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Abstract

This article presents an exposition of some recent developments in the smoothing spline ap-
proach to multivariate nonparametric regression. The essence of the methodology 1s highlighted
via the detailed descriptions of a few mathematically simplest members of the spline family.
Data analytical tools are discussed, and their use in data analysis is illustrated via simulated
and real data examples. Following the systematic developments, a few interesting observations
on certain aspects of the methodology are collected, including a comparative study of nonpara-
metric analysis versus parametric analysis and an explanation of a certain curious behavior of
generalized cross-validation.
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smoothing; Reproducing kernel Hilbert space; Smoothing spline.

1 Introduction

Regression analysis, analysis of variance (ANOVA), and analysis of covariance are among the most

commonly used statistical methods in applications. The common structure of the problems is

yi:f(ti)+€i1 i=1,,m
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where y; are observed responses, t; are predictors or covariates, and ¢; are zero-mean common
variance uncorrelated noise. Here we only consider the fixed effect models for ANOVA and analysis
of covariance. Our primary interest is to estimate the systematic part f of the response.

In classical parametric analysis, f(t) is assumed to be of certain parametric form f(t,3) where
the only unknowns are the values of the parameter 3 to be estimated from the data. The dimension
ol the model space is the dimension of 3, presumably much smaller than n. When f(t,3) is linear
in B3, ie., f(t,B) = 273 where @ = x(t) is a vector of known functions of ¢, f is just a standard
linear model. Dozens of standard textbooks are available on linear models, see, e.g., Draper and
Smith (1981). When f(¢, 3) is nonlinear in 3, nonlinear regression methods are available; see, e.g.,
Bates and Watts (1988). The parametric form f(t) = f(¢,/3) is a rigid constraint on f and should
in principle be derived from the subject area knowledge of the problem. Sometimes, however, a
parametric form might be imposed simply for the lack of alternatives. In such circumstances, the
analysis is subject to potential model bias, in the sense that possibly no member of the specified
parametric family is close to the underlying “true” systematic part.

To avoid possibly serious model bias in a parametric analysis, an alternative approach is to
allow f to vary in a high (possibly infinite) dimensional function space, which leads to various
nonparametric or semiparametric methods. Since the data are noisy, however, one needs to impose
certain soft constraints on f to regulate its behavior and to effectively achieve noise reduction in
the estimate. The most natural soft constraint, which is adopted by most if not all of the nonpara-
metric methods, is that fis “smooth”. Consequently, nonparametric/semiparametric modeling is
also called smoothing. All smoothing methods are equivalent, to various extents, to locally aver-
aging the data — local to control the bias and average to reduce the noise. Among the classical
smoothing methods are the kernel method, the nearest neighbor method, and penalty smoothing
(smoothing splines). Because of the curse of dimensionality (Huber 1985), many successful univari-
ate smoothing methods (e.g., kernel method) face serious operational difficulties when extended to
high dimensional space. Consequently, almost all practical multivariate smoothing methods impose
appropriate constraints and/or have convenient schemes to control the model complexity. Some of
the methods available are projection pursuit regression (Friedman and Stuetzle 1981; Huber 1985),
additive models (Hastie and Tibshirani 1986, 1990; Buja et al. 1989), regression splines (Stone
1985), multivariate adaptive regression splines (MARS) (Friedman 1991), the [J-method (Breiman



1991), and various multivariate smoothing splines (Wahba 1990).

In this article, we pursue an exposition of the smoothing spline approach to nonparametric
regression for readers familiar with standard statistical theory and exposed to a few basic concepts
in functional analysis. We try to highlight the essence of the methodology as well as to cover
some recent developments in the multivariate setup, with an emphasis on the identification of the
underlying model which seems largely overlooked in the nonparametric estimation literature. We
shall describe the available modeling tools and illustrate their use and effectiveness via simulated
and real data examples. We shall also compare nonparametric analysis with parametric analysis
to demonstrate the pros and cons of the methodology. At the end we shall offer an explanation
of a certain curious negative correlation behavior of generalized cross-validation, by discussing the
proper indexing of the underlying models.

The rest of the article is organized as follows. Section 2 introduces the basic ideas and explains
the essential ingredients of the methodology via examining a few simple examples. Section 3
discusses ANOVA decomposition on product domains and describes the construction of tensor
product smoothing splines by relatively simple examples. The materials in Sections 2 and 3 could
be treated more generally, but we choose not to do so due to the expository nature of this article.
Section 4 collects a few data analytical tools for a nonparametric analysis via the models described
in Sections 2 and 3. Section 5 illustrates the methodology by data examples. Section 6 demonstrates
the plus and minus sides of the methodology compared to parametric modeling. Section 7 discusses

the aforementioned negative correlation behavior of generalized cross-validation.

2 Smoothing Splines

2.1 Penalty smoothing

Smoothing spline is an instance of penalty smoothing. A few examples follow.

Example 2.1 Cubic Spline. A classical example of penalty smoothing is the famous cubic spline.
Consider y; = f(t;)+ ¢, 1 =1,---,n, where t; € [0,1] and ¢; ~ N(0,0?). Since one has only finite

number of data to estimate the entire function f, it is necessary to impose certain soft constraint



such as smoothness on f. A good estimate of f can be obtained as the minimizer of
1< 2 L ga
=3 - £+ A [ (2.1)
L @

where the first term measures the goodness-of-fit, the second term penalizes the roughness of the
estimate, and the smoothing parameter A controls the tradeoff between the two conflicting goals.
The minimization of (2.1) is implicitly over functions with square integrable second derivatives.
The minimizer of (2.1) defines a cubic spline. As A — 0, the minimizer approaches the minimum
curvature interpolator. As A — oo, the minimizer approaches the simple linear regression line.

