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Abstract

We study a multivariate smoothing spline estimate of a function of several variables, based
on an ANOVA decomposition as sums of main effects functions (of one variable), two-factor
interaction functions (of two variables), etc. We derive the Bayesian “confidence intervals” for
the components of this decomposition and demonstrate that, even with multiple smoothing
parameters, they can be efficiently computed using the publicly available code RKPACK, which
was originally designed just to compute the estimates. We carry out a small Monte Carlo
study to see how closely the actual properties of these component-wise confidence intervals
match their rated confidence levels. We also analyze some lake acidity data as a function of
calcium concentration, latitude, and longitude, using both polynomial and thin plate spline main
effects in the same model. Lastly we suggest what might be necessary to generalize the known
frequentist properties of these confidence intervals in the undecomposed case to the ANOVA
components. A

KEY WORDS: Smoothing spline ANOVA; Bayesian “confidence intervals”; RKPACK; Mul-

tivariate function estimation.

*Chong Gu is Assistant Professor, Department of Statistics, Purdue University, West Lafayette, IN 47907. His
research was supported by the National Science Foundation under Grant DMS-9101730. Grace Wahba is John Bascom
Professor, Department of Statistics, University of Wisconsin, Madison, WI 53706. Her research was supported by
the National Science Foundation under Grant DMS-9002566 and by the Air Force Office of Scientific Research under
- Grant AFOSR-90-0103



1 Introduction

We consider the model

yi = f(ta(3), -+ ta(2)) + &, i=1,000,n (1.1)

where ¢; ~ AN(0,0?),0% unknown, and ¢,, the ath “variable” is in T(®) where 7(® is some
measurable space. In the examples given here 7(®) = EX®) FEyclidean d(a) space, and then
t = (t1,--,14) is in E? space, where d = 3, d(a). By setting d(a) to be 2 or 3, we will be able to
include geographic, atmospheric or oceanic variables, along with other concomitant variables, in a
natural way. We wish to estimate f, given the data y = (y1,---,¥»)’ in such a way as to avoid the
“curse of dimensionality”, and, additionally, to provide useful information concerning the accuracy
of such estimates.

Nonparametric function estimation is a major research area at the present time and we just
mention representative examples of modern techniques for multivariate function estimation in sev-
eral dimensions: ACE (Breiman and Friedman, 1985), MARS (Friedman, 1991), CART (Breiman,
Friedman, Olshen and Stone, 1984), Projection Pursuit (Huber, 1985), Regression Splines (Stone,
1985), and the [][-method (Breiman, 1991). Each method has unique problems and successes in
providing accuracy statements which we will not discuss here.

In this paper, we will be working within the framework of a general form of analysis of variance
in reproducing kernel Hilbert spaces (RKHS) as applied in particular to additive and interaction
smoothing splines, (SS-ANOVA). Thin plate splines are specifically included, and it is their use that
allows the modeling of geographic and other variables as mentioned above. See Wahba (1990) for
an overview of additive and interaction polynomial smoothing splines. More recently, it has been
shown how to include thin plate splines in an SS-ANOVA model (Gu and Wahba, 1990, 1991a).
The main goal of the present work is the establishment of component-wise Bayesian “confidence
intervals” in the SS-ANOVA context, generalizing the univariate Bayesian “confidence intervals” of
Wahba (1983), and further studied by Nychka (1988, 1990), Cox (1989) and Hall and Titterington
(1987), and recently extended to the non-Gaussian case by Gu (1992). In this paper, we derive these
intervals for each component in the ANOVA decomposition, and, more importantly, obtain them
in a form which allows a stable and efficient calculation, via the publicly available code RKPACK

(Gu, 1989). We carry out a small Monte Carlo study to suggest how the confidence intervals might



work in practice. One achievement of this paper is a demonstration of the (workstation) feasibility
of this type of calculation, another is the demonstration of the visual efficacy of the result. Finally
we make some conjectures concerning the theoretical properties, and remarks on their relation to
certain well-known error bounds, like the hypercircle inequality in function spaces.

We assume that f € H, a reproducing kernel Hilbert space (RKHS), that is, a Hilbert space in
which all the point evaluations-are bounded. See Aronszajn (1950), Weinert (1982), Mate (1989),
and Wahba (1990). The last two give an expository description of facts about RKHS that are used
here. We note that RKHS are the most general Hilbert spaces that are useful if one is interested
in estimating the value of a function at a point.

Much recent work has focussed on the so-called additive, (or main-effect-only) models of the

form "
F(@)=C+ ) falta),
a=1

where t, € E', and sufficient conditions, say

ffa(ta)d#a(ta) =0,

are imposed to insure that the model is identifiable. See Stone (1985), Buja, Hastie and Tibshirani
(1989), Hastie and Tibshirani (1990) and references cited there. In this paper p, is a probability
measure on 7 (), satisfying some conditions. The present authors and others have been examining
generalizations of the additive models to additive and interaction models, that is, models of the

form

ft)=C+" fult )+ D fapliaita) 4 =D i dis, tarty) 4 4. (1.2)

a<f a<f<y
and so forth. See Barry (1983, 1986), Chen (1989), Stone (1990). In previous work relevant to the

present paper, a mathematical framework has been developed for fitting these models by penalized
likelihood and in particular smoothing spline methods (Wahba, 1986; Chen, Gu and Wahba, 1989:
Wahba, 1990; Gu, 1990). Numerical methods for fitting these models have been developed (Gu,
Bates, Chen and Wahba, 1989; Gu and Wahba, 1991b), and publicly available code developed (Gu,
1989).

We first suppose that a model M has been selected, in our case M is the set of subspaces

corresponding to the terms in the right hand side of (1.2) that will be retained in the model. The



estimate fy of f is then obtained by finding f\ in M to minimize

S wi— SO AN | T M)+ Y Oz eslfag) + (1.3)
i=1

€l o, BET pq
where T4 is the collection of indices for the terms included in M, and the J,, Jos and so forth are
quadratic “smoothness” penalty functionals. A is the main smoothing parameter, and the 8’s are
subsidiary smoothing parametefs.

It is a major task of nonparametric regression to provide some sort of accuracy statements
concerning the resulting estimate. Wahba (1983) described Bayesian “confidence intervals” for
the (one component) smoothing spline model by deriving the posterior covariance for f given the
Bayes model which is associated with spline smoothing, and showed by a Monte Carlo study that
these confidence intervals appeared to have a certain frequentist property for f in certain function
spaces. The property is, considering the n 95% confidence intervals at the n data points, about
95% of them will cover the values of the true curve there. A partly heuristic theoretical argument
why this could be expected was given there, and later Nychka (1988, 1990), Hall and Titterington
(1987), and Cox (1989) provided theorems concerning when and why they should work. Other
definitions of confidence regions ate of interest, in particular, a set of intervals that are required
to cover 100% of the points with probability .95. Such intervals can be expected to be wider that
the intervals considered in Wahba (1983). See for example Li (1989), Hall and Titterington (1988).
We remark that the weaker definition of “confidence interval” which is adopted in Wahba (1983)
leads to intervals which are easy to interpret psychologically. In Monte Carlo simulations, when
they cover 95% of the values of the true curve at the data points, the intervals more or less “graze”
the truth, and the width of the intervals is visually interpretable by an unsophisticated user as an
accuracy indicator.

