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Abstract

Generalized Cross Validation(GCYV) is a popular method for choosing the smoothing param-
eter in generalized spline smoothing, when there are independent errors with common unknown
vartance. When data points are replicated, then one has an independent estimate of the un-

known variance o2.

One may then ask how best to use this information. For ezample, one
may use the estimate of o® in an unbiased risk estimate for the smoothing parameter, instead
of using GCV. In this note we show, that as the number of degrees of freedom for the estimate
of o? tends to infinity, the GCV estimate and the unbiased risk estimate of Craven and Wahba
become identical.
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1 Introduction

We first introduce notations and results for calculating the generalized cross validation (hereafter
GCV) score and an unbiased estimate of risk in a general setting. These results will be applied to

the particular case of replicated data points in Section 2.

Suppose one observes y; = f(z;) + €j, j =1,---,n, where #; € X, Ee; = 0, Var(e;) = wj_lcr2

with ¢ unknown, and the €;'s uncorrelated. A smoothing spline is the solution fy to the penalized

least squares problem

min 3 wi(y; - f(z)? + MPSI?, st feH 9]
i=1
where H is a reproducing kernel Hilbert space of functions on the domain X with norm || - ||, and

Py is the orthogonal projector onto a subspace H; of co-dimension M < n. f) has an expression
M didu(s) + iy ciRi(zj,-), where {¢,}}, is a basis for Hp, the orthogonal complement of

Hi, and R, is the reproducing kernel of H;. Substituting the solution expression into (1), one

solves

min (y — Qc — Sd)TW(y - Qe — 5d) + AT Qe (2)

for ¢ and d, where (Q);x = Ri(x;,zt), (5)j» = ¢u(2;), and W = diag(ws,- -+, w,). See Wahba
(1990).

For the standard setting where w; = 1 and W = I, defining the hat matrix A()) satisfying
¥ =Qc+ Sd = A(\)y, Craven and Wahba (1979) proposed choosing the smoothing parameter A

as the minimizer of the GCV score

sty —4)

YO = g —aome i
and they argued that the GCV method is asymptotically optimal for minimizing the expected
predictive mean square error. Stronger optimality results are found in Li (1986) and references
cited there. For W # I, the natural extension of the GCV score is

(v=9)"W(y - 9)
[tx(1 — Aw(A)]?

Vw(A) =



where Aw satisfies W/2§ = Ay (W1'/2y). Viy has a similar asymptotic optimality as that of V;
see O’Sullivan et al. (1986), Section 3.1. In general, it can be shown that

I— Ay = AR (FfW'2QW 2 F, + AI)T'Ff (5)

where FI Fy = I,_p and FFfW'/2§ = 0. See, e.g., Gu et al. (1989), for results when W = I.
Now suppose o2 is known. Letting f denote the true function evaluated at the data points x;,
it is easily shown that E(y— #)TW(y —9) = (f = W1 2Au W12 H)TW(f - W12 A W2 f) +
o2tr(I — Aw(A))? and the risk (weighted mean square error) is E(f — §)TW(f — 9) = (f -
W12 Ay W1 HTW(f - W12 4w W2 f) + o2trAw(\)?. Based on this, Craven and Wahba
(1979) proposed a method of choosing A for known o? by minimizing an unbiased estimate of the

risk, namely

(y—TW(y - ) — otx(I - 24w())). (6)

Another approach in the o? known case was proposed by Hall and Titterington (1987). They

suggested that A be chosen to satisfy

(y-9)"W(y -9 . (7)
tr( — Aw(A))
since the left hand side of (7) is believed to behave well as an estimate of 2.

Douglas Bates ( personal communication), Dolph Schluter ( personal communication), and others
have asked what one should do to estimate A if, in the o? unknown case, the data points x; are not
distinct. In that case, one could obtain (the usual) independent estimate % of 0. One possibility
is simply to ignore this fact and minimize (4). It is not hard to see that the various optimality
properties of the GCV estimate are not lost. Another possibility is to substitute the estimate &? for
o? in either (6) or (7). We do not further discuss the latter option. Our results are on the former
option. In this note, we show that, in the limit as the number of degrees of freedom for &% tends
to infinity, the GCV estimate obtained by minimizing (4) is equal to the unbiased risk estimate

obtained by minimizing (6) with o? replaced by &2.



2 Results

Consider

Yik; = f(®5) + €k, F=1,00 ki =1,000,75

where the €;¢,’s are uncorrelated with mean 0 and unknown variance 0%, Let N = 2 j=1T; and
define P to be the N x n matrix diag(1,,). The pooled data vector is ¥ = W-1PTy, where
Y=(¥1,1," " Y, "sYn1s" " 2 Ynrn)L and W = (PTP) = diag(ry,- -+, 7). All information about
f is contained in y. The GCV score for the pooled data is

( ) = ('g 7= ﬁ)T]zV(@_} = 3:’)
[br(1 — Aw(A)))*

where [— Ay = /\FZ(F'ZWI/QQWIWFZ +AI)7'FY and the bars indicate quantities associated with
the pooled data. However the pooled data GCV score has lost the information contained in the
scatter of the replicates about their means.

Now we return to the original data y and reexamine (4) with W = Iy. By (5) we need to
find F5 such that F}Fz = Iy_p and FQTS = 0. There exists F3 such that FQ;"FE, = In_n and
FTP = 0. 1t is easy to verify that F;, = (PW~Y/2F, : F3) is orthogonal and F{S = F{P§ = 0.
Following this, it can be shown that yT(I — A)?y = (¥ — ¥)TW(9 — ¥) + (N — n)é2, where
6? = yTF3Ffy/(N — n) is (the usual) unbiased estimate of o with N — n degrees of freedom.
Similarly, tr(f — A) = tr(I, — Aw) + (N —n). So the full data GCV score (which is equal to (4))is

(=)W (y-9)+ (N —n)s?
Y = T Ao F (=) (8)

Furthermore the unbiased risk estimate of A is the minimizer of
(5 -9 W(g - g) - 5*tx(I - 24w), (9)
since (9) differs from (6) by a quantity which does not depend on A. The minimizer of (9) satisfies

e e il o o
(&= 9)W(@ - §) = —26°—+trdw, (10)



and the minimizer of (8) satisfies

d, . - s o d o (G- 3)TW(g - )+ (N —n)s?
(- 9TW(E - 9) = -2 trdw) ey e e (11)

As (N = n) — o0, 62 =% 0 and [(§ — )TW(F — §) + (N — n)6%)/[tx(] = Aw) + (N = n)] = 02,

giving the claimed result.
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