Note that the linear polynomials form the null space of the roughness penalty fol( f)2 O

Example 2.2 Shrinkage Estimator. A simpler example of penalty smoothing is related to the
classical shrinkage estimators. Consider y; = f(#;)+¢;, where t; € {1,---, K} is a discrete covariate
and ¢; are i.i.d. normal. f is now a vector f € R¥. The standard setup for shrinkage estimators is a
special case of this setup where one observes exactly one sample at each of the K points. Following
the standard empirical Bayes construction, one may assume a prior f ~ N(0,7%7), and the Bayes
estimator under such a prior is a shrinkage estimator shrinking towards 0. It is easy to check that
such an estimator is just the minimizer of

1 ot K

2 0= SV + 173 1), (22)

2
R =

where YK, f3(t) is the roughness penalty and o?/n7? is the smoothing parameter. A smooth
vector in this case is simply one with small Euclidean norm. Note that this roughness penalty has

a nil null space. O

Example 2.3 Shrinkage Estimator in One-Way ANOVA. Elaborating a bit further on Exam-
ple 2.2, one may write f = p1 4+ «, 1Ta = 0, as in a one-way ANOVA with the standard
side-condition. The prior f ~ N(0,7%I) could be decomposed accordingly as p ~ N(0,72/K) and
a ~ N(0,7{I —117/K}). Note that the 72 in the decoupled priors could vary separately. Letting
'rﬁ — oo generates an uniform improper prior for the constant u. The resulting Bayes estimator

is a shrinkage estimator shrinking towards the constant, which can equivalently be defined as the



minimizer of

mn 2 K
LS 05— F) + T S - PR, (23)
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where the roughness penalty YK (f(1) — f)? has {1} as its null space. A smooth vector in this

case is one with small variance. O

2.2 Smoothing Splines and Reproducing Kernel Hilbert Spaces

In a statistical analysis, one needs data as well as models. Data carry noise but are “unbiased”,
while models help to reduce noise but are responsible for “biases”. Models assumed by many
nonparametric methods such as the kernel method are extremely vague and implicit, which might
be responsible for the difficulties in their extensions to high dimensional spaces. Penalty smoothing,
in contrary, represents a convenient, explicit and generic approach to model specification in a
nonparametric analysis. An illustrative example follows. By the standard Fourier series expansion,

any continuous function f on [0,1] can be written in the form of

f=0Bo+ bt + Z(G’V cos 2wwt + by, sin 2w wt), (2.4)

v=1

but (2.4) can not serve as a statistical model because it involves too many unknown parameters.
Nevertheless, families of “smooth function” models can be obtained by properly constraining the
parameters in (2.4). One possible constraint is to require [, f2 = Y, (a2 + b2)(27v)* < p for
some p > 0. A least-squares fit of such a model usually falls on the boundary fol 2= p, and
by Lagrange’s method the fit is the minimizer of (2.1) over functions of the form (2.4) and with
fol f? < o0, for a certain A depending on p and y;. This results in a slightly restricted version of
Example 2.1. p = 0 and oo correspond to A = oo and 0. As p increases, more and more high
frequencies are allowed to enter the play, and the Lagrange multiplier X indirectly but conveniently
codes a “continuous” spectrum of explicit models for one to choose in data analysis.

On a generic domain 7, defining an appropriate roughness functional J(f), statistical models

can be specified via J(f) < p. Under such a model, the least-squares fit of f based on observations



vi = f(ti) + €, t; € T, could be calculated as the minimizer of

n

;};;(w — fE)2+ AI(f) (2.5)
for a certain A over a collection H of “smooth” functions. The roughness functional J( f) is usually
taken as a quadratic form, and implicitly J(f) < oo in H. It is necessary that J, = HN{J(f) = 0}
be of finite dimension to prevent interpolation. J(f) forms a natural quadratic seminorm on M,
and with the supplement of a quadratic norm in J;, makes H a Hilbert space. As p increases,
{J(f) < p} shall allow closer and closer fit of f(t;) to the data y;, but such a relaxation should be
gradual. A gradual relaxation requires that evaluation be continuous in the model space H (semi)
normed by J(f), which automatically assures the continuity of the functional (2.5) in H. Putting
things together, the minimizer of (2.5) in H, a Hilbert space with J(f) as the square seminorm in
which evaluation is continuous, defines a smoothing spline.

A Hilbert space in which evaluation is continuous is called a reproducing kernel Hilbert space
(RKHS). As a consequence of the Riesz representation theorem, there exists a reproducing kernel
(RK) R(-,-), a positive definite bivariate function on 7, such that R(t,-) = R(,t) e H,Vte T,
and (R(t,-), f(-)) = f(t) (the reproducing property), V.f € H, where (-, -} denotes the inner product
in 7. The norm and the RK in an RKHS determine each other uniquely, but like other duals in
mathematical structures, the interpretability, and the availability of an explicit form for one part is
often at the expense of the same for the other part. It will be seen that the RK plays a central role
in the construction of models on complex domains and in the computation of smoothing splines.
A mathematical theory of RKHS was developed by Aronszajn (1950), which very much resembles
the linear algebra theory. For the purpose of spline smoothing, only a few elementary properties

are needed, which we shall quote below.

o Construction of RKIHS. Given any positive definite function R(-,-) on a domain 7, one can
construct an RKHS H = span{R(t,-),Vt € 7} with an inner product satisfying (R(s, -), R(t,-))

R(s,t), which has R(-,-) as its RK. The inner product may or may not have an explicit form.

o Tensor Sum RKHS. If H = Ho®H; with an RK R, then Hy and H; are RKHS’s with RK’s Ry

and Ry, and R = Ro+ Ry. This property generalizes naturally to multiterm decompositions.

A tensor product property shall be deferred to Section 3 after the discussion of product domains.



