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Abstract

We review some recent work, primarily with Chong Gu, on multivariate model
building using tensor products and sums of polynomial and thin plate smoothing
splines. The goal of the work is to provide a family of predictive response models
suitable for use with multidimensional empirical scattered, noisy response data from
medical, economic, demographic, geophysical and other sources. We will discuss con-
struction of the models, based on elementary properties of reproducing kernel Hilbert
spaces, and mention some practical computational problems and existing software. We
will describe several possible model selection methods, whereby the observational data
is used to decide on an appropriate level of complexity of the model. Some approaches
to making accuracy statements are also noted.

1 INTRODUCTION

Suppose we observe

where £(i) € R? and the €(i)’s are independent normally distributed random variables with
mean ( and common unknown variance o2. We want to estimate f € H from the data. Here
H is a reproducing kernel Hilbert space, that is, a Hilbert space in which all the evaluation
functionals are bounded, see [1]. We suppose that H has a decomposition H = Hy @ H;,
where Ho has dimension M < n and satisfies some other conditions. What might be called
a generalized smoothing spline estimates f as the minimizer in M of

= 3o = @)+ A B | )

where P, is the orthogonal projection in H onto H;. If | Pif ||* can be thought of as
a roughness penalty, then the smoothing parameter )\ controls the tradeoff between the
goodness-of-fit and the roughness of the solution. If H is W(0,1], Ho is the span of the
polynomials of degree less than 1. and || P, f ||?= J(f™)(£))2dt, we get that the minimizer
fx of (1) is the celebrated polynomial spline of degree 2m — 1.
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Table 1: Terms in tensor product space H.
Hc,c 7-{c,‘.rr 7-lfc.s
H?T,C HTT,?\‘ Hﬂ',s
H.s,c HS.H‘ 7-{3.3

We next consider the tensor product of two reproducing kernel spaces (which may be
different). Let each one have an orthogonal decomposition of the form H = H. D H. D H,
where H, is the one dimensional space of constant functions, H, will be a finite dimensional
subspace perpendicular to H,, (which will be spanned by polynomials in the examples cond-
sidered in this paper), and H, is everything else, chosen so that the squared norm on H,
represents "roughness”. If we take the tensor product of these two spaces, and expand out
all the terms, we get the 9 terms given in Table 1, where Hop=HD ng), a8 =, T,
Here the superscripts (1) and (2) refer to the two spaces we started with. The four terms
in the upper left corner of Table 1 are finite dimensional, and are generally not penalized
in applications. Any element in the resulting H has a unique decomposition of the form
f(t) =t T fl(t(l)) i 5 f2(t(2)) 1 fl?(t(l)at(2))s where fl = H‘.-r,c & Ha,ca f? = Hc,w D Hc,s and
f12 € Ham @ Hr s @ Hox & H,s. Of course this decomposition will depend on the norms in
the original subspaces. We can take the tensor product of d of these subspaces, and we get
a 3¢ table analogous to 1, and a unique decomposition of the form

fB =g )% 35 GO 88 coie Fiim 500000 41y, (2)

71 <2

The f,’s are the main effects, the f, ..’s are the two-factor interactions, and so on. If

this model resulted from a d tensor sum of spaces W;"h), where the m(v)’s may be dif-
ferent, then each function has a marginal square integrable m(v)th derivative. There is a
growing literature on various forms of these additive and interaction spline models. See
[2,3,4,12,13,15,16,17,18,19,20,31]. Generally only the main effects and lower order interac-
tions will be included in the model.

There are three main parts to the methodology, which we will describe in turn. First, we
choose norms on the original H, spaces for which we can construct reasonable and convenient
reproducing kernels. Second, we lump all of the subspaces that are candidates for inclusion
into one of two grand spaces which play the roles of Hp and H; in (1). Given the reproducing
kernels for all of the component subspaces, we construct the reproducing kernel for the grand
space H; as sums and products of the original reproducing kernels. Multiple smoothing
parameters can be incorporated into this representation by rescaling norms of the various
projections. Third, this allows us to use what might be considered as a canonical form for
this optimization problem, and to use some publicly available software[11] to solve it. In
Section 2 we will review these results for the so-called additive and interaction splines based
on ®dW2mm[U, 1] This will set the stage for the generalization which is the subject of this
report.

