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Regularization and Cross Validation
Methods for Nonlinear, Implicit, Il1I-Posed
Inverse Problems

Grace Wahba*

University of Wisconsin-Madison

Cross validated regularization methods for ill posed inverse
problems are reviewed. These methods have been extended to the
parameter estimation problem for partial differential equations. In
the p. d. e. problem one observes discrete, possibly noisy data
on the solution, the forcing function, and the boundary values, and
wishes to estimate a (distributed) coefficient in the equation. Some
directions for further extension of the method are suggested.

1 Introduction

In this primarily survey paper we review some recent developments in reg-
ularization and cross validation methods for certain non-linear, implicit, ill
posed inverse problems. The nonlinear implicit ill posed inverse problems
we are concerned with arise when one has a partial differential equation, ei-
ther time dependent or steady state, which typically, models some flow. One
observes discrete, noisy values of the solution, and possibly, some forcing
function, and one wishes to estimate some distributed parameter coefficient
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in the equation. This parameter represents some physical quantity like per-
meability, transmittivity, or, in other contexts, velocity field and mixing
coefficients.

The kind of regularization methods we are talking about are also called
penalized output least squares. An early basic reference for this method is
Kravaris and Seinfeld(1985). O’Sullivan(1986,1987,1988) has expanded on
this approach and, among other contributions, in a key step has recently
shown how to use an implicit differentiation to allow the use of cross val-
idation methods to choose the usually crucial regularization or smoothing
parameter(s). In this paper we will begin by reviewing work in a general,
linear, explicit ill posed inverse problem, then go on to survey extensions
to mildly nonlinear ill posed inverse problems. We will describe how these
methods are extended to certain implicit problems in the estimation of the
aforementioned distributed parameter coefficients, and then we will suggest
a few directions for the extension of this approach.

2 The explicit linear ill posed inverse problem

There is an extensive literature on explicit linear ill posed inverse prob-
lems. We mention only a very few references relevant to the discussion here.
An extensive bibliography concerning the approaches discussed here can be
found in the forthcoming book Wahba(1989). A good place to enter the
literature concerning methods discussed here is O’Sullivan(1986). See also
Anderson, deHoog and Lukas(1980), Wahba(1977,1982,1985), and references
cited there.
We suppose

Y = -/:r K(t;,s)f(s)ds+ €, 1=1,2,...,n (2.1)

where y; is observed, K(t,s) is known exactly, f is to be estimated, and
the ¢; are independent errors with mean 0 and common, generally unknown
variance. Here we will suppose that the €}s are Gaussian random variables
but this assumption has been relaxed in various papers, see, for example
Wahba(1985a) and references cited there. f issupposed to be in some Hilbert
space X of real valued functions on T. the natural assumption is that ¥ is a
reproducing kernel Hilbert space (a Hilbert space in which all the evaluation
functionals are bounded), but we will not assume that the reader is familiar
with these spaces. Of course the assumption that K is known exactly begs
some very important practical questions, which we ignore here.



We will let {B;}[, be a set of L basis functions which will be used to
approximate f,

K
f~ Z cx Bk. (2.2)
k=1

If T is an interval of the real line, then B-splines (see deBoor(1978)), which
are hill-functions, are generally the basis functions of choice. If T is a com-
pact set in Euclidean d space then tensor products of B-splines, thin plate
basis functions (Wahba(1980)), or other basis functions may be used. The
type and number of basis functions can be an import;int issue and is not
discussed here. See, for example Nychka et al (1984) for further discussion

of this issue. In the method of regularization, f is estimated as the minimizer
in ¥ of

i—z‘;(y,v ~ [ K(t:,9)7(s)ds)* + A () (2.3)
where J(f) is a suitable penalty functional, usually a seminorm or norm
in ¥. An explicit representation for the minimizer of 2.3 may be found in
Kimeldorf and Wahba(1971) provided the reproducing kernel for ¥ is known.
In problems involving large data sets, and in nonlinear generalizations of 2.3
, the approximation 2.2 is substituted into 2.3 which is then treated as an
optimization problem in ¢. If T is an interval of the real line,

I(5) = [ (e (24

is a popular "smoothness” penalty functional.

