abstract

The (modified) Newton method (Gill et al., 1981) is adapted to optimize GCV/GML scores
with multiple smoothing parameters. The main concerns in solving the optimization problem are
the speed and the reliability of the algorithm, as well as the invariance of the algorithm under
transformations under which the problem itself is invariant. The proposed algorithm is believed
to be the most efficient for the problem, though it is still rather expensive for large data sets,
since its operational counts are (2/3)kn® + O(n?), with k the number of smoothing parameters
and n the number of observations. Sensible procedures for computing good starting values are
also proposed, which should help in keeping the execution load to the minimum possible. The
algorithm is implemented in the RKPACK (Gu, 1988) and illustrated by eramples of fitting
additive and interaction spline models. It is noted that the algorithm can also be applied to the
ML and REML estimation of the variance component models.

Key words and phrases: additive/interaction spline models, gradient, Hessian, invariance,

Newton method, smoothing parameters, starting values.

"Research supported in part by AFOSR under grant AFOSR-87-0171, by NASA under contract NAG5-316, and
by NSF under grant ATM-8410373.

1 Introduction

Suppose we observe
yi=Lif+e¢ j=1,--0,m

where the L;’s are bounded linear functionals in a Hilbert space H, and the ¢;’s are i.i.d. Gaussian
noise with possibly unknown variance o2. Such setups encompass a broad range of smoothing and
indirect sensing problems. The solution f) to the variational problem

min %j;(yj ~ L) + ARSI (1)
is called a spline in a general sense (Kimeldorf and Wahba, 1971), where P, is a projection operator
to a subspace H; with codimension M, || || is the norm in H, and A is the so-called smoothing
parameter. The parameter A controls the tradeoff between the residual sum of squares iy~
L;fy\)? and the penalty ||Pyfi]|2. f) is called a regularized estimate of f in the literature of ill-
posed problems, and A the regularization parameter, see, e.g., (O’Sullivan, 1986) and references
cited therein.

Denote &; as the representer of L, it is derived by (Kimeldorf and Wahba, 1971) that

n M
fa= ZC](PIGJ)+ZdU¢V7 (2)

=1 r=1
where {¢,}M, span My, the null space of P;. ¢ = (¢1,+++,¢p), d = (dy, - ydpr) are solutions to

the minimization problem

min ||y - Sd - Ge|? + AeTGe, (3)
where

(< Plfjl’PIEjz >)

S = (L), (4)

with <-,-> indicating the inner product in H. It can be shown (Wahba, 1984) that the solution

to the linear system

(Q +nAc+ Sd

l
<

STe = 0 (5)

is a minimizer of (3), and when @ is of full rank, it is the unique minimizer.
Consider an orthogonal decomposition of H into more than two components, H = O M. A
direct generalization of (1) is

n k
min =3 °(y; - L;f)? + Y AP, (6)
1=1 =1

where the A;’s are a set of smoothing parameters and P; is the orthogonal projection operator onto
H;. Writing A; = A/6;, We can rewrite (6) as
18 2 2
min =3 "(y; - L;if)* + M| P.f|lf, (7)
i=1
where P, = ZLI P; is the projection operator onto H, = EB{-;I'H,-, and
k
£l = 1RSI + 3= 6711 Pif |2
i=1
is a modified norm indexed by @, where || - || is the original norm. It can be shown that the

representer of L; under the norm | - ||g is

k
€9 = (Pot;) + 3 0:(PiE;),

1=l
where {; is its representer under the norm || - ||. Denoting < -,- >, < -, - >g as the inner products
corresponding to the norms || - ||, || - ||g respectively, we have
-0 8 5. SO
Qs = (< P&, PtL >9) =D 6:Q, (8)

1=1
where @; = (< P;&j,, Pi€;, >). Thus the solution to (6) can be written as
n P M
fA = chfj + Z duqbuy
j=1 v=1
with ¢, d determined by
min ~ly - 5d - (9 + AeTGPe. (9)
Choosing appropriate smoothing parameters X is crucial for effectively recovering truth func-

tions from the data by fitting spline models. Two of commonly recognized data-driven methods

for choosing smoothing parameters are the generalized cross validation (GCV) and the generalized

maximum likelihood (GML) methods.

Writing
Q%+ 5d=(Lify, -, Lofy)T = ANy,
the GCV method seeks A to minimize

@/l = Al
YO = [y - A0

A(X) is the so-called influence matrix. Let
S = FR=(F, F)

be the QR-decomposition of S, it can be shown (Wahba, 1984) that
I— A(X) = nAFy(G9 + nAD)—1FY,

hence
zT(Q? + nAI)~2z

V(A)=V(A,0) = n[tr(Q? oy n/\I)"'l]?’

(10)
where z = F] y and

k k
Q% = FIQ%F, = Y 0(FFQ:iR) =Y 6:Q;,

i=1 i=1
where Q; = FTQ;F;. The GCV method is proposed by (Craven and Wahba, 1979) and is shown
to be asymptotically optimum for minimizing predictive mean square error ((Craven and Wahba,
1979) and (Li, 1986)), see also (Wahba and Wang, 1987), where it is shown that this method is
also good for minimizing solution mean square error in a variety of circumstances.
Based on the Bayesian interpretation of the smoothing spline models (Wahba, 1978), Wahba
also derives the GML method which seeks the minimizer of

_ ¥ - AQ)y/n
ML= [det* (I — A(A))]V/m’

where det™(I — A) is the product of the n; = n — M nonzero eigenvalues of I — A, see (Wahba,
1985). In parallel to (10), we have

27(Q8 + nAD)1z/n
[det(QF + nAL)=1]/m
A theoretical comparison of the GCV and GML methods can be found in (Wahba, 1985). The

M(X) = M(),6) = (11)

purpose of this article is to present a numerical algorithm for the computation of selecting the

4

smoothing parameters according to the GCV or GML criterion. Our main concern is to deal with

problems with £ > 1. The method is developed on the basis of the k = 1 algorithm presented by
(Gu et al., 1988).