[a]



In dealing with geographical variables, like latitude and longitude, or, when studying, e.
g. properties of the ocean, latitude, longitude and depth, or, even latitude, longitude, depth
and time, it may be more appropriate to partition the d variables that one is dealing with
into homogenous groups, so that, within a group of variables the penalty functional is in-
variant under within-group variable rotations. For concreteness, suppose that ¢t = (¢}, ¢(2)),
where t() has d(-) components.. We will consider taking the tensor product of two Hilbert
spaces, the first consisting of functions of £(!)) and the second consisting of functions of ¢(2).
Momentarily letting V) = #,,... t,, say, we will take | Pof ||* in the space of functions of
tt) as J2, where m = m(1),d = d(1) and

40 = T L orf N
Jm(f)_ Z Otll"'aa'!f—oo /_oo (W) dty - - dty. (3)

ay+-+ag=m

and similarly for ¢(2). J2 is the penalty functional for the thin plate splines. A technical
requirement is 2m > d for each (m,d) pair. If we allow ¢ = tM ...t where each ¢
now has d(vy) components, we will then have a decomposition into main effects, two factor
interactions, just as in (2), except that each ¢t is replaced by t0), where t( has d(v)
components, and there are all together >, d(v) variables. In Sections 3 and 4 we will
describe how this can be done. In Section 5 we describe an example. In Sections 6 and 7 we
discuss some approaches for using the data to decide which subspaces should be included,
and make some remarks concerning methods for making practical accuracy estimates of the
solution.

2 MULTIPLE SMOOTHING PARAMETERS,
SPLINES BASED ON W}

Let H be a reproducing kernel space with a decomposition of the form
H="HydH

where Hp is span {41, ..., ¢ar} and H; is the direct sum of p orthogonal subspaces H?, ..., H?

)

P
H1 = Z @Hﬁ- (4)
B=1
We wish to find f € H to minimize
. o _ B,
—2 (i — f()? + XY 650 | PPf (5)
=1 g=1

where P? is the orthogonal projection in H onto H? and 65 > 0. The following result is well
known, see [32]. Suppose that the n x M matrix T with ivth entry ¢,(t(2)) is of rank M,
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and suppose that the reproducing kernel for H# is R%(-,-). Then the minimizer fr of (5) is
given by

M n p
f)\,@(') = Zduéu()-!f-zctzgﬁ}aﬁ(!t(z)) (6)
p=1 =1 A=1
where the coefficient vectors ¢ = (cy,...,¢,) and d = (dy, ..., dar) satisfy
(E+nX)e+Td=y (7)
T'c = 0. (8)
Here
E*——GlEl +9222+"'+6PZP’ (9)

where the ¢jth entry of £ is RP(¢(3), t(j))
The smoothing parameters A = (\y,...,A,), where )\ = A5, 8=1,..,p, can be chosen

by by the method of generalized cross validation (GCV)(6]. This entails finding A to minimize

V(A) given by

_ 2= Al

Y= T —amr o
where A(A) is the influence matrix, which satisfies
A1)
: = A(A)y. (11)
a(t(n))

It is known [32] that V' can be rewritten as

(5 40D
VAR, O s B = aEE (12)

where z = F'y,S = F'SF and F is any n x (n — M) matrix satisfying F'T = On_arxar. F
can be obtained from the QR decomposition. The general purpose code RKPACK]11], which
is available through netlib@research.att.com, will obtain ¢, d, and the GCV estimate of A,
given the input data, a basis for Hy, and the relevant reproducing kernels. It is not trivial
to carry out the minimization. RKPACK uses the truncated Householder transformation -
with fixed #’s to optimize with respect to \ as described in [15] alternating with a Newton
iteration in the logs of the ’s. See [18] for details. Girard [10] has provided a Monte Carlo
method for evaluating ¢rA.
For f € WJ*[0,1], let

M,f=[ fYz)dz, v=0,1,...,m -1, (13)



and let k,(t) = B,(t)/v!, where B, is the v-th Bernoulli polynomial. We have M,B, =
l,v = u, and 0 otherwise. Letting

m-—1

1 W= 7+ [ (7)), (14

v=0

and letting Hr = span{k,} we have that the reproducing kernels for H, and H, are, respec-
tively

m=1

Ba(4,¢) = 3 k(t)k.(t) (15)

and
Ro(t,1') = kn () hm(t') + (=1)™ Vg ([t — ¢']) (16)

where [7] is the fractional part of =. To fit an additive and interaction spline model in
d variables, one decides which subspaces (from the 3¢ table) one wishes to include. The
reproducing kernel for each H? is obtained as the relevant sums and products of R, and R,
of the constituent spaces.