In this paper we generalize these confidence intervals to obtain the posterior covariance functions
for the components f,, fas, etc. of the model M. Then we show how the generic algorithms in
RKPACK can be used directly to compute the component-wise confidence intervals, with only
trivial modifications. Omnce this is done, we carry out a Monte Carlo study to suggest whether
or not the component-wise confidence intervals can be expected to inherit some of the favorable
Monte Carlo and theoretical results available for the single variable case. The results are, with

_some caveats, suggestive that the answer is “yes”. In the cases we have tried, the visual images



quite consistently reflected an interpretable “reality”.

As a byproduct, we obtain another useful graphical tool: In estimating functions of two (or
more) variables by nonparametric methods, the data are frequently arranged irregularly. This is
particularly true for geographic data. While it is tempting to plot the estimate in, say, a rectangle,
once one is sufficiently far from the data the nonparametric estimates become meaningless. We
can obtain contours of constant posterior variance in two (or more) variables and use one of these
contours to bound an area within which the estimated function will be displayed as a contour plot.

In Section 2 we describe a general form of ANOVA in function spaces. This represents a
modest generalization on the construction proposed in Gu and Wahba (1990, 1991a), we include
a summary here to make the exposition self-contained. In Section 3 we give the component-wise
posterior covariance functions. A comparison of the result with the representation of a smoothing
spline given in Kimeldorf and Wahba (1971) shows that, if an efficient tool for computing fy is
available (as in RKPACK), then only trivial additions are required to compute the component-wise
confidence intervals. In Section 4 we review old and generate some new methods for obtaining
reproducing kernels which are used in obtaining explicit formulas for the minimizer of (1.3) with
spline and spline-like penalty functionals. In Section 5 we provide the details of how RKPACK may
be used to carry out the calculations, and in Section 6 we present the results of a small Monte-Carlo
study. In Section 7 we review some of the theoretical properties of the single variable confidence
intervals, and suggest what might have to be done to extend the main theorems of Nychka (1988,

1990) to the component-wise case.

2 Analysis of Variance in RKHS
Let H be an RKHS of real-valued functions of £ = (#;,--,14). Here t, € 7(®), where 7(2) is some
index set. We need the following further properties:

1. 1 € H, where 1 is the constant function of ¢.

2. For each a = 1, .-, d, we can construct a probability measure du, on 7(®), and an averaging

operator &,, such that
= [
: 7
is well defined and &, f € H.

) f(tla Tt td)d;ua(ta)

(o



Consider

I=T[(a+(I-E))=TTEa+D _(I-E) [T &+ D_(T-E)T-E5) T Ev+- +1‘[1 Ea)

Ba a<f Vo, B
(2.1)

This decomposition of the identity generates a unique (ANOVA-like) decomposition of f into

s C+Zfa+2faﬁ+ 4+ frod

a<fB
where C' = [, €af, fa = (I = €a) Tlasa &6fs fap = (I = €I = €a) Tl 20,0 Exf> etc, are the
mean, main effects, two factor interactions, etc. The closure of the range of each operator of the
form [la, ap Eallagyy,ae(d — €8) Is clearly a subspace of H, however, these subspaces are not
necessarily orthogonal with respect to the inner product in H.

We will now provide a construction of H in which these subspaces are all orthogonal. Let H(®)
be an RKHS of functions on 7(*) with Jrtay falta)dpe = 0, f € H®), and let {1(®)} = {1} be the
one dimensional space of constant functions on 7(®). Consider the space {1} @ H(®), Then f in
this space will have a unique decomposition f = P.f + (f — P.f), with P.f = [ fdu, € {1} and
(f = P.f) € H(®), we endow this space with the square norm || f||> = (P.f)? +||f - P, e f113 0y~ Now,
let

H=[][{1} & =),

which can be expanded as

={1}® Z‘H(a) 3 Z H) @ H(ﬁ)] & s
Ba

Here f, € H® is called a main effect, fap € H®) @ HP) is a two factor interaction, and so forth.
The subspaces are orthogonal in the tensor product norm induced by the original inner products.
Aronszajn (1950) can be consulted for details about tensor products of RKHS. Examples will be
given later. Now f € H has a unique orthogonal decomposition

F=CH+d fat D fap+--

a<f

with C = [ fT1, dpters fo € H®), fop € H® @ H5) and so forth. For other interesting views of
analysis of variance, see Antoniadis (1984) and Speed (1987).



We want one further decomposition, to allow for the imposition of spline and related penalty
functionals. Let H(*) have an orthogonal decomposition H\*) & H®, where H\*) is finite dimen-
sional (the “parametric” part; usually, but not always, polynomials), and HE,"'}, (the “smooth”
part) is the orthocomplement of Hgf) in Hy. We will later let J,(f,) = HPB(‘])fQH?H(Q), where Ps(a]
is the orthogonal projection operator in H(®) onto 'HEQ) . Thus the null space of J,, in H(®) is ’nga).

H®) @ HP) will be a direct sum of four orthogonal subspaces:

HO@HO = N gHP (2.2)
+ H® @ HP) (2.3)
+ H @ HP (2.4)
+ HQHP), (2.5)

By convention the elements of the finite dimensional space 'nga) ® HYP) are not penalized. We will
in Section 4 let the penalties in the other subspaces be their square norms.

At this point we have (orthogonally) decomposed H into sums of products of unpenalized finite
dimensional subspaces, plus main effects subspaces, plus two factor interaction spaces of the form
parametric @ smooth (7, s) of the form (2.3), smooth ® parametric (s,7) of the form (2.4), and
smooth ® smooth (s, s) of the form (2.5), and so on for the three and higher factor subspaces.

Now we suppose that we have selected the model M, that is, we have decided which subspaces
will be included. Next, collect all of the included unpenalized subspaces into a subspace, call it HY,
of dimension M, and relabel the other subspaces as H?,3 = 1,2,---, p. Thus, H? may stand for a

)

subspace 'Hga , or one of the subspaces of the form (2.3), (2.4), (2.5), or a higher order subspace.

Our model estimation problem becomes: find f € M = H° @ >3 H? to minimize

T . =

o 2w = FEO)) + A6 1 PP, (26)

=1 B

where P? is the orthogonal projector in M onto H?. Given a basis for H°, and reproducing kernels
Rjs(s,t) for HP, an explicit formula for the minimizer fr of (2.6) is well known; see, e.g., Chapter
10 of Wahba (1990). The code RKPACK (Gu, 1989) may be used to compute the GCV estimates
of A and the §’s. This code is available by writing netlib@ornl.gov with the words “send index”,
the robot mailserver will then respond with instructions. This code will be used later in the Monte

Carlo experiments presented here.