In Euclidean d-space both thin plate and tensor product spline penalty
functionals are popular. In E?, the thin plate penalty functional analogous
to 2.4 is

J(f) = f_z f_:( e F2f2 . + f2,.)dTidz,. (2.5)

Penalty functionals which are seminorms in a reproducing kernel Hilbert

space have a Bayesian interpretation, see Kimeldorf and Wahba(1970),

Wahba(1978), which may aid in choosing them in given practical situations.
Substituting 2.2 into 2.3 results in the problem: Find ¢ to minimize

1
= |y — Xe||* +re'Je (2.6)
n

where X is the n X L matrix with ijth entry

fT K(ti, s)B;(s)dt (2.7)



and with some abuse of notation, J is now the n X n matrix such that

c'Jc = J(Z CkBk). (2.8)

Under the assumption that the intersection of the null spaces of X and J
is empty, we have that the minimizer of 2.6, call it ¢, is

e = (X'X +nAJ) X'y, (2.9)

As anyone who has ever tried to solve a real ill posed inverse problem
knows, the result can be quite sensitive to A. We use the method of gener-
alized cross validation(GCV), (Craven and Wahba(1979), Golub, Heath and
Wahba(1979)) to obtain a good estimate of A from the data. This estimate
is computed as follows: Let A(A)be the n x n matrix relating the data vector
y to the predicted data vector §, where

G = [ K(t5) 2 exeBals)ds. (2.10)

Then
A()) = X(X'X +AJ)1X. (2.11)

the GCV estimate of A is obtained as the minimizer of the cross validation

function , )
I I=ANy ||

(XTrace(I — A(X)))?
This estimate has optimality properties for choosing the A which minimizes
the (true) predictive mean square error

V() = (2.12)

(i [ K(t,9)f(5)ds). (213)

See, for example Craven and Wahba(1979), Utreras(1981), Li(1986). Under
somewhat general (but not completely general) circumstances it also has
favorable properties with respect to the minimization of the true mean square

[(7(s)ds — fi(s)ds)? (2.14)

where fy is the estimate of f, see Wahba and Wang(1987). A review of
methods for niminizing 2.12, suitable when n is of the order of hundreds
and larger, can be found in Gu et al(1988)



3 The nonlinear explicit ill posed inverse problem

Now replace 2.1 by a nonlinear equation,

y.-:N,-(f)%-e,‘ 122120 (3.1)
where NN; is a nonlinear functional, for example

Nif) = [ K(ti s, 1(s))ds, (3.2)

say. Again approximating f by
I
P 3o es B (3:3)
k=1
f is estimated as the minimizer of
1 n
;1’— Z 24+ XcJe, (3.4)

where, with some abuse of notation we let

= N,(Z CkBk). (3.5)

For fixed A, 3.4 may be minimized numerically by a Newton iteration. Let
) = (c(l) cg), (I?) be the [th iterate, and

Ni(e) ~ “)+Z crwm (3.6)
Let X be the n x N matrix with tkth entry %‘:‘—;ﬁ " and let
Ny(cW)
o 23l i e A7 g (3.7)
N,,(c('))
Then after the Ith step ¢ is found to minimize
= | 4@ — XWe ||? +nAc'Te (3.8)
n



and so
S+ — (X'(!)XU] + n}\J)'lX'(”y('). (3.9)

At convergence, say at the Lth step, we have
AB() = xEN(xME) X(E) 4 ) J)-L XL}, (3.10)

The GCV estimate of A for nonlinear problems is then the minimizer of

V(L)(A) — 1% | (1 = APy ||? : (3.11)
(2Trace(I — AB)(X)))?

See O’Sullivan and Wahba(1985). Of course, as in most nonlinear problems

not everything is guaranteed, and reasonably good starting guesses may be

required. Nevertheless good results have been obtained in some practical

cases, see O’Sullivan and Wahba.

Linear inequality constraints on the ¢’s obtained from physical consid-
erations of the properties of & may be imposed by using a programming
algorithm to minimize 3.4, or rather 3.8 subject to these constraints. The
GCYV function at convergence is obtained by setting the active constraints to
equality constraints and finding the influence matrix A(A) for the solution
of the equality constrained quadratic minimization problem. See Villalobos
and Wahba(1987) for more details. The solution of an ill posed convolution
equation with a positive solution showed dramatic improvement when posi-
tivity constraints were included, see Wahba(1982). If there are non physically
meaningful minimizers to the unconstrained quadratic optimization problem,
the imposition of meaningful inequality constraints can be important.