An example of the successful recovery of a four dimensional additive function, observed
over an irregular set of points on [0, 1]* with noise, is shown in (18]. In that example, a four
dimensional additive model was selected for fitting. We will discuss later the problem of
deciding which subspaces to include, when apriori information is not necessarily available.

3 THIN PLATE SPLINES

A few references to thin plate splines are Duchon(8], Meinguet[24], Wahba and Wendel-
berger[33], Utreras[28] and references cited there, Thomas-Agnan[27], and numerous inter-
esting applications by Hutchinson and collaborators to climatological data, see, for example
Hutchinson, Kalma, and Johnson|[21]. A one-dimensional special case of the trick we use to
define reproducing kernels below goes back at least to deBoor and Lynch(7].

The only thing needed to extend the preceeding results to include the thin plate splines
i1s to determine suitable reproducing kernels for H., Hr, and H,. where H, is a suitable
space of functions for which J% < co. Discussion of these spaces may be found in the works
of Duchon and Meinguet. For our purposes we need only to produce a reproducing kernel,
which will then determine the space uniquely. The following appears in [16,17].

Let o, ..., dar—1 span the (’“"’j_l) polynomials of total degree less than m in R? that is the
null space of J¢. Given m and d, a set of N+1 points wy, ..., wy in R? is said to be unisolvent,
if least squares regression on ¢y, - - -, dar_; given data at these points is unique. Let {w;},
be unisolvent set of N points in R%. Define (f.9)n = (1/N) i, f(wi)g(wy), then (fig)n
can be used as a the inner product over H, = span{¢,}. Let (f,9)n =< f,g >0 We will
assume that the ¢/ s are an orthonormal basis for M, with this inner product, satisfying
$o =1, and < @,,¢, >o= 1 or 0 according as y = v or not. (Given any spanning set, the



¢,’s can be found using the QR decomposition.) Then it is easy to see that the reproducing
kernel for H. is 1, and the reproducing kernel for H, is Hallad) = Zf__‘ll ¢.(t)d.(s)

A set of (unisolvent) points wo,---,wx and associated weights hg,---,hy is called a
generalized divided difference if

N
théu(wk) :0’ V:O:n]-:"'}M-

k=0

F' is said to be m-conditionally positive definite if Yk hih F([lw; — w||) > 0 whenever
{hk;wi} is a generalized divided difference with respect to the polynomials of total degree
less than m, on R?, see Micchelli[25] for examples. Let E?2(-), the functions used to construct
thin plate splines, be defined by

Com{(-)*~?log(")}, d even,

Cm il (__l)d,/2+m+1 / {22m-—17rd/2(m L I)I(m R d/Z)!}
Ea A AT d odd,

Crm =T(d/2 — m) / {2274 (m — 1)1}

E()=

It is well known that the EZ are m-conditionally positive definite[23].
Let the bilinear form < f, g >. be defined, wherever it exists, by
m! i F amyg
e ot e i e ~ dty - dt;.
/.9 Z all---adff f@t?‘---@tddat?‘---atz" ' .

oyt ag=m

and let E(t,s) = EZ (||t — s||), E¢(-) = E(t,). It is known (see, e. g. [24]), that, if {As, ws}
is a generalized divided difference, that

N N
< 2w (), 3 hkBw, () > =33 hihi E(w;, wy).
7=0 k=0

] ok

For any f continuous, we can define P, by

M-1
(POf)() = Zo (ﬁf’ua f)Nﬁév()

Let Fy 4, be Py applied to what follows considered as a function of t. We take R, as
R,(t,8) = (I - Po(t))('[ — Pysy)E(t, s).
Then H, will be a collection of functions for which < f, f >.= JE(f) = | fII* < o, and
satisfying Py f = 0. To see this, let
M-1

hk(t) = Z (Isu(t)qf’u(wk)

v=0



Then, it can be shown that (1, =hq(t),---, —hn(t);t,wy, - wy) is a generalized divided
difference for any ¢. It is then straightforward to compute that R,(¢, 8) is (unconditionally)
positive (that is, nonnegative) definite, and furthermore, R, has the reproducing property

< Ry(8,7), Ro(t,") >u= Ry(s, t).