We now cast the examples of Section 2.1 in the light of the generic formulation of (2.5) to
exemplify the framework. For Example 2.1, J(f) = fol f? is a square seminorm in H = ifs [ 2
oo}. There are many ways of supplementing J(f) to deduce a norm in H. Two rather standard
configurations follow. The first one takes ||f||> = f2(0) + f%(0) + J(f) with the RK R(s,t) =
(L+st]+[ [y (s—u) 4 (t—u)4 du), where ()4 is the positive part of (-). This configuration yields a tensor
sum decomposition H = J; @ Hy where J; = 7, the linear polynomials, with the square norm
FH0)+2(0), and Hy = HOJ, = {f: feH,f0)= f(0) = 0} with the square norm J(f), and the
corresponding RK’s of J; and Hj are the terms in brackets in the expression of R. The second one
takes [|fI1* = (o /)P +(Jo )+ J(f) with the RK R(s, ) = [14kx(s)k ()] +[k2(s)ka(t) — ka(|s —1])],
where ky = (- — .5), kg = (k¥ — 1/12)/2, and k4 = (k3 — k¥/2 + 7/240)/24; see, e.g., Craven
and Wahba (1979). This configuration has J, = my with the square norm (fy f)? + (fy f)? and
Hi=HoJL={f: feH,[f=[f=0} with the square norm J(f), and the decomposed RK’s
are as bracketed. Note that the norm in J; plays no role in the definition of smoothing spline, so
these different configurations all lead to the same final result. Different (marginal) configurations
do matter, however, in the construction of tensor product splines, to be discussed in Section 3.2.

A finite dimensional Hilbert space is a special case of RKHS, and familiar objects in linear
algebra may serve as prototypes for perceiving objects in a general RKHS. A function on {1,---, K}
is a K vector and an RK a K x K positive definite matrix, and an evaluation simply extracts a
coordinate from a vector. For Example 2.2, H = RX with the norm J(f) = f7 f, i.e., the standard
Euclidean space, and the RK is simply the identity matrix I. For Example 2.3, H = RKX =
{1} @ {1}, J(f) = f7(I - 11T /K)f is anorm in {1}*, and I = [12T/K] + [I — 11T /K] is the
RK decomposition. In general, any nonnegative-definite matrix J may define a roughness penalty
JEf) = fLJf with the complement of its column space as the null space J,. For example, for an
ordinal discrete covariate, J(f) = Y R71(f(t+1)— f(¢))? might be a more natural penalty than the
one defined in Example 2.3. A norm in R¥ can then be defined as || f||? = f7(L+J)f where LJ = 0
and L + J positive-definite. It is easy to verify that the RK is simply (L + J)~! = [L*] + [J1],
where the superscript 4+ indicates the Moore-Penrose inverse and the brackets indicate the RK
decomposition. Again the choice of L does not affect the final result.

Finally we remark that a smoothing spline as defined in (2.5) is a Bayes estimator under a

mean zero Gaussian process prior on 7. The prior process has two independent components, one



is diffuse on Jy, and the other has a covariance function proportional to Ry, the RK in H & J,.
In the discrete case 2y = J*. Example 2.3 might be the simplest yet complete illustration of this
classical duality result due to Kimeldorf and Wahba (1970) and Wahba (1978).

In very loose terms, we may summarize this section as follows. A convenient and generic
approach to model specification in a nonparametric analysis is via J(f) < p with an appropriately
defined quadratic roughness functional J(f), where appropriateness means that evaluation should
be continuous with respect to J(f). The Lagrange method converts constrained least-squares to
penalized least-squares, and the continuity of evaluation induces an RK in the model space. The
objects in an RKHS may be perceived via familiar objects in linear algebra, and the quadratic

roughness penalty acts as a Gaussian prior.

3 ANOVA in Function Spaces

3.1 Function decomposition on product domains

An important aspect of statistical modeling, which distinguishes it from mere function approxi-
mation, is the interpretability of the results. Among the most interpretable notions in classical
modeling are the notions of main effects and interactions in ANOVA. We describe below a simple
generic operation to generalize these notions to a generic setup.

In a standard two-way ANOVA on {1,---, K1} X {1,---, K3}, f(t1,t2) = p+ ay, + B, + Vs s
where the main effects ay,, 81, and the interaction 74, +, have to satisfy certain side conditions to

make the decomposition unique. Two sets of commonly used side conditions are

Zan = Zﬁtg = Z%‘l,tz = Z’Ytl,:z =0 (3.1)
t1 ta i t2

and

i = b= Ntz = V1= 0, (3-2)

where (3.1) are the standard ones. In both cases one can write

—
I

(Ey+1—-E)(Ey+1-Ey)f

E\Eyf + (I — B )BEyf + Ey(I — Eg)f + (I — E\)(I — E3)f

[l



= p+ Qg + rﬁtz + Tty k2 (3'3)

where E; are marginalization (or averaging) operators acting on {1,---, K;}. For (3.1) Ef = f, for
(3.2) Ef = f(1), where in an abuse of notation we omitted the constant vector 1 in the right hand
side of the equations.

Consider functions f(ty,---,fr) on a generic product domain H5=1 7,. Define E, to be a
marginalization operator acting on the argument ¢,, which “averages” out t, from the active ar-

gument list of the function and satisfies E,f = E,. An ANOVA decomposition can be defined

as
T
fo= I~ B+ E)f
y=1
= Z [H(I"Eﬁr) H ENf
AC{1,- '} v€A YEA®
= Z fa (3.4)
AC{1,-I'}
where A is the active argument list in a component. fp = [H,I;:1 E,]f is the constant term,

frv = Fiay = [( = Ey) [Tagey Balf is the t, main effect, fys = fiy.53 = (1= Ey)(I - Es) [Tay,5 Falf
is the t,-t5 interaction, and so on. The terms of such a decomposition satisfy the side conditions
E.fa=0,VA 3 . The choice of E,, or the side conditions on each axis, is open to specialization.

The ANOVA decomposition of functions on a product domain not only makes the functions more
interpretable, it also automatically provides a means of model simplification by selectively trimming
off certain terms in the decomposition. Interactions of three or more variables are usually trimmed
as in the classical ANOVA, for they are less perceivable and are more “expensive” to estimate.
Such simplifications are almost necessary for a nonparametric multivariate fit since the data are
scarce. The flexibility in the choice of E, can also be employed to facilitate the incorporation of
certain constraints; for example, to enforce f(1,%3) = 0 in a two-way ANOVA, one could simply

take By f = f(1,12) and trim off the constant and the ¢, main effect from the model.