2 Preliminaries

To minimize the functions V(A, @) or M (), 8) with respect to @ and nA, we wish to iterate on the

following cycle:
1. For fixed €, minimize V(A|@) or M(A|@) with respect to nA.
2. Update 8 using information from the current estimates.

Step 1 above can be implemented through the single smoothing parameter GCV/GML algorithm
based on the Householder tridiagonalization proposed by (Gu et al., 1988). To carry out step 2, we
will evaluate the gradient and the Hessian of V/(8|A) or M(8|)) with respect to n = log(#), then
apply the modified Newton method (Gill et al.,, 1981) to update the 5. In this section, we first
discuss the choices for the scaling of the variables (n) and the scaling of the objective functions
(V(+) or M(-)). Then we present the expressions of the gradient and the Hessian for later use.

We choose the variables 7 instead of @ mainly for their invariance. Looking at the formulas
of V(-) and M(-) ((10) and (11)), we can see that what really matter are the matrices 8;Q;’s,
while the “face values” of the 6;’s are subject to rescaling when the matrices Q;’s are multiplied
by some positive constants. Notice that the problem itself is not changed by such transformations.
Invariance under this kind of transformations is hence essential to any sensible algorithm. It is easy
to see that the derivatives of V() and M(-) with respect to n are invariant, hence the methods
based on these derivatives are invariant. Standard calculations show that the derivatives of V()
and M(-) with respect to @ are in general not invariant in this sense, which disqualifies them for
serving as the basic variables. Another immediate numerical merit from adopting 7 instead of 8 is
that we change a constrained optimization problem (@ > 0) to a unconstrained one, which allows
much simpler treatment.

The objective functions can always be rescaled by monotone transformations without changing
the optima of the problems. In our problem, it is observed that log V(-) and log M(-) have simpler

derivative formulas. However, this transformation is not adopted for the following reason. To

5

efficiently minimize the objective function, we want the objective function to be as convez as

possible, since most optimization methods are modeled after convex functions. When the convexity

violated, we have to modify the methods and to suffer lower efficiency, and the methods may even

fail to converge. Since log(:) is concave, we can expect log f(:) to be ’less convex’ than f(-) for
g g g

general f(-) > 0. Actually, it can be shown that a positive-definite Hessian of log f(-) implies a

positive-definite Hessian of f(:), but the reverse is not true.

Having chosen the objective functions and the basic variables, we now collect the formulas of

the gradient and the Hessian. Define D = S35

and
We have
Lemma 1
where
T
£
where

2 TD2z
Vi(nlA) = nm,
z2TD1z/n
M(n|X) = QoD
oV A
o = M@ iw)
oV Fii Tl ri;i;
= ;—2—3—2—-2 ” 6—-=
37?187?_1 (+ t4)?

g:; 37? (zTD 22) = —22TD72(e"Q)D 12
f—,j 3 aT;-“fD‘l) = —t(D7}(e"Q:) DY),

2(z7 D~2(e"Q:) DY (€7 Q;)D 'z + T D1 (¢"Q:)D~*(e"Q;) D" z

+zTD71(e™ Q) D™ (e Q;)D~22] +)iy,
2tr(D7(e"Q:)D (e Q)D™Y) + 8ji- ki,

1 i=0,
0 i # 0.

(eMQi) + nAl = Q? + nAl, we write

(12)

(13)

(14)

(15)

(16)
(17)

Lemma 2

oM _ l(T 1 ri;)
88; ~ mtl/n pet/n”
M _ ‘1_ Fis L 1 'f‘,‘fj a 1 f,"f‘j 1 T‘i'.;j 1n+1 'r‘i‘gt'j
anidn; — noti/m ny t1+1/m at“‘l/“l_atl‘ﬂ/’“ n, m t2+1/"1)’
where
By o (97‘_3 Tnp-1 = Tp-1/.mn\Nn-1
i = il 3_77,(2 D™z)=-2"D"'(e"%Q;)D 2,
. at a
t; m 37?:'(etD™") det(D~")tr(e™Q;D~1),
Fij = 227D H(e™Qi)D7N(e"Q;)D 2 + bji_;i i,
tii = det(D™1)tr((e™Q:)D"(e%Q;)D™Y)

+det(D‘1)tr(e"‘Q,-D‘l)tr(e’“QjD'l) + (5|,‘_j|f,',

where §; is the same as in lemma 1.

The proofs to the above two

3 Algorithms

lemmas are straightforward and tedious. Here we omit them.

(18)
(19)

(20)

(21)

(22)

(23)

In this section, we will specify the main algorithm and discuss its various aspects. More discussion

will be collected in Section 5

as remarks.