Construction of a thin plate spline via Equation(6), with this reproducing kernel will give
the usual thin plate spline. In the application discussed in (17] it is reasonable to let the
wy be the data points. One is then decomposing the data vector in a natural way into its
components along and perpendicular to H,.

In what follows we let H™¢ be the space with reproducing kernels R., R,, and R, of this
section.

4 GRAND MODELS

We note for completeness, that the d = 1 case for the thin plate splines will reduce to ordinary
polynimial splines of degree 2m — 1. The norm on the null space of [ f(™) is different from
that of Section 2, however, which will make a difference when taking tensor products. In the
discussion below it is being assumed that the thin plate version is taken whenever d = 1. It
1s now immediate how one obtains a decomposition of the form (2), with the ¢™ replaced
by t0). Given d and m, let

H™ = 1 @ 1R @ 1 (17)
For I given pairs (d,m) let H be the big space, on E%+da+.+dr given by
R, HmE() — ®- H?{W)_d(v) ® H?(‘r),d(w) o H:’t(v).d(w)] (18)

Here
t= (tlla seey tl.dl; t2.11 sevy t?,dz; yeeeyy tr.la teey tl‘.dp) = (t’(l), rery t(r))? (lg)

and we can consider main effects, two factor interactions, etc, in the variables (),

5 AN EXAMPLE

As an example of the use of these methods, Gu and Wahba[17] looked at pH measurements
(y) from two groups of lakes, in the Blue Ridge Mountains (n = 159), and in Florida
(n = 112). The data set contained geographical position (latitude, longitude), which was set
equal to (¢M), log calcium content (¢t®), and other information for each lake. It was desired
to make a descriptive model of the relation of pH to geographical position and calcium
content for each group of lakes. A model of the form

yi = p+ AtV 0D + LEDE) + fiaED6), tD6)) + i) (20)
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was considered. The model was fitted using RKPACK with GCV to estimate the multiple
smoothing parameters. The regression diagnostics proposed in Gu[13], which we will describe
in a moment, were used to decide which subspaces to retain. For the Florida data, these
diagnostics suggested that there was no observable geographic effect and so f, and f;, were
dropped from the model, and the model was refitted using only f,. In this example all m’s
were set to 2. The diagnostics for the Blue Ridge data suggested retaining all terms. In
fact the Florida area containing the lakes was flat, while the Blue Ridge lakes ran along
a mountain range, and so this result was not surprising since pH is known to depend on
elevation. A plot of the main effects for geography (f1) had a rough visual correlation with
the location of the mountain range. A simple model replacing ¢! = (latitude, longitude)
with ¢(!) = elevation was then fitted. The diagnostics gave some suggestion that the latitude-
longitude model was slightly better, thus suggesting that there might be some geographic
factor other than altitude involved.

In the next section we describe several diagnostic procedures for model building of this
sort. At the present time, these diagnostic procedures do not have the mathematjcal rigor
to be found in the hypothesis testing and model-building literature for parametric models.
Research is proceeding that will hopefully provide some rigor. However, exact probabilis-
tic statements like those obtainable for parametric models will probably not be available.
However, we believe that these models have the potential for building descriptive predictive
models for complicated data sets from various medical, economic, demographic and other
sources, and that some of the procedures to be described warrant further studies as to their
properties. Furthermore, we have some reason to believe, that at least with large data sets,
cross validation and similar methods can be used to draw plausible, if not rigorous inferences
from the models.

6 DIAGNOSTICS, MODEL SELECTION

Diagnostics naturally into three classes, which may be called preanalysis, analysis and post-
analysis. These ideas have been clarified by C. Gu (personal communication). We discuss
these three in turn.

Preanalysis diagnostics examine the so-called design points #(:),i = 1,...,n, and the
models being entertained, that is the choices of H, and the H?’s to see if the design points
have the potential for ”carrying” the model. To do this one should examine the matrix
T and the matrices ﬁg = F'E3F of Section 2. Tt is necessary that T be of full column
rank. If T is poorly conditioned, then an immediate rethinking of the model is necessary -
in that case even least squares regression on H, is inadvisable. If Y5, and 33, are "close”,
it will be difficult to identify 6, and g,, and the components PP f and P% f will probably
not be independently meaningful. It would be better to combine the two subspaces, or
delete one of them. One natural measure of the ”closeness” of two matrices with the same
dimensions is cos(A, B) = trAB'/(tr AA")/?(tr BB')}/2. Ideally, the pxp (correlation) matrix
of cos(Eg,, £3,) should be well conditioned. Purely objective criteria for well-conditionedness
in this context remain to be identified.