4 The nonlinear implicit, ill posed inverse problem
(system identification)

The key new idea in this Section, which is at 4.14, allows the use of GCV in
the system identification problem. The result given here has been adapted
from O’Sullivan (1986a). Kravaris and Seinfeld (1985) have proposed the
method of 4.4 below, which, adopting the nomenclature of the field, might
be called the penalized output least squares method. Another important
recent reference is O’Sullivan (1987), where convergence properties of the
method are discussed.



The dynamic flow of fluid through a porous medium is modelled by a
diffusion equation
du(x,t) 0 a
—((-%——— ~ 5 {a(x) é—iu(x, t)} =q(x,t), X € Nyt € [tminstmaz]  (4.1)
subject to prescribed initial and boundary conditions, for example u(x,0) =
uo(x) (initial condition) and £ = 0 where w is the direction normal to the

3 d

boundary. Here, if x = (z1,...,z4) then % = 2ig=1 a‘%‘ Here u is, say,

pressure, g represents a forcing function (injection of fluid into the region),
and « is the transmittivity or permeability of the medium. If uo and ¢ are
known exactly, then for fixed o in some appropriate class, u is determined
(implicitly) as a function of a. Typically @ must be non-negative to the
physically meaningful, and sufficiently positive for there to be measurable
flow.

The practical problem is, given measurements
Yij = U(X(i),t_f, O!) + €5 (42)

on u, and the initial boundary functions, and ¢, estimate «.

We remark that if %u(x, t) is O for x in some region Ny C 0, all ¢,
then there is no information in the experiment concerning a(x) for z € Q.
Although the algorithm below may provide an estimate for a(x) for z € Qo,
in this case the information is coming from the prior, and not the experiment.
This is an extremely important practical problem, see e.g. the references in
O’Sullivan (1986a) and Kravaris and Seinfeld (1985).

The problem will be solved approximately in the span of a suitable set of
N basis functions

é[X] = g:l ceBx(x),

and since o must be non negative, we put a sufficiently large number of linear
inequality constraints on ¢ = (ey,...,cx), that is

i CkBk(X) >0 (43)

for x in some finite set, so that the estimate is positive. If stronger informa-
tion than just positivity is known, then it should be used. We seek to find ¢
subject to 4.3 to minimize

> (yij — u(x(2), t;,¢))? + Ac'Se, (4.4)

if



where ¢'L¢ = || Pya/|?. For the moment we suppose that u, and g are known
exactly. Then
u(x(2), 5, a) = u(x(i), t;; c)

is a non linear functional of ¢, but only defined implicitly. If u(x(7),t;;¢)
could be linearized about some reasonable starting guess

mm:;&mm

then the methods of Section 3 could be used to numerically find the mini-
mizing ¢, and to choose A by GCV.
Given a guess ¢V for ¢, we would like to be able to linearize about ¢,

u(x(1), ;3 ¢) = u(x(d), t;;c)
+ 3 Xig(ex — c), (4.5)
k

where

du ;
Xijk = a—ck(x(z) ,ti5e)

(4.6)

shmy

If this could be done, then ¢ and A could be determined, at least in prin-
ciple, via the constrained Gauss Newton iteration and the GCV procedure

described in Section 3.

Let

d g & d
Lc— E* E;{I;CEBIC(X)E;}: (47)

let
B = u: u satisfies the given initial and boundary conditions

By = u: u satisfies homogeneous initial and boundary conditions

and let
& = (0,--+,0,6,0,:--,0), 6 in the kth position

Let u, be the solution to
Lu.=gq, u.€ B8, (4.8)
let u.45 be the solution to

LC+§kuc+5k == q, uc+6k E B (49)



and let

he(6) = E—t&*—é‘_“- (4.10)
Observe that
Levs, = Do — 62 By(2) 2 (4.11
AT A TONgE R gy -
then substituting 4.7 into 4.10 gives
(Lo — 6-2-Bu(x) ) (e + 6hy(6)) = 412
e Ox k\X) g\ te k() = ¢ (4.12)

uC + 6h€,k(6) E B-
Subtracting 4.8 from 4.12 gives

Tt (B) = %Bk(x)a%(uc + 6hen(6)) (4.13)

and, assuming that we can take limits as § — 0, and letting %incll beilb) = hox

gives that h.x is the solution to the problem

] a
Lch« — -a—ka(X) &Uc
he Bo

Thus if everything is sufficiently “nice” ,(:l can be obtained by solving

a ad
L.wh=—B — h 4.14
ewh = o= Bi(X) 5-ucw, h € Bo (4.14)
and evaluating the solution k. at x(z),t;. O’Sullivan (1988) has carried out
this program on a one-dimensional example.