Algorithm 1 Assuming inputs of the null space matriz S, the response vector Y, the reproducing

kernels Q;, i = 1,---,k, and

1. Initialization:

(a) Compute the QR-decomposition of S = FR = (Fy, F,)

(b) Compute z = Fy

the starting values m,, we propose the following algorithm:

and Q; = FJQ;F;.

(c) Set Ap=0,n_=my, V_ =00 (or M_ =).

2. Tteration:

(a) For the current try

values 7 = n_ + An, collect D = Q? = Zf’:l eniQ);.

(b) Compute D = UTUT, where U is orthogonal and T is tridiagonal. Compute @ = UTz,
(c) Minimize :
neT(T + 2 M) 2a

VO = T F TP

(24)

or

M(X|n) = izt(éinn'\)\?;ﬁi =

IfV > V_ (or M > M_), set An = An/2, goto (a); else proceed.
(d) Evaluate the gradient g = (8/3n)V(n|A) (or (8/0n)M(n|))) and the Hessian H =
(8%/8manT)V(n|A) (or (82/0mdnT)M(n|))). Calculate the increment An = —H~lg, where
H = H + diag(e) is positive definite. If H itself is positive definite “enough”, e is simply 0.

(25)

(e) Check convergence conditions. If the conditions fail, setp_=mn, Vo=V (or M_ = M),

goto (a); else proceed.

3. Calculate the optimal model:
(a) If Am; < —v, set n; = —oo, where v is a “large” number, say, v € (.5,.9).
(b) Collect D = Y-, e"Q;. Calculate the model minimizing V(A|n) (or M(A|n)).

In the above specification, most items clearly explain themselves, except steps 2.(d), 2.(e) and 3.(a)

?

which we will explain in turn.
Step 2.(d) is the major part of this algorithm. Define D = D + nAT (this definition is consistent
with the one in Section 2), T = T + nAI, and K; = e UTQ,U, we can write (14)—(17) as

ri o= —22TT7 KT 'e = —2(T7'2)T (T K)(T 'z), (26)
i = —tr(T72K;), (27)
Fii = 2T 'a)T(TIK)TK) (T 2) + (T~ 2) (T K)T(T~ K;)(T ')

HT @) (T K)T(TK)T (T)] + 8y (28)
tij = 26((T7K)(T7K;)) + 8y . (29)

Similarly, (20)—(23) become

i o= —xl(TIK)(T 'z), (30)
t; = —det(T"Dtr(T71K;), (31)
Fij = ZmT(T‘lK,;)(T‘lKj)(T“I:c)+6|,-_J-|1'~,-, (32)

8

't..;j = det(T“l)tr((T'lK.-)(T"lKj))
+det(T™ (T K te(T1K;) + 8ji_ ;. (33)

The gradients and the Hessians presented in lemma 1 and lemma 2 will be calculated via (26)—(29)
and (30)~(33). The modified Newton method based on the modified Cholesky decomposition, as
described by (Gill et al., 1981), is adopted to calculate the update direction Ap = —H~1g. Since
the score evaluation is expensive, we choose not to perform a step length search, but to simply
pick 1 as the default step length. In case it fails to provide an improved score, we keep dividing it
by 2 until the first success, which is guaranteed by the fact that —Z~1g is a descent direction. In
practice, such a failure trial rarely occurs except at places far away from the minimum.

Given a user supplied precision requirement €4, the algorithm is thought to have converged if

at least one of the following criteria is satisfied:
L (a) Vo =V < ea(14 V), and (b) ||g]lec < €a(1 + V).
2. |lg]lce < €a-

The criteria are a modification of the suggestions by (Gill et al., 1981, pp.306-7). Our rule 1.(a)
is identical to their Ul, while our rule 1.(b) is expected to do what their U2-U3 do. In our
problem some optimal 7; could be at —cc. In such a situation, the algorithm will keep wanting to
move towards the optimum with big steps even when the score values are well within the required
precision of the optimal value. This is a typical ill-conditioned situation where their U2 will never
be satisfied. By adopting a more stringent version of their U3 (our rule 1.(b)) instead of their U2-
U3 combination, we can avoid such endless iteration and yet deliver qualified termination, since our
rule 1.(b) always implies the satisfaction of their U2 when the problem is well-conditioned (Gill et
al., 1981, p.307). Our rule 2 is simply their U4. Their U5 is discarded for the same reason discussed
above. At this point, the motivation of step 3.(a) of the algorithm should have become clear.

We now briefly discuss the operational counts of the algorithm. Steps 1.(a), 1.(b), and 2.(a)
can be executed with O(n?) operations, provided M (the rank of the null space matrix S) and k
are both of constant order. Step 2.(b) can be implemented via the Householder tridiagonalization
algorithm, which in general takes about (2/3)n} operations, while some time-saving is possible
through the distributed truncation proposed by (Gu et al., 1988). Step 2.(c) is usually performed

by a golden section search on log(n)), each evaluation of the score functions V(:) or M(-) via

9

formulas (24) or (25) requires only O(n) operations. As we mentioned earlier, step 2.(d) is the
major burden on the algorithm. To calculate each of the K; = e UTQ;U, we need approximately
the same number of operations needed for step 2.(b). Making use of the identity 3%, K; = T', we
need totally (2/3)(k — 1)n$ operations for the K;’s. Since the linear system Tz = b can be solved
with O(n) operations, T~'K;’s and T~?K;’s can be obtained with O(n?) operations. Hence the
total number of operations needed for each iteration is in general (2/3)kn3$+O(n?). For each failure
trial with V' > V_ or M > M_, we have to spend (2/3)n$ operations (step 2.(b)) before discovering
it. Step 8.(b) needs another (2/3)n$ to calculate the final results. The above operational counts
are based on related discussions in (Dongarra et al., 1979) and (Golub and Van Loan, 1983), see
also (Gu et al., 1988).