Analysis diagnostics are those used to delete components from a tentative model, and,
possibly, compare two different models. At the outset, in some applications one might
be interested in seeing whether ordinary least squares regression onto Hy "explains” the
data. Tests for doing this are described in Cox et al [5] and Wahba [32]. Assuming that a
multivariate spline model will be fitted, we note that there is more than one way to group
components for deciding whether to include them in the model or not. One could group by
the terms in the general form of the decomposition of Equation(2) or, by the components in
each HP. We will do the former, and use the model of Section 5 as an example.

After fitting the model of Section 3, one has a decomposition of the data vector as
y=p+f+ f,+ f13 + € where f(y is the n dimensional vector of the fitted fo(t(2)).
After projecting each component onto {1}+ we get z = f, + f, + f1, + €. Since the f('zj
are supposed to predict z, cos(z, f() near 0 makes J(ysuspect. R?=|lz—€|2 /| z |2
is a measure of the overall goodness of the model. Since R? depends on the smoothing
parameters, for B? to be meaningful, the smoothing parameters must have been chosen well.
Again, further research is required to develop objective criteria for what constitutes large
and small in this fairly non-standard context.

In the estimation of the Aq, ..., Ap, @ Ag of co indicates that HP is being removed. However,
a very large but finite A3 could be generated by noise. The statistic

v=infyV(A)/infy, o V(A)

1s a measure of the benefit of including H?. A v near 1 suggests that H*? should be removed.
Again, further work is needed to develop objective criteria for "near 17

In [26,30] Bayesian "confidence intervals” were established, based on the stochastic model
behind splines. The intervals have reasonable properties for f € H even though they were
based on an assumption that f is a sample function from a stochastic process (and hence not
in ‘H with probability 1). They have to be interpreted differently than the usual confidence
intervals, however. Roughly the result (for one smoothing parameter) goes as follows: Let
I; be the interval

I,' = f;\(t(z)) 2t 1.960‘\/(1,’,’(5\) (21)

where a;;(1) is the iith entry of A(A) and A is the GCV estimate of A. Let I;(z) be 1 or zero
according as the interval I; contains z or not. Then, roughly, and under some assumptions

E=S"L(f(t(5)) ~ .95 (22)

1

3|~

n

1

The noise variance o2 can be estimated from the data as
o = (I = AQX)yll*/[tr(I — A(V))].

Chong Gu and I are exmining the possiblity of using a component wise version of
Equation(22) to decide if a component f) should remain in the model. One would then

look at > 3° I,-(')(O) and if this is large, then the (-) component would be deleted.



7 POST ANALYSIS DIAGNOSTICS, or,
ACCURACY STATEMENTS FOR
SMOOTHING SPLINES

We emphasize that research in this area is in its infancy. Quantitative empirically determined
statements concerning possible accuracy of nonparametric models of varous types constitute
an area of active research in modern statistics. Bootstrap and cross validation methods
appear to be popular. Further references can be found in [9,16,17]. We will only discuss
some possibilities based on extensions of the results here and in [14,26,30].

The Bayesian model[29] behind smoothing splines goes as follows:

yi = f(t(@)+e(z), +=1,---,n

where the €(¢)’s are as before, but now f is a zero mean Gaussian stochastic process, with a

representation
M

f(&) =2 _nu(t) +b2(2), (23)
i=1
here, the 7, are independent Gaussian random variables with variance w, and Z(t) is a zero
mean Gaussian stochastic process with covariance

EZ(s)Z(t) = R(s,t) = fj 85R"(s,t).
8=1

The 7,’s and Z(t) are independent and w — co. Here as before the ¢, span H, and R(-,-)
is the reproducing kernel for H;. With this model, fy(t) is the posterior mean of f(t) given
the data y, for the particular choice of A = 0?/nb. We remark that it is known that f of
the form (23) is, with probability 1 not in H. If f € H, then, although the meaning of o? is
the same as for f as in (23), the meaning of A is as a variable smoothing parameter, and it
is not necessarily clear how to interpret 5. o and \ are estimated from the data.