We emphasize that this is a non linear ill posed problem complicated by
the fact that the degree of non linearity as well as the degree of ill-posedness
can depend fairly strongly on the unknown solution. To see more clearly
some of the issues involved, let us examine a problem sitting in Euclidean
n-space which has many of the features of the system identification problem.
Let Xi,..., Xy be N < n matrices each of dimension n— M x n, let B be an
M x n matrix of rank M, and let w € E*, g € E*M and b € EM be related
by

(Leaxi)u=s (115)

k=1



Bu =b.

Think of ¢,q and b as stand-ins for «; the forcing function; and the ini-
tial/boundary conditions, respectively.

Suppose g and b are known exactly and it is known a priori that ¢; >
ar >0, k=1,...,N, and that this condition on the ¢;’s ensures that the
2ok kX

B

matrix ( is invertible. Suppose that one observes

y,v:u.--}-e,-, 1:=1,...,TL

where u; is the ith component of u. Letting ¥;;(c) be the ¢jth entry of
-1
o Cr Xy
e , we may estimate ¢ as the minimizer of
B

n

2
n—-M n
> (y,-— > Wile)egi— X ‘I’fj(c)bj-(n—M)) + Ac'Ze, (4.16)
i=1

i j=n—M+1

subject to ¢y > a;. The ability to estimate the ¢’s can be expected to be
quite sensitive to the true values of ¢ as well as ¢ and b.

Returning to the original system identification problem, we now consider
the case where the boundary conditions are not completely known. If (as in
a one dimensional, steady state problem) there are only M << n unknowns
in the initial/boundary values, then the analogue of 4.16 could (in principle)
be minimized with respect to ¢ and b = (by,...,bar).

More generally, suppose that the forcing function ¢ and the boundary

conditions g—z = 0 are known exactly, but the initial conditions u(x,0) =

uo(x) are observed with error, that is
- 2z = uo(x(?)) + ¢
Modelling uo(x) as

ug(x) =~ ; b, B, (x) (4.17)

where the }::a',, are appropriate basis functions (not necessarily the same as
before) and letting b = (b1,...,ba), we have

u == u(X,t;¢c,b)

10



and we want to choose b, and ¢ subject to appropriate constraints, to mini-
mize

% {Z(yi:’ =it bt Qufmuand B (x(z‘)))”} + Are'Se + Azb'Sh
ij
(4.18)
where b'Sb is an appropriate penalty on ug. The penalty functionals ¢/S¢ and
b'Sh may be quite different, since the first contains prior information about
the permeability and the second about the field. (This expression assumes
that all the measurements have the same variance, but weights can be used
if this is not the case).
For fixed A; and A, this minimization can in principle be done as before,
provided we have a means of calculating

~ ou ,
Xijy = W(X(t), tj; c; b) (419)

The )Z'.-J-,, can be found by the same method used for the Xijk. Let u. be

the solution to the problem

Buclb

Jw

Let é, = (0,-++,6,--+0),6 in the vth position, and let u, ;.5 be the solution
to

Leugy = q, =0, u.3(x,0) = Tb,B, (x). (4.20)

auc b+ 4

Letoprs, = ¢ —5—= = 0,ucp+4,(x,0) = 5B, + (Z buéﬂ(x)) (4.21)
0

and let

7 U, L, U,
hepy(6) = —22HE——2, (4.22)

Then, subtracting 4.21 from 4.20 as before, we see that %iné;r,clb,,(é) = ;Lc,biy
is the solution to the problem

Bk b, Qe gulop Bl (4.23)

— — = 0,u(x, == viX). .
b dw

Then the )E',-,-,,, are obtained by evaluating Bc,b,y at x(¢),t;. V(A1) can
at least in principle be minimized to estimate good values of A\; and A; by
GCYV. Some numerical methods for minimizing V as a function of multiple
smoothing parameters may be found in Gu and Wahba(1988).

11
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