3 Bayesian “Confidence Intervals” for Components

In this Section we derive general formulas for Bayesian “confidence intervals” for the components
of f estimated by minimizing (2.6). The computation of the relevant quantities shall be discussed
in Section 5.

We first review some relevant facts. Let Rg(s,t) be the reproducing kernel for H° and let
é1,++,da span HO. Let Xg(t);t € T =17 be a stochastic process defined by

M p
Xe(t) =) ndu(t) + 02" 1 /85Z4(8),
v=1 g=1
where 7 = (1, -+, 7m) ~ N(0,€I), the Z3 are independent, zero mean Gaussian stochastic pro-

cesses, independent of the 7, with EZ(s)Zg(t) = Rp(s,t). We have Z(t) = 3= /03Z3(t) satisfies
EZ(s)Z(t) = R(s,t) where R(s,t) = }_305Rs(s,1).
Now, let

Y= X))+ e 4= Lymenin
where € = (e1, -+, €,) ~ N(0,0%I). Let
f,\(t) = é_[ﬁi%E{X&(ﬁ)lK =yt =1,-- .’n}

and set b = o?/nA. It is well known (Kimeldorf and Wahba, 1971), that

() = i d,¢,(t) + Zn;ct-R(t,t(i)) (3.1)

where d = (dy,---,dp) and ¢ = (cq,-- -,—cﬂ)' are given_by
d = (M5 18'M 1y (3:2)
e = (M1 -M18(S'M™18) 1My (3.3)

where S is the n x M matrix with ivth entry ¢,(¢(:)) and M = ¥4 nAl, where ¥ is the nx n matrix
with ijth entry R(£(¢),¢(7)). It is always being assumed that § is of full column rank. Furthermore,
for any A > 0, f) is the minimizer of (2.6). See also Wahba (1978, 1990). The projections of f) on
the various subspaces are the posterior means of the corresponding components and can be read

off of (3.1). For example, let go,(t) = 7,0,(t) and gs(t) = b'/%,/852Z5(t), then we have

Ego (D)ly = duou(t)
Ega(t)ly = Y ciflgRg(t,t(i)).

i=1

7



The posterior covariances of gg, and gg are summarized in the following theorem.

Theorem 3.1

Cov(gow(s); gou(t))/b = bu(s)du(t)e,(S'M™15) e,
Cov(gs(s), gop(t)/b = dup(s)eu(t)

Cov(gp(s),gs(t))/b = eﬁRB(Sat)—ici,ﬁ(s)gﬁRﬁ(tut(i))

=1

Cov(gy(s),g8(t))/b = =) ci(s)8sRp(t,¢(3))

1=1
where ey, is the vih unit vector, and (d1,5(s), -, dmp(s)) = da(s) and (c1,4(s),--,cnp(s)) =

cs(s)’ are given by
O5Rp(s,t(1))
el e e e : (3.4)
05 R5(s,8(n))

OsRp(s,t(1))
éple) = (M — M 5(SMTS)S : (3.5)

05 Rs(s,t(n))
The proof is given in the appendix. It is clear that the calculation of the posterior covariances boils

down to the calculation of (§'M~1S)~!, ¢5 and dg, which we will pursue in Section 5.

4 Spline Penalty Functionals and Reproducing Kernels for SS-
ANOVA Models

For 7(®) = E1, the real line, we will let the main effect penalty functional be

L) = [ (@) de.
The null space of this penalty functional is the m-dimensional span of the polynomials of total
degree less than m. If d(a) = k > 1, then we let 7(®) = E* where EF is Euclidean k-space. Then
for the the main effect penalty functional we will use

wn= B sl [ ) e o

&
ytefyp=m 110



which is the thin plate penalty functional. The null space of this penalty functional is the (m+:_1)
polynomials of total degree less than m in k variables. For technical reasons it is necessary that
2m — k > 0. In our examples we will let 7(®) be E! or E2, and m = 2. The results generalize
immediately to arbitrary m,k,2m > k (provided there is enough data), but the notation becomes

messy. See Wahba (1990) for details. In particular

3 oo ' poo an 2 aZf 2 82f 2
Jzz(f)—./_oof_oo (EE) + 2 (33:15'2?2) + (&‘% dridzs.

We will let the space {1} & H(®) be the thin plate space X = X* described by Meinguet (1979),

for our purposes we only need to know that X* contains the (m"':_l) polynomials of total degree
less than m in k variables, and functions for which J%(-) is well defined and finite. The k = 1 case
leads to polynomial splines, which have been discussed in the SS-ANOVA context from a slightly
different point of view in Chen et al. (1989) and Gu et al. (1989). For our purposes it will be
easiest to consider k = 1 as a special case of the general k case we consider here.

We want to decompose H(*) into H & HEC’), where %) is the (m"'f_l) — 1 dimensional space
spanned by the polynomials of total degree less than m which satisfy [ fdu, = 0. We will do this
in such a way that JX(f) is the squared norm on H&“}, and, finally, we will obtain reproducing
kernels (RK’s) for HSTO') and Hﬁ“). Given these RK’s we will immediately have RK’s for spaces of
the form (2.2) — (2.5), and higher order spaces, by multiplying and adding the appropriate RK's.

To carry out this program, let ¢y, -+, dp, M = M(a) = (m"':_l) span the polynomials of total
degree less than m on E*, and choose them so that ¢y = 1 and so that they are orthonormal under

the inner product
< ¢'m¢’u >= /@L’,u.d)udﬂa‘

We are assuming here sufficient conditions on dp, so that the Gram matrix of these polynomials
~ has all finite entries and is of full rank. One must exclude certain cases, for example in two
dimensions dp, can not have all its mass restricted to a line. If the polynomials are lined up in
say, lexicographic order, then the ¢, may be chosen via the QR decomposition to have (say) their
total degree non-decreasing with v.

Now, let P, be the projection operator in H(®) defined by

M
P =Y 0 [ £(2)6u()diala)
v=2



We note that if 4 is a discrete measure, then P, is well defined for any continuous function. In our
examples we will use y, discrete, and to avoid technical details we will continue our development
here under this assumption. However, we believe that the argument below can be carried out more
generally. Now, any continuous function on E* | and in particular any f € X} will have the unique

decomposition

f:Pcf+Pfrf+Psf

where P.f = [ f(z)dus(z) = [ f(2)¢1(z)dpa(z) and Pof = (I - P, — P;)f. More importantly, it

can be shown that this is an orthogonal decomposition of X% endowed with the squared norm

M 2
111 = (Po+ 2 ([ f@)@)dual@)) +I5(F).
v=2

See Gu and Wahba (1990, 1991a) for details.
Now, we can let

H®) = 1) g 1),

where 1) is the span of the polynomials of total degree less than m which average to zero under

(o

Lo, and Hs ) = P,(H(®)). The reproducing kernels R, and R, for these spaces can be found in Gu
and Wahba (1990, 1991a) , and have a relatively simple form: For H).,

M
R(z, 3’) == Z_: ¢V($)¢u(z’)

To write the RK for Hga), we need a few more definitions. Let P, f = (P.+ Pr)f, and let EX(7)

be the semi-kernel (variogram) associated with the thin plate splines, given by

EE(T) = emk|7|™ %, k not an even integer
= cmkl7|*™ *log|r|, %k an even integer
where

emi = (=D)L {220~ 1)l (m - d/2)1}

Cmk

T(d/2 — m)/ {22™x%?(m - 1)1}

Let E(z,2') = Ef(|x — 2'|), where |2 — 2/| is the Euclidean distance between z and z’ in EF,

and let qu(a:} be P, applied to what follows considered as a function of z. Then, it is shown in Gu

10



and Wahba (1990), that the RK for H\*) is given by

RS(‘I:;EI) = (I o PF(JZ))(I_ P?r(a:’))E('ra mf)'
We remark that this result in the one dimensional case goes back to deBoor and Lynch (1966), see

also Wahba and Wendelberger (1980).