3.2 Tensor product splines

The explicit model specification in penalty smoothing makes it easier to incorporate structures
on product domains. Specifically, ANOVA decompositions of multivariate functions, possibly with
selective term trimming, can be conveniently constructed via tensor product splines, a specialization
of (2.5) with H a tensor product RKHS to be discussed below. Given positive definite bivariate
functions Ri(s1,?1) and Ry(sg,t;) on domains 77 and 7, it can be shown that R((s1, s2), (t1,13)) =
R1(s1,11)Ra(s2,t,) is positive definite on 77 x 73; see Aronszajn (1950). A simple tensor product

RKHS on 77 x 75 results from standard construction.

e Tensor Product RKHS. Given RKHS’s HY on 7, with RK’s R, ¥ = 1,2, one can construct
an RKHS H!' ® H? on 7y x T, with R = Ry R, as its RK. This property generalizes naturally

to multiterm products.

"To construct a composite tensor product RKHS on a product domain with an ANOVA decomposi-
tion built in, the first step is to cut appropriately configured marginal RKHS’s H” using the tensor
sum rule to two mutually orthogonal RKHS’s 7 and H] which separate E,f and (I — E,)f; one
then assembles simple tensor product RKHS’s as modules from H} or H] using the tensor product
rule, with each module representing a term in an ANOVA decomposition; the final step is to paste
the modules together using the tensor sum rule, with the modules representing trimmed terms left
out. We shall illustrate the construction with a few bivariate examples in the remainder of the
section. General theory and more complicated examples can be found in, e.g., Wahba (1986) and

Gu and Wahba (1991a, 1991b, 1993a).

Example 3.1 Shrinkage Estimators in Two-Way ANOVA. Consider a pure discrete case on {1, - -, K1} x
{1,--+, K2} and adopt the standard side conditions of (3.1). The marginal RKHS on {1,---, K.}
is taken as the standard Euclidean space RX7 which can be decomposed as {1} @ {1} with
RK’s Ro = (127/K,) and Ry = (I - 117 /K,). A function on {1,.--, K1} x {1,---, K>} can be
written as a K3 Ky vector f = (f(1,1),---, f(1, K3), -, f(K1,1),- -, f(K1,K3))' and an RK a
(I1K3) x (K1K;) matrix. The product RK Rog = (117/K;) ® (117 /K,) generates the constant
space with the norm _fTJU,o f where Jyo = Ré,’l o = Ro,0 (Rop is idempotent), where ® indicates the
Kronecker product of matrices. Similarly, Ry o= (I — 11T/I(1) ® (1 1T/K2) generates the 1 main

effect with the norm fTJl'(]f where J; o = Rfo = Ri0, Ro1 = (11T /K1) @I - 11T/K2) generates

10



the {5 main effect with the norm fTJU,Lf where Jy; = Ra',l = Ro1,and Ry 1 = (I-11T/K,) ®(I—
117/ K;) generates the interaction with the norm fTJl,lf where Jy 1 = Ri"'l = Ry11. A composite
RKHS can be constructed via an RK Ry = 0 oRopo + 610R10 + 0o o1 + 01,1 R11 with the norm
I£l2 = fT(HaéJ(),g + B;éJl‘g + ngJg,l + 91_; Ji,1)f, where 6 € [0,00). Statistical models could be
specified via Jg(f) = fT(Zﬁ QEIJg)f < p which leads to penalty smoothing with Jy as the rough-
ness. A # = oo in Jy puts a term in the null space of the roughness penalty, a § = 0 trims a term,
and a 6 € (0,00) shrinks a term. In the equivalent Bayes model, f(t1,t2) = pu + oz, + B, + Wt
where p ~ N(0,72/K1K>), a ~ N(0,72(I — 117/ K,)/K>), B ~ N(0,75(1 - 117/ K5)/Ky), and
v~ N(0,72(I-117/K;)®(I —11T / K5)), independent of each other. Note that the side conditions
are built into the covariance matrices of the priors. A diffuse prior (72 = 00) leaves a term free, a

degenerate prior (7% = 0) trims a term, and a proper prior (72 € (0, 00)) shrinks a term. O

Example 3.2 Linear Spline and Tensor Product. On [0,1], an RKHS simpler than that in Ex-
ample 2.1is H = {f : [ f2 < oo} with a seminorm J(f) = [ f2 and J; = {1}. The resulting
smoothing spline is known as a linear spline. With a null space norm (f(0))%, H = Ho & H; where
Ho={l}and Hy = {f: f € H,f(0) =0}, with RK’s Rg = 1 and Ry = min(s, t); this configuration
fits the marginalization operator £ f = f(0). With a null space norm (fol )2, Ho = {1} has an RK
Ro=1and Hy =HOHe={f: f€H[fyf=0}has an RK Ry = k1(s)k1(t) + kof|s — 2[)
where k1 and kg are given in Section 2.2; this configuration fits the marginalization operator
Ef= f01 f. Taking E; f = f(0) and E,f = fol f on [0,1]% a tensor product RKHS with ANOVA
modules can be constructed as follows. Rpo = 1 generates the constant function space with a
norm Jo o f) = (fol £(0,t2)dt2)?, Ry o = min(sy,1;) generates the #; main effect space with a norm
JiglF) = fol(fol fh dty)2dty, Ro1 = ki(s2)k1(tz) + ko(|s2 — ty|) generates the ¢, main effect space
with a norm Jo1(f) = fol(ftz(o,tg))2(itg, and Ryy = min(sy,t1)(ki(s2)k1(t2) + ka(|s2 — t2])) gen-
erates the interaction space with a norm Jy1(f) = [; fi ﬂ%‘tzdtldtg. Pasting things together,
an RK Ry = 6poRop + 61 0R10+ 0o1Ro1 + 61,1 R1,1 generates an RKHS with a norm [1F]2 ==
050Jo0(f) + 01671,0(f) + 051 J0.1(f) + 071J1,1(f), where 8 € [0,00). Statistical models could be
specified via Jo(f) = 2 g HEIJg(f) < p. Usually 6y is set to infinity in Jy to put the constant
in Jy. Other ’s can not be set to infinity or otherwise interpolation results. Setting a 6 to 0