The posterior covariance C(s,t) of fi, given the data y

C(s,t) = E(f(s) = fa(s), f(t) = fa(t))]y)

is given in [30], Theorem 2. We will not reproduce that formula here. However, the formula
there can be rearranged several ways, so that its terms have some meaning for f € H.
(More details will appear in Gu and Wahba, in preparation). Let @¢(-) be the representer
of evaluation in H, that is,

M
Qt() =2 d(t)e.(-) + R(¢, ).

1=

—

Let B, be the map from H to H defined by B,f — g where g is the solution to min || Pg ||
subject to g(¢(i)) = f(¢()),7 = 1....,n, and let B} be its adjoint in H, that is, < Byu,v > =

10



< u,Brv >, any u,v in H. Let a;;(A) be the ijth entry of A(A), and, finally, let §;, be that
element in H which minimizes || P, 6 || subject to &;,(t(7)) = 1,7 = 7 and 0 otherwise. Then,

it can be shown, that
C(s,t) = bCi(s,t) + 0°Cy(s, t) (24)

where

Cilst) = <Qs—BQs,Qp—B0s>
Ca(s,8) = 3 Gin(8)6in(t)a().

Suppose we are interested in a particular component, say P"f, where H” is a subspace
of H. Then it can be shown that the posterior covariance of P f)(s) and P7f,(t) given v is
given by

B(P"f(s) = P"/A(8))(PY(£) = P"AA(£))ly = Pls) Py Cls, ¥ (25)

where P("_'g)- means P applied to what follows, considered as a function of s. Note that C; is 0
for s or t = t(2), any ¢, and that {C2(£(¢),2(7))} = A(X). We remark that this decomposition
of C into C; and C; represents a decomposition of the uncertainty due to the unobservable
part of f,(C4) plus the uncertainty due to the propagation of the observational errors given
contaminated values of f(£(z)),(C2). Note that since Py(I — B,,) = 0, we can obtain, for any
f € H, the following hypercircle inequality:

(f(t) = Buf(t))* <|| (I = Ba)f |I” Ca(t, ).

In practice however, || Pi(I — B,)f || or a reasonable bound on it may not be known.
However, it can be expected to be small as the data points become dense.

Unfortunately the computation of C; and C, is apparently unstable, since the matrix
$-1, which may be ill conditioned, enters in. Set b = :_f\ + bo in (24), then (24) can be

rewritten as ]

Cls,t) = %{Gl(s,t) +nACy(s, )} + boCu(s, t). (26)

Hopefully, boC; is ignorable, since we have estimates of ¢? and A from the data, but no
obvious way to interpret b rigorously in the f € H case. There is a computationally stable
version of the term in brackets, which goes as follows: Let C = C; +nACy, let B,()) be the
map from H to H defined by B, ()A)f — g where g is the solution to min

LU () — ot + A1) P I

ni=1
and let By () be its adjoint. Let €, be the minimizer in H of

* i(é(i) —€(t(D)* + A || Pre|)?

n

i=1

11



where the €(i) are as before. Upon rearranging terms, it can also be shown that C(s,t) =
Ca(s,t) + nACy4(s,t) where

Ca(s,t) = <Qs—Bi(N)Qs, Qg — Bi(NQg >
04(8,1‘)) = %Eq(s)e,\(t).

where E is expected value. The calculation of C(s, t) is stable, since it involves (X +nAI)™!
rather than £-1. Gu[14] has given a formula which can be shown to be equivalent to C and
a stable computational algorithm for it. See [14] for computational details.

Now for f € H we have Efy\(t) = Bn(A)f(t) so that

f(t) = f2(t) = (I = Ba(A)f(#) + €(2).
It can be shown that Py(I — Bj;(A)) = 0 so that we can write

E(f(t) = iA(1))* = < —Ba(\)f,Q¢ >* +E¢(t)?
< || Puf |? Cs(t, t) + o*Ca(t, t).

We remark that, when dealing with experimental data in more than 1 dimension, the data
may be quite irregular, and extrapolation of f far from the data is generally not defensible.
One could use the size of C(£,t) as a criteria - one only trusts fy for values of ¢ for which it

is not too large.
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