5 The Use of RKPACK

Generic algorithms for computing smoothing splines have been developed by Gu et al. (1989) and
Gu and Wahba (1991b), with the smoothing parameters 8;’s and A either being selected via the
generalized cross-validation (GCV) method of Craven and Wahba (1979) or being estimated by the
ML-II (or generalized maximum likelihood — GML) method under the Bayes model. Portable code
is available in RKPACK (Gu, 1989). We illustrate in this section that the quantities in Theorem
3.1 can be calculated via immediate adaptation of the generic algorithms.

We first outline the relevant steps in the generic algorithm (Gu and Wahba, 1991b). Let the

Eq

QR decomposition of S be § = FR = (I, F3) and let z = Fjy. Let ¥3 be the n x n
0

matrix with ijth entry Rg(t(i),4(7)), and let £ = FjTgFy. Let & = Y°§_, 6553. The GCV score
V(A, ) and the GML score M (A,#) which are minimized to obtain A and @ are given by

V() 8) = A5 g wAl) s
"7 (trace(E 4 nAI)-1)?’

2(Z + 01z
(det(Z + nAI)=1)1/(n=M)’
see Wahba (1990). After calculating z and the Y45 the GCV or GML score is minimized with

M(),8) =

respect to fg’s and A iteratively. In this process each iteration consists of a f-step followed by a
A-step, where the #-step updates f3’s to find a better orientation of A/f3’s and the A-step conducts
a line search along the updated orientation. The minimizing smoothing parameters are then used
in calculating the fits. The initialization takes O(n?) flops, each f-step takes (2/3)(p—1)n°+O(n?)
flops, and each A-step takes (2/3)n®+ O(n?) flops. In the A-step (Gu et al., 1989), £ is decomposed
as © = UTU', where U is orthogonal and T is tridiagonal (Householder tridiagonalization), to

facilitate the fast evaluation of the GCV or GML scores at different values of A. Recalling that

11



M = ¥ + nAl it can be shown that M~! — M~1§(S'M~1$)~15'M~ = RU(T + nAI)'U'F} and
($'M~18)7'§'M~' = RTY(F| — (F{EF)U(T + nAI)"1U'F}), where £ = Y _165T5. So at the

converged fg’s and A the algorithm returns

¢ = RU(T+n\)U'Fly
d = Rl_l(Fl’y—(F{EF;;)U(T-}—RAI)_lU'Féy), (5.1)

which are used to compute d and ¢ of (3.2) and (3.3). Now it is clear that to obtain dg(s) of (3.4)
and cg(s) of (3.5) one only needs to replace y by (85Ra(s,t(1)),...,0sRs(s,t(n))) in (5.1). F and
U are usually stored in factored form, the applications of F’, F, and (T + nAI)~! on vectors are of
linear order, and the applications of U" and U on vectors are of quadratic order, so for a single s

these quantities require O(n?) flops extra calculation. For S’M~15 we have

(S'M718) = R{(FSR) - (FSE)FSE + nM )~ (FSR)(RTY

RT(FIZF) — (FSFR)U(T + n\) U (T R))(RTYY,

which can be calculated in O(n?) flops.

Finally, we need an estimate for b. In this paper we calculate it from an estimate of o2 via
b= o?/n). The recommended variance estimate associated with the GCV selection of smoothing
parameters is 62 = nAz/(E 4+ nAI)~2z/trace(X + nAI)~!, and the GML estimate is 62 = nAZ!(5 +
nAl)™1z/(n—M). Wahba (1983, 1990), Gu (1989), and Gu and Wahba (1991b) have more details.

6 Numerical Experiments

We illustrate some applications of the component-wise Bayesian “confidence intervals” using ex-
amples in this section.

We first describe an experiment with ¢ € [0, 1]® generated according to a pseudo-random uniform
density and the test function f(t) = C' + fa(t2) + fa(ts) + f1,2(t1,t2). The decomposition is defined
such that

/fz(tz)dﬂz(tz) = ffa(ta)d#:s(ts) = ff1,2(t1,t2)d#1(f1) — /fl,z(thtz)d#z(fz) = {),

We have here taken the dy,, as the marginal empirical design distribution, that is, if the design points

are t(1),--,t(n), where (i) = (#,(1),- - -, ta(¢)), then uo has a mass of 1/n at t4(4),i=1,---,n.

12



We first generated f(t) = 5cos(2m(t; — t2)) + exp(3t) + (108211 (1 — £5)¢ + 10*t4(1 — ¢3)'°) on the
randomly generated design points ¢(z), then subtracted the #; main effect of f to obtain f, which
then has a nil #; main effect. Here d(a) =1 for a = 1,2,3, and m(1) = m(2) = m(3) = 2. We
set f1,3 = f2,3 = 0 by setting the associated #’s to 0 in the model, and we estimate f1, fa, f3, and
f1,2. The smoothing parameters for these terms were selected by minimizing the GCV function, as
described in Section 5.

Thus, the model fitted was

f(t) =C + fi(t1) + fa(ta) + f3(t3) + f12(t1, t2). (6.1)

yi's were generated according to (1.1). The estimates of the five components in (6.1) are obtained
by projecting f) (given by (3.1)), onto {1}, H(®),a = 1,2,3 and HV) @ H(®) respectively. Six
smoothing parameters were estimated, one each for the 3 smooth components of f;, fa, and f3, and
three for the three penalized components of the form (2.3), (2.4), and (2.5) of fi2. Letting §(t)
stand for any one of the four (nonconstant) estimated components the 95% Bayesian “confidence
interval” at ¢ is then given by g(¢)+1.965,(t), where s2(t) is the posterior variance for §(¢) obtained
from Theorem 3.1 by collecting the relevant terms, including cross-terms, from the penalized and
unpenalized components. Since in this example H(®), o = 1,2,3 and H(Y) ® H(?) each have a one-
dimensional unpenalized subspace, there will be (f) + (%) = 3 terms to be collected for each of
the main effects and (})+(3)= 10 terms for the interaction term. However, the three penalized
components in the interaction component, which had been kept separate for smoothing parameter
selection, can be lumped together for the purpose of computing the posterior variance, so that there
will again be three terms to collect for the posterior variance.