Good starting values are important to Newton-type iterative optimization methods. They are
even more crucial to our algorithm since our iteration is extremely expensive for large n. Deriving
good starting values is not a mere numerical problem but something to do with the original setup
of the model. We will propose two sensible approaches below for obtaining good starting values
for the algorithm. Both of them are based on the background problem formulation presented in
Section 1.

The first proposal is built on the assumption that the optimal smoothing parameters);’s share
approximately the same decreasing rate as the number of observations increases. We can then
randomly select a subset of the observations available, calculate the optimal 8 for the subset, and
use these as the starting value for some bigger subset or the complete data set. The idea here is to
perform a “crude” search with a smaller problem size to save execution time. If this assumption is
strongly believed then a large size iteration can be avoided by simply adopting the 8 obtained from
a subset run and going ahead to perform only step 3.(b) of the algorithm on the complete data set.

The second proposal is more involved. Suppose we knew the underlying truth function f., and

it could be decomposed as the sum of projections onto orthogonal subspaces H;’s,
k
fe= Z F;fa,
1=0

where P; denotes the projection operator onto subspace H;. When using the smoothing spline model
to retrieve the truth function from data, it is sensible to adjust the face values of the norms || P;f||

by the “strength” of the corresponding components of the truth function, || P;f||, to balance the

10

roughness penalties put on different components. Specifically, when || P; f.|| = .07 and ||P2f.|| = 7,
say, we might regard Py f with ||P; f|| = .05 as rough as P, f with || P, f|| = 5. This heuristic leads

to the following one smoothing parameter formulation
P
mind 350, - L1+ 33 1R,
i=1 «|
or equivalently,

o=\ B:ifulf?.

@ chosen this way should be close to optimal, hence be a good starting value for the iteration.
Of course in practice we will never know the truth function f., and in turn the factors || P;f,||2.
However, all we need here is just a set of starting values for the iterative algorithm, and some
estimates of the factors || P;f.||? should suffice. The resulting starting value procedure, which is

made default in the implementation, is thus
Algorithm 2 If no starting values are specified, we calculate the default starting values as follows:

1. Set 8; = (tr(Q;))~", fit the one smoothing parameter spline model by minimizing V()|0) or
M(X|6), calculate the parameters c. -

2. Estimate ||P;f.||* by 8i0 = 62cTQic, and set the starting values of the algorithm 1 to be
ni0 = log(fio).

The choice of 8;’s in step I above is arbitrary but invariant in the sense we discussed in Section 2,
other invariant selections might be equally appropriate. The estimates of || P;f.||?’s are simply by
replacing P; f. with P;fy = 3°;c;0:(Pi§;), where §; is the representer of the linear functional L;
under the original norm || - ||, remember that < P;&;,, Pij, >= (Q;);,;,- Algorithm 2 takes about

(2/3)n3 + O(n?) operations for execution.

4 Examples: Additive/interaction spline models

To test the algorithms presented in the previous section, we apply them to fit the additive/interaction
spline models, which were first proposed by (Barry, 1983; Barry, 1986) (see also (Wahba, 1986)), and
were first illustrated by (Gu et al., 1988) in the k = 2 case where a grid search on the 1-dimension

6 was feasibly conducted. In this section, we will report some of our numerical experiments with

11

the iterative multiple smoothing parameter algorithm proposed in this article. Various statistical
aspects of the additive/interaction spline models are currently under study. The findings of the
study will be presented elsewhere.

The formulation of the additive/interaction spline models is based on the tensor product Hilbert
space formulation. Take the component Hilbert spaces (on [0, 1]) as the reproducing kernel Hilbert

space
Wit = {f: fMabs.cont.,v =0,---,m — 11_/(f(m))2 < oo}

with norm

17 =S 107+ [,

v=0

see (Craven and Wahba, 1979). We let H be the tensor product Hilbert space H = ®¢,H', with
H' = WJ*. Readers are referred to (Aronszajn, 1950) for technical details on tensor products of
reproducing kernel Hilbert spaces. We also note that the component spaces of the tensor product
space need not to be of the same form, e.g., we might specify different m’s for different H'’s
for our formulation here, though we choose not to do so to keep the notation simple. Write
W = N @ Pp_1 @ Sp, where A is the space of constant functions with square norm ([f)?,
Pp,—1 is the space of all polynomials with degrees less than m which integrate to zero, with square
RO ¥ e [fol fON2, and S,, is the space of functions with square integrable mth derivative and
satisfy fol f@ =0,v=0,---,m— 1, with square norm f{}(f(m))z. When m = 1, the space Py
vanishes. (Further decomposition of Pp,—; for m > 2 is sometimes useful, see (Craven and Wahba,
1979), though we will not get into too much detail here.) From the direct sum decompositions of

the component spaces formulated above, the space
H = oL H =LV &P, ®Sp)

can be represented as the direct sum of 3¢ orthogonal subspaces when m > 1, and 2¢ subspaces
when m = 1. Various statistical model formulations can be specified from this structure. E.g., the
additive models are obtained by eliminating the subspaces with more than one non-constant tensor
component (i.e., with less than d — 1 A’s as components).