eliminates a term. O

11



Table 3.1: Norms in simple tensor product RKIIS’s in Example 3.3

R T2
Ree  (Jy fp fdtrdts)?
Ree  (fo fy fudtrdiy)?
Ren  (Jo Jo furdtrdty)?
RS,C fol(fol ft2dt2)2dt1
Rye  Jolly £2dts)ats
Res o fol(ft(;‘?g)zdfldtz

s
o

Example 3.3 Tensor Product Cubic Spline. The construction of RKHS on [0, 1]? using H = Tk
Jo f? < 00} as marginals has a slight complication as we will see shortly. Take Eyf = Eof = [} f.
With a norm (f f)? + (fol )2+ fol 2 H =H,®Hr ®MH,, where H, = {1} span the constant
with an RK R. = 1, Hr = {(- - .5)} spans the “polynomial” with an RK R, = ky(s)ky(t),
and iy, = if s f e H,folf = J3 f = 0} collects the “smooth” (meaning rough!) part with
an RK Ry = ka(s)ka(t) — ka(ls —t]). Ef € H. and (I — E)f € Hy ® H,s. Since H, and H,
don’t fit together naturally, we shall separate them in constructing the simple tensor product
RKHS’s, which entails the complication. There are altogether nine simple tensor product RKHS
modules. The one with an RK R.. = 1 generates the constant term, the ones with RK’s R o=
Rr(s1,t1) and Ry, = R4(s1,t1) generate the #; main effect, the ones with RK’s Hopi= R8st ) and
R,y = Rs(s2,12) generate the ¢, main effect, and the ones with RK’s Rrx = Rp(81,41)Re(52,12),
Brs = Ry(81,t1)Rs(52,t2), Ren = Rs(51,11)Ra(82,12) and R, s = Ry(s1,t1)Rs(82,12) generate the
interaction. An RK Ry = "5 63Rp generates an RKHS with a norm ||f||2 = 28 BglJﬁ(f), where
the Jg, listed in Table 3.1, are norms in modules generated by Rj. Statistical models can be
specified via Jo(f) = 305 HEIJg(f) < p, where a § = oo in Jy puts a term into J; and a 6 = 0
climinates a term from the model. Usually 8, ., 0, ., 0.r and 0 . are set to infinity in Js. Other

f’s can not be set to infinity or interpolation results. O

Example 3.4 Analysis of Covariance. Consider a product domain {1,---, K} x[0,1]. Let By f = f
and Exf = fol J. We shall use the marginals of Examples 3.1 and 3.3 to construct tensor product
RKHS’s. There are six simple tensor product RKHS modules. The one with an RK Bo.= 1K

generates the constant term, the one with an RK Ry . = Rq(s1,t;) generates the £; main effect, the

12



Table 3.2: Norms in simple tensor product RKHS’s in Example 3.4

Rs Jp

Roe (Ko R /a0 /K

K. {;=1(fol(f = 2&:1 f1K)dty)?
Rox (Th=i o frdt2)?/ K

Ro,s R fa Pt f K

Rl,r Zﬁ:l (’f(}(ftz = Zt;\;=1 j}z/ﬁ-)dtg)z
Ris  fo Ti=a(fg — Tt fa/K)%diy

ones with RK’s Ro » = Ry(s2,13)/K and Rgs = Rs(s2,t2)/ K generate the t; main effect, and the
ones with RK’s Ry » = Ri(s1,t1)Rx(s2,t2) and Ry s = Ry(s1,t1)Rs(s2,t2) generate the interaction.
An RK Ry = ) 505R5 generates an RKHS with a norm ||f[|7 = 34 Hgng(f), where the Jg,
listed in Table 3.2, are norms in modules generated by Rp. Statistical models can be specified via
Jo(f) =25 BalJﬁ(f) < p, where a § = oo in Jy puts a term into J; and a @ = 0 eliminates a term
from the model. The constant is usually unpenalized, i.e., o, = 0. Ry, Ror and Ry, are all of
finite dimension, and can be put into J; without interpolating the data. Setting he=0:=0
enforces a main-effect-only model, which amounts to parallel cubic splines. Forcing 6y, = 6,
and setting all other é’s to infinity yields separate cubic splines at different ¢; values but with a
common smoothing parameter. Finally we note that to obtain separate cubic splines at different ¢,
values with separate smoothing parameters, one needs to decompose the RK in R® into K terms
Jl= Z{f:l Ji;, where J; has 1 at (7,17) and 0 everywhere else, and construct tensor product modules

from J;. O

It is clear that the models specified via Jy(f) < p in a multimodule RKHS depend on p as well
as the parameters 3. In general, the Rp generate functions of different nature and the scalings
are arbitrary, so it is necessary that the #z appearing in Jy, together with p or equivalently the
Lagrange multiplier A, be selected adaptively in data analysis. RK’s are the prime object in the
construction of tensor product RKHS’s and explicit forms are necessary. Norms only serve to help

the perception of models so explicit forms are dispensable.
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4 Modeling Tools

Sections 2 and 3 concern the (conceptual) construction of nonparametric models via the smoothing
spline approach. To make the approach applicable in data analysis, further tools are needed.
In this section, we briefly describe a few modeling tools for model fitting, model checking, and
precision assessment. These tools are considerably different from their counterparts in a parametric
statistical analysis, as we will see shortly, and that is not surprising because the basic principle of
a nonparametric analysis is sufficiently different from that of a parametric analysis. We remark
that the development of modeling tools, especially for model checking and precision assessment,
is by and large immature at the present time, and the reader will see that there are many open

problems.