Six experiments were run, with two levels of n (100, 200), crossed with three levels of o (1, 3,
10). 100 replicates were generated for each experiment, and data for the 50%, 75%, 90% and 95%
confidence intervals were collected. In each case, the number of data points at which the confidence
interval covered the true value of f, f1, fa, f3, and f1o was recorded. The averages, over all 100
replicates, are given in Table 6.1 for n = 200, and in Tables 6.2 and Table 6.3 for n = 100.
Considering the n = 200 case, with the exception of f;, which we will discuss separately, the o = 1
and ¢ = 3 percentages are extremely close to their nominal values. The o = 10 case is somewhat
less close. We note that the test function f ranges between -8.64 and 30.56 on the data points,

-and so in this example o is about 1/4 of the range of f. For n = 100, with ¢ = 1, six of the
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Table 6.1: Average coverage percentage of a simulation study with n = 200 and 100 replicates.

Nominal Average Coverage Percentage
Cowrpd ol o . hs
a=rl:

95% 94.85 83.70 93.24 96.14 95.20
90% 89.83 73.41 88.84 91.39 90.40
75% 75.09 56.17 74.66 76.49 75.79
50% 50.29 36.00 51.31 51.24 50.71
c=3

95% 94.14 82.44 90.32 95.92 94.69
90% 89.06 71.60 85.29 90.97 89.75
75% 74.50 53.42 72.06 75.53 75.51
50% 49.50 36.10 49.88 49.76 50.26
o=10

95% 87.36 73.00 82.20 91.49 77.63
90% 80.86 66.06 77.34 85.59 70.68
75% 64.76 51.94 63.80 69.81 55.00
50% 41.76  39.96 41.65 46.28 34.96

Table 6.2: Average coverage percentage of a simulation study with » = 100 and 100 replicates:
Smoothing replicates

Nominal Average Coverage Percentage
Coverage | f fr f sl la
o =1 (94 replicates)

95% 93.03 89.17 91.15 96.40 93.56
90% 87.06 80.67 8594 91.37 88.49
5% 72.18 65.94 71.62 77.59 73.49
50% 47.32 37.69 48.95 52.11 49.55
o = 3 (98 replicates)

95% 91.00 86.46 82.74 94.61 87.55
90% 84.85 80.18 75.16 89.78 81.18
75% 68.98 62.40 58.64 76.73 64.91
50% 44.44 42.68 37.13 50.51 41.54
o = 10 (100 replicates)

95% 86.82 91.85 57.22 90.53 66.39
90% 79:.89 87.77 5118 -84.70 - 60.95
75% 63.75 72.55 39.57 70.29 47.98
50% 41.41 4521 24.78 47.48 30.57

14



Table 6.3: Average coverage percentage of a simulation study with n = 100 and 100 replicates:
Interpolating replicates.

Nominal Average Coverage Percentage
Coverage | f f fa f3 fi,2
o =1 (6 replicates)

95% 0.00 83.33 75.33 65.33 72.17
90% 0.00 50.00 65.50 57.33 64.83
75% 0.00 50.00 44.00 43.50 47.67
50% 0.00 16.67 27.33 27.17 27.67
o = 3 (2 replicates)

95% 0.00 100.0 47.50 81.00 62.50
90% 0.00 50.00 44.50 69.00 51.00
75% 0.00 50.00 32.50 44.50 39.50
50% 0.00 50.00 18.50 23.50 27.50

100 replicates were near-interpolants, and for o = 3, two of the replicates were near-interpolants.
These eight cases are listed separately in Table 6.3. Once they are removed, the the remainder
of the average of the average coverages are given in Table 6.2 and are about the same as those in
Table 6.1. It has been reported previously, see Wahba (1983, 1990), that, for small sample sizes,
there is a small but non-zero probability that the GCV estimate of A will be much too small. These
cases can usually be spotted in practice as they are characterized by an estimate of #? that is too
small by several orders of magnitude. The problem goes away as the sample size becomes larger.
See, for example, the hypotheses of Theorem 1.1 of Nychka (1990).

Figures 6.1 and 6.2 describe a sample of two extremes of the 100 replicates of this experiment,
with n = 200 and o = 3. Four examples were first chosen for inspection by counting the number of
95% confidence intervals (out of 200) for f that failed to cover the true value. Then we selected the
replicates with the 5th, 25th, 75th, and 95th largest number of points out. They had, respectively,
23, 15, 7 and 3 points out. (Recall that the nominal number in this case is 10). Ties were broken
by taking the earliest replicate among the tied values. The imagery from the 5th and 25th largest
cases and the 75th and 95th largest cases was essentially the same, so that only the 5th and 95th
largest cases are shown. We believe they “bracket” the behavior of the confidence intervals in this
population of 100 replicates. Figure 6.1 plots the main effects and the interaction fj ; in fhe 5th

largest case. The solid curves in (a)-(c) are the true main effects components fi, fz, and f3 and
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Figure 6.1: An n = 200,0 = 3 case with low coverage.
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Figure 6.2: An n = 200,00 = 3 case with high coverage

the dotted lines are the component-wise 95% confidence intervals. Figure 6.1(d) is a contour plot
of the true interaction f; 5 and (e) is the fitted interaction. Figures (f)-(i) are cross sections of the
interaction along the four horizontal lines at .8,.6,.4, and .2, respectively, the solid line is the cross
section of the true interaction surface and the dotted lines are the cross-sections of the component
95% confidence surfaces. In (d) and (e) the small circles are the data points ¢1(%), t2(z),7 = 1, ..., n.
Figure 6.2 plots the main effects in the 95th largest case, as in Figure 6.1. The interaction omitted
in Figure 6.2 looks pretty much like that of Figure 6.1.

Figures 6.3 and 6.4 describe two representative samples selected, in the same manner as the
samples in Figures 6.1 and 6.2, from the 100 replicates with n = 100, ¢ = 3. Figure 6.3 gives
the case with the 5th largest (23) number of points out of the f confidence intervals and Figure
6.4 the 95th largest (2). By examining a stem and leaf diagram of the estimates of & for the 100
replicates, it was seen that besides the two interpolating replicates listed in Table 6.3, there were
three replicates, including the one in Figure 6.3 with & ~ 1.8, while the other 95 replicates were
distributed in a more or less bell shaped curve between 2.3 and 3.6. Thus, there is about a 5%
chance of serious undersmoothing at this sample size, in this example.

We remark here on the distinctive appearance of the f; confidence intervals in Figures 6.1, 6.2
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Figure 6.4: An n = 100, = 3 case with high coverage.

and 6.3. In this experiment the true f; component was identically zero, and in both of the n = 200
cases shown here the cross validation obtained a 0 or essentially 0 value for #;. Thus the estimated
f1 component is in ’ngl), which is spanned by multiples of the single function ¢(t;) = t; — [ t1dp; =
t1 = 2_i=y t1(¢)/n. The estimated f; is of the form d;¢, and the confidence interval is of the form
d1¢ £ 1.9654,|¢|, where s3 equals 67/nA times the (1,1)st entry of (§'M~1S)"'. In Figure 6.4
1 was not estimated as 0, and so the estimate contains a smooth part. It can be seen that the
confidence intervals do give a reasonable representation of the accuracy of the results, even in the
undersmoothed example of Figure 6.3.