We first present an simulated additive spline example on [0, 1]%. The truth function is specified

by
f(x) = f(z1,22,23,24) = 10sin(rz;) + exp(3z3) + 105:&'}11(1 - 34)6 + 1043:3(1 = 2:4)10.

12

The bounded linear functionals L;’s are chosen as the evaluation functionals [x;]f = f (x;). We
generated 100 sampling points in [0, 1]* randomly, and computed the observations by
vi = f(x5) + ¢,

where ¢;’s are independent Gaussian pseudo random numbers with mean 0 and variance 1. The
sampling points were generated by the Fortran routine uni of the Core Mathematics Library (Cm-
lib) from the National Bureau of Standards, with mdig=32 and seed 2375, the first 400 (after a null
call to pass the seed) random variables were cut into 4 segments of length 100, and formed the 1st to
4th coordinates of the sampling points in the natural order. The €;'s were generated by the routine
rnor of Cmlib with mdig=32, we took the first 100 outcomes after the null call which passed the
seed 5732 to the routine. The scatter plot matrix of x and y is shown in Figure 1. We fitted models
with m = 2,1 respectively. For m = 2, we selected Hy = span{l,z; — .5,z3 — .5,23 — .5,24 — .5},
where 1 spans @, N, z; — .5 span (QuiN) ® Pi), i = 1,...,4. The penalized spaces were
Hi = (RizN') ® 8§, i = 1,--+,4. Form = 1, we chose Ho = {1} and H; = (RN ® Si,
t = 1,--+,4. Other subspaces were deleted. The evaluation formulas for the matrices S, Q;,
t=1,--+,4, and for the representers P;{; can be found from (Gu et al., 1988) for the m = 2 setting
directly, and the m = 1 formulas can be similarly derived. Figure 2 and Figure 3 illustrate the
fitted additive components (solid lines) compared to the true additive components (dotted lines)
for m = 2,1 respectively, with the vertical positions of the solid lines being adjusted to make the
solid and dotted lines of the same frames integrate to the same number, as they should. The m = 1
curves (broken lines) look more wiggly than the m = 2 curves (cubic splines), although the main
features are the same. The criterion for selecting the smoothing parameters was the GCV score.
The GCV scores and the corresponding mean square errors (evaluated at the sampling points) of
each iteration are listed in Table 1. In Table 1, the iterations numbered 0 correspond to the starting
values, and the last iterations (number 5 for m = 2 and number 3 for m = 1) in the two cases
correspond to the models illustrated in Figure 2 and Figure 3 respectively. It appears that the
starting value procedure (Algorithm 2) worked pretty well, and the convergence of the iteration
was very fast. It can also be seen that both V and MSE are smaller for m = 2, indicating that
m = 2 should have been chosen as a better model according to the GCV score, and actually it
is better according to the MSE. An execution for the k = 4, n = 100 case with 5 iterations (first

column of Table 1, the amount of work is that of 6 main loop executions) ran 724 cpu seconds on

13

X2

x3

x4

Figure 1: Scatter plot matrix: Additive model

14

* L
*
* * *
* & * *
* L & * K
* * &
* *i
* *
wa * *t*-=‘
*
g, A N
* EJ * s\v: * *
* ey * -
* F
* -
1]
* * *
LA] *
* * ® A
*
* * * xh %
*
¥ ‘*.1 Fi) : -
* * *
* *
‘E' - * % * ¥ . &
* * # * * " * *
* * *
& * s ® % 4 4
* * * % ! * x o o Fy -
* *
* x Mg x Fa L
a * * *
* x %
* *'Q‘ * ,'* 4 * t‘ﬂ. : *
w* *
* *
L33 * Lk
N * . »k * * % * * *
* * % T * ,, * *
P * *] *
- xx ® :* * tt: L4 w W
* *
« % W g8 «™ o w*, . W=
& *
* * * *
¥ " * % :‘t * P ‘* * i o
* P . W R LI B
* * A o * * % ke * * LT | * g
* LI T A * e X o . % * -y * * o
** * * * %
*aow Hap " 5 * L * oak x L
*u * x* * =" *
x* * * * % *
* * x x * * x* t'.' *,* . :
* * *
* *u;’ PR T T * .‘;‘.:\‘ PPN F & » *x ok F *
* * d * L
* o, ¥ e b ¥ e R *
* PO * *
* % * * * > e *
. =t * y **.*' * * .* a"*' ~ g *u *
* % * * * *
* W * * « *
* * Sl * * % * * 1
* * *
*
* & * * * # *
* % g ko * LY *oa &t * *oa¥ *
" n® * o * * '*t' # *
W ,w *an L * M e ot - o * . ;
* x - * *
* * #, * L - * *
F . ‘.‘..’ " * i’;*:&:*"ﬁ & T ’t.***E o & ‘:‘.“ .&l.t :‘ "
* » * * * * * * * *
* -‘.*n"'l: o e ETOM a0 LI Aol aw t*rtlt .
x ® L = * ® kg * * e *x w X I*, *x P
1 . LI - * * L # & "W
* % * * LI " *y *
* AR R A - * b % %
* % N * L x ™ LI P T * % * % T
e * LA I L * * * *
*
* * * *
* * * s i 5
x1 x2 x3 x4