4.1 Calculation of cross-validated fit

This subsection is about model fitting. Consider the following generic problem.

n

min 3" (i — F()) + 3 3 05 5(0), (4.1

=1 A=1

where [ = Z%:D faeH= @gzo?{,@, fa € Hp, and Jp(f) = J3(fg) is a square norm on Hy with
the associated RK 5. The 65 appearing in the penalty Jg(f) = e HEIJﬁ(f) are all in (0, 00)
and J; = Ho. It is easily seen that all our examples in Sections 2 and 3 are specializations of (4.1),

with p = 1 for the examples of Section 2. The solution of (4.1) has an expression

M n 2
= Z bu(dy + > (D 85Ra(ti,))es = ¢T()d + £7()e, (4.2)

i=1 B=1

where {¢,}; span Ho, £7(-) = (&4(-),-- 5 &a(4)), &) = 2%:1 0aRpa(t;,-), and ¢ and d are the
minimizers of

(y - Sd— Qc)"(y — Sd — Qc) + nAc’ Qc, (4.3)

where §' is n X M with (i, v)th entry ¢,(¢;), Q@ = Zfﬂ:l 05Q s, and Qg is n x n with (7, 7)th entry
Rp(ti,t;); see, e.g., Kimeldorf and Wahba (1971) and Gu and Wahba (1991a). It can be shown

that (4.2) is unique as the solution of (4.1) provided that § is of full column rank, whereas (4.3)
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could have multiple numerical solutions of e. All we need, however, is one solution of (4.3), which

can be obtained by solving the well-behaving surrogate linear system

(Q+nA)c+5d = y
§Te = 0. (4.4)

The choice of smoothing parameters A and 65 in (4.1) determines the behavior of a smoothing spline
estimate. A good choice is via the generalized cross-validation of Craven and Wahba (1979), which
aims to minimize the mean square error of the resulting estimate; relevant asymptotic analysis and
empirical results may be found in Wahba (1990) and references cited therein. Generic algorithms
for solving (4.4) with cross-validated smoothing parameters appear in Gu et al. (1989) and Gu and
Wahba (1991a), where further details can be found. The algorithms are implemented in a collection
of Ratfor subroutines under the name RKPACK (Gu 1989) available from Statlib and Netlib. To
use the software, the user has to construct the S and Q3 matrices and input them together with
the response vector y into one of the drivers, and the driver will return the cross-validated fit in
terms of nA, 85, ¢, and d. The drivers also return a variance estimate 62 recommended by Wahba

(1983).

4.2 Cosine diagnostics

This subsection is about model checking. Similar to the fact that the rigid constraint in a parametric
analysis makes lack of fit the main concern there, the flexibility in a nonparametric analysis makes
overinterpretation the prime target of the current development. More precisely, we consider an
interpretable decomposition of the fit f = ZE:O fa, such as the ANOVA decomposition of Section 3,
and check for the identifiability and the nontriviality of the terms in such a decomposition. By
convention fo is taken as the constant function. Note that this decomposition is in general different
from the computation-oriented decomposition in (4.1). Also note that such checks are not necessary
if the sole purpose of the analysis is for prediction.

Assume that the decomposition f = Zg:o fs is well-defined on the domain 7. When a fit is
calculated from the data, however, information comes from the design points ¢;, and the credibility

of the decomposition depends on how well it is supported on the design points. Evaluating the fit
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at t;, one gets a retrospective linear model

y=fot -+ F+é, (4.5)

where f p are fg evaluated at t; and € is the residual vector. Removing the constant by projecting
(4.5) onto {1}+, one gets
g=Fs %A f e (4.6)

The collinearity indices xg’s of (fy,- -+, f,) (Stewart 1987), which can be calculated from the cosines
between the f,’s, measure the identifiability of the terms in the decomposition 2%21 fp, and in
turn the identifiability of the terms in the decomposed fit f = Eg=0 fp. The fz’s are supposed to
predict the “response” z so a near orthogonal angle between a fs and z indicates a noise term.
Signal terms should be reasonably orthogonal to the residuals hence a large cosine between a I
and e makes a term suspect. cos(z,e) and R? = ||z—e||?/||z||? are informative ad hoc measures for
the signal to noise ratio in the data. A very small norm of a f 5 compared to that of z disqualifies
the cosines as reliable measures, but it itself indicates a negligible term. We will treat the cosine
diagnostics as absolute measures for cross-validated fits. Our limited experience suggests that a
term with cos(z, f) < .25 may be discarded and a term with cos(z, f) > .4 and with a reasonable
magnitude is not likely all noise. More discussion can be found in Gu (1992). These measures are
intuitively reasonable and have been used successfully in examples. It would be nice to have further

understanding of their operating properties.

4.3 Bayesian confidence intervals

This subsection is about precision assessment. As noted at the end of Section 2, a smoothing spline
is an empirical Bayes estimator under a Gaussian prior. More precisely, it can be verified that the

solution of (4.1) is just the posterior mean of a model

M P
vi = ) (b)) + D gp(ti) + &, (4.7)
v=1 =1

where gg are independent mean zero Gaussian processes on 7 with covariance functions Cov(gs(s), gs(s')) =

bigRps(s,s") where b = o /n), ¥, = d,¢, where d, have uniform improper prior on (—00,00), and
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€ ~ N(O,a-z). Let S and Qg be as defined in (4.3) and M = > h=105Qp + nAI. The posterior

distributions are summarized in the following theorem.

Theorem 4.1 Fiz nA, 3, and o2 in (4.7).

E(du(s)ly) = ¢u(s)el (STM8) 1T M1y (4.8)
E(gs(s)ly) = 6pRp(s, 8" )M~ — M71S(STM1 ) ST M)y (4.9)
Cov(¥u(3), vu(sN¥)/b = du(s)du(s)el (STM1S) e, (4.10)
Cov(t, (), gp(s)ly) /b = —du(s)el(STM™1S) 1T M~105R4(t, s) (4.11)

Cov(ga(s), 9-()ly)/b = —OsRp(s, 8" )M~ = M1 S(STM™5) " STM )0, R, (8, 8")
+65,403R5(s,s") (4.12)

where t is the vector of the design points, e, is the vth unit vector, and 05, 15 the Kronecker delta.