Figure 6.5 gives box-plots obtained from New S (Becker, Chambers and Wilks, 1988) for the
percentage of counts inside their respective confidence intervals for each of the four nominal coverage
levels tabulated, for the n = 200 and o = 3 case, for f, f1, f2, f3 and f12. For all except the f
components, the stem and leaf diagrams (not shown here) looked more or less like a stem and leaf
diagram from a normal population, with quartiles described by the boxes. A stem and leaf diagram
for the percentages of the 50% coverages for f; in the 100 replicates is given in Figure 6.6. In this

f1 case, when #; is estimated as 0, all of the true points will be either in or out of the (1 — a)%

confidence intervals together, according as the interval d; t 24284, covers 0 or not. The cases where
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Figure 6.6: The stem and leaf display of 100 replicates of the coverage percentage of the point-wise
50% Bayesian “confidence intervals” for f; on n = 200 design points. Decimal point is 1 place to
the left of the colon.
not all of the true points were in or out together (that is, all of the cases strictly between 0% and
100% in the figure) were among the cases where the estimated 6; was not 0.

We will discuss these results further in the next section.

Figure 6.7 summarizes a model for some environmental data, obtained from the Eastern Lake
Survey of 1984 (Douglas and Delampady, 1990). The response y is lake water acidity (surface pH ),

as dependent on geographic location and calcium concentration. A model of the form

f=CH+ filt1) + fa(ta) + fi2(ta, t2)

was fitted in Gu and Wahba (1990). Here #; is calcium concentration and ¢, is geographic location
(latitude and longitude), thus d(1) = 1 and d(2) = 2. Therefore the thin plate penalty functional
was used for geographic location and m was taken as 2 for both calcium concentration and geogra-
phy. In Gu and Wahba (1990) the interaction term f; ; was retained in the model on the basis of
a subjective inspection of the cosine diagnostics given there. When we obtained component-wise
confidence intervals for this model as part of the present study, the f; ; confidence interval almost

completely covered zero, so the f;; term was dropped, and we refit the main-effect-only model
f=C+ fi(t1) + fa(t2). (6.2)

From the right frame of Figure 6.7 it can be seen that the lakes (112 in total) run roughly along the
Blue Ridge mountains which run SW to NE in GA, TN, SC, NC and VA. The contours represent the
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Figure 6.7: Main-effect-only model of Blue Ridge lake acidity.

fitted main effects for geography. Although there is no data in the NW and SE corners, an estimate
of f, is available over all of E%. However, it is clear that as one gets far enough away from the data
this estimate carries no real information. Our first task here then is to obtain a reasonable graphical
display of what is hopefully the meaningful part of f,. To this end, we obtained a contour plot of
the (estimated) posterior standard deviation of f,, which is given in the (1,1)st frame of Figure 6.8.
We arbitrarily selected the posterior standard deviation contour of .15 as our cutoff, based on the
observation that it was approximately 3 times the minimum posterior standard deviation. In the
(1,2)nd frame of Figure 6.8 we display the .15 postérior standard deviation contour, and a contour
plot of f; in the region enclosed by this contour (that is, the region with a smaller posterior standard
deviation). Visually, the results appear much more sensible than in Figure 6.7. The (1,3)rd frame
of F'igure 6.8 presents a cross sections of the 95% confidence interval taken along the diagonal from
the lower left to the upper right corner. The minimum value of the estimated geographic component
of the lake acidity occurs roughly where this diagonal intersects the 82 degrees longitude line - this
is roughly the location of Mt. Mitchell, the highest point in NC, at the high point of the crest
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Table 6.4: Average coverage percentage of a simulation study of the Blue Ridge lake acidity model
with 100 replicates.

Nominal Average Coverage Percentage

CDVGYage f fca].c fgeog f fcalc fgeog

94 smoothing replicates | 6 interpolating replicates
95% 88.44 85.11 90.11 | 0.00 66.67 23.96
90% 83.60 81.79  85.40 | 0.00 50.15 18.90
75% 70.45 66.00 71.19 | 0.00 33.33 14.58
50% 48.08 40.42 46.64 | 0.00 0.00 8.48

of the Blue Ridge mountains. To see whether these intervals were reasonable, we simulated data
from the model (6.2), using the model that we have just fitted as the truth, and generating 1.i.d.
normally distributed ¢;’s with variance equal to the variance which had been estimated for the real
data. The second row of Figure 6.8 shows the simulation results of a single replicate in parallel to
the first row, with the exception that the true function is added in the (2,3)rd frame as the solid
line. It can be seen that the CI's give a reasonable visual image of the accuracy of the estimate.
We then simulated 100 replicates from the model (6.2), with the same n = 112 data points,
and, for f, fi = fealc and fy = fzeo, counted the percent of true data points inside their confidence
intervals. In this experiment, there were 6 out of 100 interpolating cases. The percent of data

points inside their respective confidence intervals is given in Table 6.4.

7 When and Why Should the CI’s Work?

To discuss the question of this section we will consider the case of a purely parametric component
and the case of a not purely parametric component separately. Note that in our synthetic example
the true f was purely parametric, in fact 0, and of the four plots in Figures 6.1(a) - 6.4(a), f; was
fitted in its one-dimensional parametric subspace in three of them. The subspaces for fa, f3 and
fi1,2 all contain a one dimensional unpenalized subspace. For ease of exposition consider first the

case of a single variable and now let
f=lot+h

where fo € H°, the M-dimensional subspace spanned by 1, -+, éa and f; € H!, a single penalized

subspace, with one smoothing parameter. First consider the Bayesian “confidence interval” for the
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purely parametric component fo. Let fo = M, do,b,, and let f; = (fi(¢(1)),- -, fi(t(n)))"
Then y = Sdo + f1 + €, where dg = (do,1," -, do,m) . Letting d be the estimate of dj, we have

d—do= (M8’ M~ (Sdo+ fi + €) - do.