15 20

10

15 20

10

15

10

0.0 0.4

f1

0.8 0.0

0.4

08

15 20

10

0.0 0.4

f3

0.8 0.0

Figure 2: Additive model: m = 2

15

0.4

f4

15 20

10

15 20

10

15 20

10

0.0 0.4

f1

20

0.0 0.4

f3

Figure 3: Additive model: m =1

16

0.4

f4

0.8

Table 1: Iterations of the additive models

L m=2 . " m=1 __|
Tter.No. V. | MSE [Iter.No. % MSE |
1.50409 | .291176 1.80939 | .519140
1.50180 | .232195 1.75559 | .462696
1.45412 | .273181 1.74514 | .446254
1.41040 | .243224 1.74504 | .444939
1.40893 | .234954
1.40893 | .234726

W] = O

bW~ O

a Sun-3/280 (without a floating point accelerator) in the Department of Statistics, University of
Wisconsin-Madison. We have also tried n = 200 and n = 400 for the same model. An n = 200
execution with 4 iterations ran 3628 cpu seconds on the same machine, and an n = 400 run with 3
iterations took 16371 cpu seconds.

The second example we wish to present is a one with a non null interaction component. This

time we worked on the unit cube [0, 1]3, with truth function

f(x) = f(z1,22,23) = 10sin(rz;) + exp(3z3) + 5 cos(2m(z1 — z2)),

and
vi = f(x5) + ;.

We used the similar procedures and same seeds to generate the sampling points and noise with the
same mean and variance as in the additive model example, with n = 400 and d = 3. The scatter plot
matrix of z;’s and y is omitted since it is not more informative than what we saw in Figure 1. We
chose m = 1 for the interaction model example for its simpler formulation, though we would expect
the plots of the estimation look rather wrinkled. Eliminating the 3 factor interaction, we were left
with 7 subspaces of the tensor product Hilbert space H = ®}_;H/, namely Hy = {1} = M,
Hi = (QuaN)®Si,i=1,2,3, and Hiy = (®12:81) ® N, i = 1,2, 3, where H was the null space
and the other k = 6 subspaces were penalized. We know that the truth function has null projections
in Hy, H(a), and Hyy. Projecting the estimated function to the subspaces, we can compare the truth
and the estimated components individually. For the subspace Hi, the estimated component f(z;)
ranged between [—.14,.12] on grids z; = 0(.01)1. On Hz2), the estimated component f; 3(zy,z3)
ranged between [—.38,.38] on the tensor product mesh z1,23 = 0(.033)1. And on Hy, f2,3(22, 23)

17

= 4| < .
oV} 3]

I s
o _ S .
o E n .
o - (=] -

0.0 0.4 0.8 0.0 0.4 0.8
f2 f3

Figure 4: Interaction model: Additive components

ranged between [—.18,.15] on the tensor product mesh z,23 = 0(.033)1. All three null component
estimates were well below the standard deviation of the ¢;’s. The other two additive components
f2 € Haz and f3 € H3 are plotted in Figure 4 in the same manner as in Figure 3, and the truth
and the estimation of the interaction component f; 2 € H(3) are plotted in Figure 5. The iteration

sequence of this example is shown in Table 2. The iteration number 0 is again the starting value

Table 2: Iterations of the interaction model

Iter.No. A% MSE Iter.No. Vv MSE
0 1.40266 | .376505 2 1.29839 | .291201
1 1.31241 | .303801 3 1.29585 | .285957

model. The algorithm converged at the 3rd iteration in the sense that the optimal GCV value was

within .1% of the achieved one. The total execution time was 25859 cpu seconds.

18

5 / >, g2
= &, LS
R A 6 O S ST ooy
" RO I/,":\\\kQ\\\‘{\"o:';, 7,
N 5 \\\\§\\\\\‘.,$, 77272
5 OB AN SO

N

Figure 5: Interaction model: Interaction component

19

5 More about the algorithms

5.1 Variance component model

Consider the variance component model (Rao, 1973, Sect.4j)
k
y=S8+) Bii+e (34)
1=1
where S3 is the fixed effect of dimension M, the B;’s are known matrices with B;BI = @,

£~ N(0,b;I), e ~ N(0,02]), and £;’s and € are mutually independent. Let the QR-decomposition
of S be

S=FR=(F,F)

Since z = F{y are n — M linearly independent contrasts of y, The restricted maximum likelihood

(REML) estimates of b;’s and o? are the minimizers of the restricted log likelihood
1 1
l(b,0%|z) = - = log[det(z b:Q; + 0%1)] - EZT(Z b:Qi + o)1z + Cy, (35)

where Q; = F{Q;F, are as defined in earlier sections, and C; is a constant, see also (Harville,

1977). Reparameterizing the problem by b; = b8;, 02 = b(n)), and maximizing [.(-) with respect

to b, we get
. 2T(36;Q; + nA)~"1z
b= T ’ (36)
and the profile restricted log likelihood is
- 1 n—M -
1.(0,\]b) = —§1og[det(z 6:Qi + nAI)] = ——log(b) — Ca, (37)

where C; is another constant. (By profile likelihood is meant the likelihood function where some of

the parameters have already been optimized.) This leads to the equivalent criterion of minimizing

_ 21X 6:Qi+ nA)'z/n
M(G,)\‘Z) = [det(ZB,QH- n/\I)—l]lf(n—Mf)'

Hence, our algorithm is directly applicable to the REML estimation of the usual variance component

models.