A proof of the theorem can be found in Gu and Wahba (1993b). Based on (4.8) - (4.12), posteriors of
all linear combinations of ¢, and gg, specifically those of the terms in an ANOVA decomposition on
a product domain, can be readily derived. The calculations of these quantities can be conveniently
conducted using the RKPACK facilities; see Gu and Wahba (1993b). One may plug in the cross-
validation estimates for the smoothing parameters appearing in the formulas and use b = &2 /nA,
where the 67 is the variance estimate recommended by Wahba (1983). Based on the posterior
analysis, component-wise Bayesian confidence intervals can be easily constructed for any linear
combinations of ¢, (s) and ggs(s), including terms in an ANOVA decomposition and f itself. These
confidence intervals were first studied in Wahba (1983). See also Wecker and Ansley (1983). Under
certain conditions, these intervals have a “correct” asymptotic average coverage, in the sense that
the coverage of the true component by the 1.960 intervals averaged over the design points ¢; centers
around 95%. Further details can be found in Wahba (1983), Nychka (1988, 1990), and Gu and
Wahba (1993b).

5 Examples

We will analyze three data sets in this section using the techniques presented in the previous

sections.
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Table 5.1: Diagnostics for Pure Noise

i I f1,2 € z
K 1.07 1.02 1.05| R% =0.044

cos(e,+) | 0.00 0.00 0.02 1 0.98
cos(z,-) | 0.07 0.01 020 0.98 1
|- |116 010 2.08 9.98 10.26

5.1 Pure noise

The first example is a trivial exercise. We generated n = 100 design points from U(0,1)? and
attached 100 pseado N(0,1) deviates as y; to these points. We used the tensor product cubic spline
of Example 3.3 to fit the data. The fit was calculated with 0.. = 8., = Orc = 0rr = oo and with
the other five smoothing parameters cross-validated. The nine fitted terms were then collapsed
into one constant, two main effects, and one interaction terms. The diagnostics are summarized in

Table 5.1. The conclusion is self-evident.

5.2 NOX data

The data were from an experiment in which a single-cylinder engine was run with ethanol. There
were 88 measurements of compression ratio (C'), equivalence ratio (F), and NO, in the exhaust.
The purpose of the analysis was to see how NO, depends on E and C. Cleveland and Devlin
(1988) have more details about the data and an analysis using the multivariate loess. Breiman
(1991) analyzed the same data using the [] method. We followed Cleveland and Devlin (1988) by
taking the cube root transformation of NO,. Since C only varied on 5 distinct values, we could
treat it both as a continuous covariate and as a discrete covariate, which we did in different analyses.

The covariate £ was translated into [0,1] by ¢4 = (F — .535)/.697. First we treated C as
continuous and translated it by ¢, = (C' — 7.5)/10.5 € [0,1]. A tensor product cubic spline fit was
calculated the same way as in the pure noise example. The diagnostics are summarized in Table 5.2.
f2 and f, ; were basically orthogonal to z. Clearly, there wasn’t enough evidence in the data to
support the C main effect and the interaction.

Treating C' as a nominal discrete covariate, we also calculated a tensor product spline model

using the terms in Table 3.2 (with ¢; and ¢, switched) with Beop = 0:n = Opp = 073 = 00. The
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Table 5.2: Diagnostics for NOX Model: Continuous C.

f1 £ .f1.2 € z
K 1.08 1407 . 1.02 | RB* = 051
cos(e,:) | 0.04 0.00 0.07 1 0.18
cos(z,-) | 0.96 -0.02 0.04 0.18 i)
(-1l 10.80 243 170 1.31 1057

Table 5.3: Diagnostics for NOX Model: Discrete C.

fi Fs. 1. E z
K 1.06 1.08 1.02 R? = 974
cos(e,-) | 0.04 -0.00 0.06 1 0.7

cos(z,) | 0.96 -0.02 012 017 1
-] | 1065 245 168 1.28 10.57

diagnostics are summarized in Table 5.3. The conclusion remains unchanged. To exercise extra
caution to protect the interaction which was declared eminent by both Cleveland and Devlin (1988)
and Breiman (1991) in their analyses, we further attached five separate smoothing parameters to
the slices at the five different C' values so the five curves are not shrunk towards each other, and
calculated the cross-validated fit and evaluated the ANOVA decomposition with the side conditions
fol fdty = 3" f = 0 at the design points. The diagnostics are summarized in Table 5.4. Despite
the special protection, the C' main effect and the interaction are still beyond our sights.

We finally calculated a cubic spline fit of N Oi’f ®on E , which is plotted in Figure 5.1 together

with the connected 1.960 Bayesian confidence intervals.

Table 5.4: Diagnostics for NOX Model: Separate # for Different C.

J1 f2 Si2 € z
K 1.05 1.06 1.01| R?=.979
cos(e;-) | 006 0.00 D12 1 Il

COS(z, 3| 096 -0.02 0.19 0.17 il
|-l |10.55 2.31 1.84 0.91 10.57
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Figure 5.1: The NOX Model. The dashed line is the cross-validated cubic spline fit. The dotted
lines are connected 1.960 Bayesian confidence intervals. The data are superimposed as stars.
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5.3 Ozone data

The data are 330 daily measurements of ozone concentration and eight other meteorological vari-
ables in the Los Angles basin in 1976. The purpose of the analysis is to build a predictive model of
the ozone concentration on the other variables. The data were analyzed by Breiman and Friedman
(1985) using ACE and by Buja et al. (1989) using additive regression models. A data description, a
scatter plot matrix of the data, and a comparative study of various modeling techniques applied on
the data can be found in Section 10.3 of Hastie and Tibshirani (1990). We used the variable code
of Hastie and Tibshirani (1990) in our analysis (except that humidity is shortened as hum), and
followed their suggestion in taking the log transform of the ozone concentration as the response.
From the scatter plot matrix, the three variables vh, temp, and ibt are highly linearly correlated,
and we picked vh and discarded the other two in our analysis. We also discarded the variable wind
which showed no relation with any of the other variables. A square root transform is applied to
the variable vis to make it more uniformly scattered on its range.