Thus
d—do~ N((S'M™28) 18 M1 f,0%(S'M18) 18’ M~25(8'M~1 §) 1) (7.1)

whereas the Bayesian “confidence interval” for fo(t) is treating d — dy as though
d—do~ N(0,0%(S'M718)"1/nA). (7.2)

Note that as nA — co we have that the right hand sides of (7.1) and (7.2) tend to A'((5'5)~18'f1,02(5'S)"1)
and N(0,0%(S'S)~1) respectively, and if the orthogonality of H, and H, has been defined via P,
with dyuy as the design measure then S’f; = 0, so that asymptotically in this case the Bayesian
"confidence intervals” are doing the "right thing”. Of course it is only in the M = 1 case that
100% of the points will all be in or out of their confidence intervals according as dg is in or out of
its confidence interval. Also, it is only in the single variable case, with inner product as defined
here, that we can always arrange to have S’fi = 0. Shiau (1985) and Nychka (1988) have noted
that if the square bias is not large relative to the variance, then treating a random variable as
N(0, (bias)? + variance) is not a bad approximation to M (bias, variance) for confidence intervals

purposes. Here we have
2
E(d - do)(d — do)' = %(S’M‘IS)‘IB(S’M‘ls)‘l

where

B=SM"Yfifi'/b+nAD)M'S

and in this case to the extent that B ~ (§’M~15), we will be making the approximation that Shiau
and Nychka have found is reasonable. Shiau (1985) did an extensive series of simulations in the
one-dimensional case with M = 1, testing the validity of the Bayesian “confidence intervals” for
the estimate d of dp, in a series of examples. In 8 of 10 examples, the observed coverages were very
close to the rated coverages, and in two they were not. She found that the 8 “successful” cases
had relatively small (less than 1) square bias-variance ratios, while the unsuccessful cases had large

ratios. Referring to Figure 6.6 it can be seen that there were 30 cases of all points in their CI, and
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49 cases of all points out of their CI. If our approximations were good, then the probability of all-in
would be .5 whereas we have observed 30/79 = .379, which is 2.72 standard deviations below the
nominal value of .5.

We now consider the Bayesian “confidence intervals” for f where f is not purely parametric.
We briefly review the known results for these CI's for f in the single variable case, based mainly on
Nychka (1988, 1990), see also Wahba (1983) and Hall and Titterington (1987). Below it is assumed
that f € H but not in H°. Then we will outline what would have to be proved to extend the known
theoretical results to the component cases.

Let A()) be the n X n influence matrix defined by

(1))
' = ANy
fa(t(n))
and let f = (f(¢(1)),-, f(¥(n))). Let
b(A) = (I-AQN)f
v(A) = —A(N)e

the vectors of the bias and variance components of the error f — fy at the data points, respectively.
Let the predictive mean square error 7(\) be defined by
T(A) = ;(f t(1)) — Ar(t(2)))" = —llb A+ e(V)]%
Since f & H°,||b())||? # 0 in general. To understand the import of what follows, the reader needs to
know that the posterior covariance matrix at the data points, with ¢jth entry @(£(¢), #()) reduces
to 0?A()), see Wahba (1983). The next fact that is necessary, is that (it can be shown that) if A*
minimizes ET()) and A is the GCV estimate of A, then A and A* are close enough so that they can
be interchanged in what follows. We also note that if the constant function is not penalized, then
A(X)(1,-~ 1) = (1, ,1) so that T, bi(A)/n= 0.
Then, under certain assumptions (see Nychka (1990), Theorem 1.1 for a precise statement)

Tit (0% /n)traceA(A*)
oo ET(A)
IO
2 o[/ !

— k1 1 (73)

(7.4)
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for large n.
Now, let a;(A) be the iith entry of A(M), and let C(2a/2,1(¢)) be the interval f;(t(s))
zﬂ/g&\/aﬁ(s\), which is the confidence interval at £(i). Define the average coverage (AC) as

AC = T30 HF(H0) € Claayar Ui} = = S HIB(A) + lA/6(ya(0) < 2a72)
t=1

where I is the indicator function of the event in brackets. Letting / be the random variable which
takes on the value b;(A) + v;(A) with probability 1/n, i = 1,--+,n, Nychka argues that if the &,
are not dominated by a decreasing number of increasingly large values, and (7.4) is true, then U
behaves like the convolution of a zero mean discrete distribution and a Normal distribution and

approximately

U~ N0, 2 E(R) + o)) (75)

and so

EX(l/\[ 2B + vO)P € 2o} v 1= (76)

Furthermore, if a;;(\) ~ traceA())/n and (7.3) is true then it will follow from (7.6) and (7.3) that
E(AC) ~ (1 - a).
We now suggest some of the steps that would be required to extend the known theory concerning

the properties of these CI's to the component-wise case. First, write the representation of @ (s, )

as given in Wahba (1983), which is
Qx(s,t) = Qols, t) + 0*¢'(s)A(N)6(2) (7.7)

where Qg is obtained from Q) by setting A = 0, and &(s) = (&1(s), - -+, 8,(s))" is given by

8'(s8) = (¢1(8), -+, dm(8))(S'E18)18'E~ 1+ (R(s,8(1)),+ -+, R(s, t(n)))(Z1-Z15(5'E~18)"18'E 1)

Here the kth component 8, of 6 is that element in W minimizing the penalty functional (term in
brackets in (1.3)) and interpolating to data which is 1 at ¢(k) and 0 at £(7) for i # k. Note that
although Qo(s,%(i)) = 0, all s, P(i)P&)QD(S,t)tzt(g) is not necessarily 0. Here the subscript (s)
means the operator P? applied to what follows considered as a function of s. However, we will

assume that ()¢ is negligible in what follows. Q¢ is concerned with the unobservables and we will

discuss it later. In what follows we are suppressing the 8’s.
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Now, we can write
fr(s) = 8 (s)A(N)y = §'(s)A(N)(f + ¢)
to obtain

PPfy(s) = PPE(s)AN)(fo+ fi+ -+ fo+€)

where, in an obvious notation we have written out the components f = Tk Fiide v ke fp. Let G
be the n X n matrix with ijth entry (P?§;)(¢(¢)). Note that 2_3Gp = I, where the projection onto
H® is included in the sum.

Letting the vector of biases of PP fy at the data points be defined as

PRf(#(1)) PAfy(¢(1))
ba(A) = 5 % : ’
PAf(t(n)) PP f\(¢(n))

we have the following expressions for the bias and variance of the 8th component P? fy:

ba(A)

va(A) = —GaA(N)e

(I - GAN)fs - GsAN) Y fy
REalt)

Furthermore, the posterior covariance of PP fy is JgGgA(A)Gb+ (terms from Q). Let Tg(A) =
165(A) + va(A)||*/n. To extend the known results to the component-wise confidence intervals it is

sufficient to show, for large n:

= Pf%)P(%)QU(S’t)s,tzt(,') is negligible,

2. The distribution of Ug, the random variable which takes on the value bg ;(A) + vgi(}) with

probability 1/n,i=1,---,n approximately satisfies
1 g A
Us ~ N(0, —E[[bg(A) + va(N]*);

3. The diagonal entries of G ﬁA(;\)GEi are not too far from their average value,
" (az/n)trace(G’ﬁA()\*)Gr@)
T BI0N

- bsA)E/n
5 A o) 12/

_>KIN11

Ky < 1.
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Note that we now have to be concerned with “leakage” of one component entering into the bias of
another component, thus, we would like GgA(A)f, to be small for v # 3.