For the maximum likelihood (ML) estimation, writing » = y — §3, we have the log likelihood
1 . 1 " _
I(b,0?|8) = - 5 log[det(D b:Q; + o*I)] — §T'T(Z Qi + o*I)™1r + Cs, (38)

20

where C3 is a constant. After the reparameterization b; = b6;, 02 = b(nA), we can again solve for

b explicitly, and lead to the minimization of a log likelihood (), , B). We can then compute the

ML estimation by alternating parameters as
1. Maximize [(), 3|0): Tridiagonalization.
2. Maximize I(8|A, 3): Newton update.

In step 1, we can perform an inner iteration loop to optimize A by grid search and 3 by Gauss-
Markov estimation. Specifically, we perform a tridiagonalization 56:;Q; = UTUT, and compute

@ = UTy, W = UTS. The optimal A given 3 is the minimizer of the equivalent score

(2= WBN(T + nA) Nz = WB)/n

Y= det(T + nA)-1/n

And the Gauss-Markov estimator of 3 given A can be computed through
B =[WI(T + nd)'W]'WT(T + nAl)la.

Overall, step 1 is a (2/3)n®+ O(n?) operation. Step 2 is as before a (2/3)(k — 1)n? operation. The
corresponding ML algorithm is trivial to specify.

Various properties of the ML and REML estimations of variance component models and their
relation with other estimation methods are discussed in (Harville, 1977), see also (Rao and Kleffe,
1988). Surprisingly, the simple variable transformation n = log#, which results in the invariant
and constraint free numerical procedures for the REML and ML estimations, is not recognized in
previous works summarized by (Harville, 1977) and (Rao and Kleffe, 1988). Numerically, we should
admit that our method is too general to make use of possible special structures of B; (hence Q;) to
reduce computational load, as well as too restrictive to handle models where the variance-covariance
matrix of y depends nonlinearly on the unknown parameters, though in the later case the model

is no longer a variance component model literally.

5.2 Remarks
We now briefly remark on some further points of interest about the algorithms.

1. Methodology: Our iterative method is different from standard derivative based optimization

methods. It does not operate on all parameters simultaneously. Instead, it cycles between the

21

two sets of parameters (6 and A), conditioning one on the latest version of the other, and uses
different strategies for updating the two sets of parameters. Loosely speaking, each iteration
targets on the profile score with respect to @ where A is being optimized, though the updates
of @ are not based on the derivatives of the profile score function since they are not available.
Hence the method may be considered as a hybrid method adapted from the Newton methods
on either the profile score or the score itself. In general, the idea of alternating parameters

illustrated in this article may prove useful in tackling other statistical computing problems.

. Invariance: The invariance property we are concerned about in this article is the invariance
of the algorithm. It is different from the invariance properties encountered in most of the
statistical literature which enforce the invariance of the end results of statistical procedures.
In contrast, our concern is to enforce the invariance of numerical iteration sequences which

we hope will converge to the invariantly defined end results.

. Numerical efficiency: Our iterative algorithm is very expensive for large n, but it is believed to
be the most efficient for the problem. The algorithm is efficient in the sense that its operational
counts, (2/3)kn®+ O(kn?) flops per iteration, is pretty much the least people can reasonably
expect, given the fact that the single evaluation of the profile score is a (2/3)n® + O(n?)
flop operation, which is itself the best available in general smoothing spline settings, see (Gu
et al., 1988). Some Monte Carlo approximations to the derivatives (read the trace terms
in (15), (17), (21), and (23)), which require only O(n?) extra operations beyond the profile
score evaluation, have also been tried. They are eventually discarded for the reasons that
the derivative based methods are very sensitive to the errors in the derivative evaluations
(Gill et al., 1981), and that the approximations will lose most or all significant digits due to

cancellation as the optimum is being approached.

. Other applications and the starting values: It is obvious that our iterative algorithm applies
to all settings which result in minimization problems with similar form as formulas (10) or
(11). However, our starting value procedures are derived from the setting of (6), hence may

not be appropriate for other settings such as the variance component models.

- Local minimum and saddle point: The iterative algorithm will stop at any stationary point

of the score function it first reaches, it may also halt at very flat regions far away from any

22

minimum, as most optimization methods will do. The existence of a unique minimum and the

convergence to the unique minimum in various settings are beyond the scope of this article.

Acknowledgement

The original idea of the starting value procedure Algorithm 2 was inspired by a conversation with
Zehua Chen to whom we owe thanks. We also wish to acknowledge the effort of our Computer
Committee in the Department of Statistics, University of Wisconsin-Madison, led by Doug Bates,

for maintaining a very comfortable computing environment in the department.

References

Aronszajn, N., Theory of reproducing kernels, Trans. Amer. Math. Soc., 337 - 404, 1950.
Barry, D., Nonparametric Bayesian Regression, PhD thesis, Yale University, 1983.
Barry, D., Nonparametric Bayesian regression, Ann. Statist., 934 — 953, 1986.

Craven, P. and G. Wahba, Smoothing noisy data with spline functions: estimating the correct
degree of smoothing by the method of generalized cross-validation, Numer. Math., 31, 377 —
403, 1979.