We remark on the requirement that the distribution of the components of bg(j\) not be asymp-
totically characterized by a decreasingly small number of increasingly large values. If this happens,
then U/ may not look sufficiently Normal for E(AC) to be near its rated value. If in the single
variable, d = 1 case f has 2m square integrable derivatives, but has large absolute mth derivative
near the extreme data points, then the bias error can be dominated by its few values at these
extremes. See Nychka (1988) and references cited there for further discussion. We have not seen
this phenomena to be a problem at the sample sizes that we have been using, however, it cannot
be ruled out.

We note what is known about x; and k; in the single variable case. For any f € X2, it
can be shown that [[b(A)[|%/n < AJE(f), see Wahba (1990). If further conditions are imposed
on f (i.e., additional square integrable derivatives and boundary behavior), then we may have
16(M)]]2/n = ep(f)AP(1 + o(1)) as A — 0, for some ¢, and p € (1,2]. Also, if the design points are
“nicely distributed”, then it is known that the eigenvalues of A(\) are such that traceA(\)/n ~
(em,a/nA%2™)(1 4 o(1)), for some ¢y g as n — o0, A — 0, and nA%2™ — oo. (These conditions are
satisfied by A*). In the single variable case with d = d(1) = 1 the argument in Wahba (1983) is

suggestive that

_ 2m 2mp
= 2m —12mp+1
" 1
Ky = E}n—p

This has been proved by Nychka (1990) for the p = 2 case. Cox (1989) has a rather strong related
theorem in something very similar to our p = 2 case, however, he has some related partly pessimistic
theoretical results for the p < 2 case, whose practical import remains to be studied. It is a good
conjecture that if d > 1 we can replace 2m in (7.8) and (7.8) by 2m/d. See, for example Cox (1984)
and Wahba (1979). '

We think it is also a good conjecture that useful frequentist properties of these component-wise
“confidence intervals” can be proved, in some generality, possibly subject to the caveats described
above. We do note that although the components of the ANOVA models are orthogonal in function

space, they are not in general orthogonal in data space. These confidence intervals are component-
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wise, and do not take into account correlations between components. One has to exercise exactly the
same caution that one would use in a multiple linear regression where the design matrix might be ill-
conditioned. Multicollinearity here between components P?f and P f can be diagnosed by exam-
ining trace (¥5%.,)/(trace i%traceﬁ%)”?, traceGQAG';/(traceGﬁAG’ﬁ)ln(traceG'WAG;)UZ or by
examining the cosine diagnostics of Gu (1990). If two components are highly collinear, the user
may consider combining them into one component or deleting one of them, depending on the
context.

The confidence intervals can also be “calibrated” essentially as we have done with the lake
data, by running a Monte Carlo study about the estimated f3, although this approach must be
used with caution. When extremely large data sets are available, as is happening in many present
day medical, environmental, and meteorological contexts, the data may be divided in half and the
model fitted on the first half, and checked or calibrated on the second half.

We note that Qo(s,t) = E(X(s) — X(s))(X(t) — X(t)), where X = limg o X¢ and X(t) =
EX(t)|{X(#(1),..., X(t(n))}. Thus X(¢) — X(¢) is a stochastic process which is independent of the
data and hence we have no information about it from the data. Analogously, if we let f (t) be the
minimal semi-norm interpolant to f at the data points, that is, f minimizes the penalty, call it
J(f), of (1.3) subject to f(t(z)) = f(t(i)),i=1,---,n, then f — f will be orthogonal to fy in H,
and in fact, we have no information about f — f from the data. Thus, one should exercise caution
in making inferences concerning f— f. It is safer to think of fr as an estimate of f. We remark that
bounds on |f(¢) — f(t)| can be given in terms of J(f) and Qo(t,¢) via the hypercircle inequality;
see Wahba (1990, p.96). We omit the details.

A Proof of Theorem 3.1

We can see how to prove the various parts of the Theorem by a unified method if we first prove

the following: Qx(s,t) = E((fx(s) — f(8))(/a(t) — f(t))|Y = y) is given by:

$1(t)
Q)\(sv t)/b = (¢1(3)1 e 'aaﬁM(S))(S’M*lS)_l

Pm(t)
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R(t,¢(1))

—(1(8), -, par(8))(S' ML) 18’ M~T :
R(t, t(n))
R(s,t(1)) )

—(#1(t), -+, dMm(®))(S'MTS) TS M :

R(s,t(n))
R(t,¢(1))
+R(s,t) — (R(s,t(1)), -+, R(s,t(n)))[M™' = M~1§(S'M~18)"18'M~1]

R(t,t(n))
After we prove this, which is equivalent to Theorem 2 of Wahba (1983), we show that by a
simple substitution in the proof, each of the posterior covariances of the components is obtained

by the same technique.

Let y = f + ¢, where f and € are 0 mean Gaussian random (column) vectors with Eff’ =

bZss, Eec’ = o*I,Ecf' = 0, and let g,h be zero mean Gaussian random vectors with Egh’ =

bXgn, Egf' = bEgf and Efh' = bEsp. Let 02/b = n). Then we have
Cov(g, hly) = b(Zgh — Zgs(Z5s +nA) 1S 40). (A.1)

Let f(t) = =M, 1,¢,(8) + bZ(¢), where T = (11, -+, Tpr) ~ N(0,I),EZ(s8)Z(t) = R(s,t), and 7

v=1

and Z(t) are independent. Letting £ = n/b, then

M
Ef(s)f(t) = bln)_ é.(s)¢u(t) + R(s,1)]

v=1
Now, let f = (f(t(1)), -+, f(t(n))), g = f(s) and h = f(t) and let S,Z, and M be as in the
text. Let ¢(s) = (¢1(8), -+, dm(s))’, and let R(s) = (R(s,t(1)), -, R(s,t(n)))’. We have, upon

substituting these into (A.1),
Qx(s,8)/b = nd'(s)$(t) + R(s,t) — (nd(s)'S" + R(s))(nS 5"+ M) (nSe(t) + R(t)).  (A.2)
Upon collection terms the right hand side of (A.2) becomes

&'(8)InI — nS'(nSS"+ nAI)"'nS1é(t)
— n¢'(s)8'(nSS" + M)~ R(t)
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~ R(s)(nSS"+ M) "'nS¢(t)
+ R(s,t) - R(s)'(nSS'+ M)™'R(¢). (A.3)
Now, the following formulas are known (Wahba, 1983, Eq. (2.14), and 1978, Eqs. (2.8) and (2.7)
respectively):
Jim pf - nS'(nSS8' + M)™8n = (§'M~15)7!
Jim_ n8/(nSS' + M)t = (SMAS) S ML
nan;o(nss’Jr M) = M -M§(S'M-18)1e'ML. (A.4)

Substitution of (A.4) into (A.3) gives the result. In order to get the posterior covariances of the
components of fy, as given in the theorem, we can now see that by letting ¢ and A in the above
proof be any of 7,¢,(s), b'/2\ /B Z3(s), T,$u(t), and b/2\/B5Z,(t), instead of f(s) and f(t), we will
obtain the posterior covariances of the theorem. Similarly, the posterior covariance of components

which are the sum of several components may be obtained by letting g and 4 be the relevant sums.
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