Dongarra, J., C. Moler, J. Bunch, and G. Stewart, LINPACK User’s Guide, STAM, Philadelphia,
1979.

Gill, P., W. Murray, and M. Wright, Practical Optimization, Academic Press, 1981.

Golub, G. and C. Van Loan, Matriz Computation, The Johns Hopkins University Press, Baltimore,
1983.

Gu, C., RKPACK - A general purpose minipackage for spline modeling, Technical Report 832,

Department of Statistics, University of Wisconsin, Madison, 1988, under revision.

Gu, C., D. Bates, Z. Chen, and G. Wahba, The computation of GCV functions through House-
holder tridiagonalization with application to the fitting of interaction spline models, Technical
Report 823, Department of Statistics, University of Wisconsin, Madison, 1988, tentatively
accepted by SIAM J. Matriz Anal. Applic.

23

Harville, D. A., Maximum likelihood approaches to variance component estimation and to related

problems, J. Amer, Statist. Assoc., 72, 320 — 340, 1977.

Kimeldorf, G. and G. Wahba, Some results on Tchebycheffian spline functions, J. Math. Anal.
Applic., 33, 82-85, 1971.

Li, K., Asymptotic optimality of ¢y and generalized cross-validation in the ridge regression with

application to spline smoothing, Ann. Statist., 14, 1101 - 1112, 1986.
O’Sullivan, F., A statistical perspective on ill-posed inverse problems, Statist. Sci., 502 — 527, 1986.
Rao, C. R., Linear Statistical Inference and Its Applications, Wiley, 1973.
Rao, C. R. and J. Kleffe, Estimation of variance components and applications, North-Holland, 1988.

Wahba, G., Improper priors, spline smoothing and the problem of guarding against model errors

in regression, J. R. Statist. Soc. B, 40, 364 - 372, 1978.

Wahba, G., Surface fitting with scattered noisy data on enclidean d-space and on the sphere, Rocky
Mountain J. Math., 14, 281 — 299, 1984,

Wahba, G., A comparison of GCV and GML for choosing the smoothing parameter in the gener-
alized spline smoothing problem, Ann. Statist., 13, 1378 — 1402, 1985.

Wahba, G., Partial and interaction splines for the semiparametric estimation of functions of sev-
eral variables, in Computer Science and Statistics: Proceedings of the 18th Symposium on the
interface, edited by T. J. Boardman, pp. 75 — 80, Amer. Statist. Assoc., Washington, D.C.,
1986.

Wahba, G. and Y. Wang, When Is the Optimal Regularization Parameter Insensitive to the Choice
of the Loss Function, Technical Report 809, Department of Statistics, University of Wisconsin,

Madison, 1987.

24

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

3. DISTRIBUTION / AVAILABILITY OF REPORT

UnTimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
Technical Report No. 847

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL
(If applicable)

6a. NAME OF PERFORMING ORGANIZATION

University of Wisconsin-Madison

7a. NAME OF MONITORING ORGANIZATION

6¢. ADDRESS (City, State, and ZIP Code)
Department of Statistics
University of Wisconsin-Madison

1210 W. Dayton St., Madison, WI 53706

7b. ADDRESS (City, State, and ZIP Code)

8b. OFFICE SYMBOL
(If applicable)

Ba. NAME OF FUNDING /SPONSORING
ORGANIZATION

AFOSR/PKZ

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)

Building 410

Bolling AFB, Washington, D.C. 20332-6448

10. SOURCE OF FUNDING NUMBERS

WORK UNIT
ACCESSION NO.

TASK

PROGRAM PROJECT
NO, NO.

ELEMENT NO.

2304/A5

V1. TITLE (Include Security Classification)

MINIMIZING GCV/GML SCORES WITH MULTIPLE SMOOTHING PARAMETERS VIA THE NEWTON METHOD

12. PERSONAL AUTHOR(S)
Chong Gu and Grace Wahba

13b. TIME COVERED
FROM TO

13a. TYPE OF REPORT
Scientific Interim

14. DATE OF REPORT (Year, Month, Day) 1S. PAGE COUNT
December 1988 24

16. SUPPLEMENTARY NOTATION

11, COSATI CODES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

see reverse side

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
CIUNCLASSIFIED/UNLIMITED (K] SAME AS RPT.

[l oTic users

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (Include Area Code) | 22¢c. OFFICE SYMBOL

DD FORM 1473, 84 MmAR

83 APR edition may be used until exhausted.
All ather editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Abstract

The (modified) Newton method (Gill et al., 1981) is adapted to optimize GCV/GML scores
with multiple smoothing parameters. The main concerns in solving the oplimization problem are
the speed and the reliability of the algorithm, as well as the invariance of the algorithm under
transformations under which the problem itself is invariant, The proposed algorithm is belicved
lo be the most efficient for the problem, though it is still rather ezxpensive for large data sets,
since ils operational counts are (2/3)kn® + O(n?), with k the number of smoothing parameters
and n the number of observations. Sensible procedures for computing good slarling values are
also proposed, which should help in keeping the ezecution load {o the minimum possible. The
algorithm is implemented in the RKPACK (Gu, 1988) and illustrated by ezamples of fitting
additive and interaction spline models, If s noted that the algorithm can also be applied to the

ML and REML estimation of the variance component models,

Key words and phrases: additive/interaction spline models, gradient, Hessian, invariance,

Newton method, smoothing parameters, starting values,