Our first attempt was to fit a model on the variables vh, hum, ibh, dpg, and vis. The translation
(- — min)/(max — min) was applied to all the variables to map the data into [0, 1]°. We first used
tensor product linear spline with all five marginalization operators as Ef = f01 f. Linear splines
give rougher looking fits but the main features of the fits are the same as those of cubic spline fits;
see Gu and Wahba (1991a) for some simulation results. The reason for using linear splines in the
screening stage was to save the number of smoothing parameters we had to deal with, noting that
an interaction in a tensor product linear spline carries only one smoothing parameter while a two-
factor interaction in a tensor product cubic spline can have as many as four. This is a computational
advantage of linear splines over cubic splines in a multivariate setup since the cost of computing is
proportional to the number of free smoothing parameters; see Gu and Wahba (1991a). We included
the five main effects and the ten pairwise two-factor interactions of the five variables, altogether
16 terms (including the unpenalized constant). The cross-validated fit has a B? = 0.741. The 7
terms with small cos(z, f) and very small || f|| are listed in Table 5.5. Note that these include all
pairwise interactions but those among the three variables vh, ibh, and vis. A refit was calculated
with the terms in Table 5.5 deleted. The diagnostics are summarized in Table 5.6, where the last
line records the maximum ratio (in absolute values) on the design points of the posterior mean over

the posterior standard deviation of each term. It can be seen that fium, fibh, Jvh,ibh, and fuh vis are
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Table 5.5: Diagnostics for Ozone Data: Noise Interactions.

Tyichon - duhfion dhinmih. Shomdbe. . o Doth .. s € z
cos(z, -) 0.59 0.57 0.21 0.38 0.20 0.16 0.18 0.53 i
-] 0.03 0.00 2.39 0.00 0.00 128 0.00 5.23 13.57
Table 5.6: Diagnostics for Ozone Data: Linear Spline Fit.
i Toe T Fonws  Fenan fibhyis € e
1.78 292 480 273 2.38 2.33 1.86 2.30 R? = 667
cos(e, -) 0.06 0.09 0.06 0.08 0.06 0.11 0.13 0.14 1 0.59
cos(z,-) 0.63 037 0.67 042 0.48 0.48 0.41 0.50 0.59 1
-1l 635 DBy 197 @40 27y 102 0.y 204 @b5 tuEy
max(ffe:) | 867 127 189 453 305 184 107 353

very weak, both in that their norms are small and in that their 1.960 Bayesian confidence intervals
completely cover zero. Four of the five estimated main effects and their 1.96¢ Bayesian confidence
intervals are plotted in Figure 5.2.

A five term cubic spline refit was then calculated, including fin, fibh, Japgs fvis, and fiph,vis,
where fipp was included because that cos(z, fy,),) in Table 5.6 is big and that the interaction fibp vis
was included. The diagnostics of the refit are summarized in Table 5.7. fibh,vis became the next
target of deletion. We finally fit a cubic spline main-effect-only model with fuh, fibh, fapgs and fyis.
The diagnostics of the refit are summarized in Table 5.8. Everything looks normal. The terms in

the final model are plotted in Figure 5.3.

Table 5.7: Diagnostics for Ozone Data: Cubic Spline Fit.

Tk fih Lo Jwe doiade . © z
K Ly 183 A5 1835 1.3%7 RZ2 = 712
cos(e, -) 000 0.02 0.02 0.03 0.04 1 0.54
cos(z,-) 0Bl D68 042 (42 D38 054 1
- 590 3.21 479 2.79 2922 6.97 13.57
max(f/os) | 1142 153 644 2.68 1.62
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Iigure 5.2: The Linear Spline Ozone Model: Main Effects. The dashed lines are the posterior
means. The dotted lines are connected 1.960 Bayesian confidence intervals.
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Figure 5.3: The Cubic Spline Ozone Model. The dashed lines are the posterior means. The dotted
lines are connected 1.96¢c Bayesian confidence intervals.
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Table 5.8: Diagnostics for Ozone Data: Final Model.

T ot fioh [ dpg b € z
K 148" 158 Tl 1LIF | = bad
cos(e, +) 0.00 0.01 0.02 0.04 i 0.55
cos(z,-) 061 067 042 045 0.55 1
-1 6.04 422 496 2.02 727 13.57
max(f/os) | 11.52 592 6.93 3.83

6 Comparison of Parametric and Nonparametric Analyses

Data analysis does not produce information. The amount of information in the output of an
analysis can not exceed the amount of information contained in its input, namely the data and
the assumptions. In a nonparametric analysis one assumes less, so naturally the conclusions of a
nonparametric analysis shall be weaker than those of a parametric analysis based on the same data.
In this section, we present simulated examples to illustrate some implications of this simple fact.
Consider f(t1,t3) = 1.5+ .5(e3* — 1) + 3sin(27ty — m) on [0, 1]%. We generated n = 50 design
points (t1,i,12,:) from U(0,1)? and calculated y; = f(t14,12,) + €, where ¢; were generated from
N(0,1). We then conducted analyses using the ordinary linear regression technique, the parametric
nonlinear regression technique, and the smoothing spline technique under decreasing amount of
assumptions. Note that the function fis written as f = fy+ f1(t1)+ fa(t2), where f1(0) = f[} =0
We shall compare the confidence intervals of f; and f, from the three analyses. Note that the
standard confidence intervals in a parametric analysis could be viewed as Bayesian confidence
intervals under a uniform improper prior in the parametric space and they do carry a correct
average coverage, so the intervals are comparable to each other under appropriate interpretations.

In the first analysis, we fitted a linear model
y = B1 + B2(e® — 1) + B3sin(2rty — 7) + €.

The least squares fit gives BT = (1.691, .468,2.826) The estimated fi(#1) and fo(¢2) are simply

Ba(e — 1) and Bz sin(27ity — 7) with standard deviations sg,le*t — 1] and sy |sin(2mt; — 7).
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In the second analysis, we fitted a nonlinear model

y=p1+ ﬂz(eﬁstl — 1) + B4sin(27wty — fs) + €.

Yl ;
The least squares fit gives 8 = (1.771,.394, 3.170,2.812,3.142). To make inferences concerning a
nonlinear model, a standard approach is to calculate the linear approximation of the model at the

fit, which we did. The approximating linear model in this case is

¥ = i+ yz(eﬁatl -1+ a2ty 4y sin(27ty — ﬁ5) + 5 cos(2mty — ﬁs) +e€

1+ Y21 (t) + yaz2(t1) + yaza(ta) + ysza(ta) + €,

Il

where e®tit; = d(efh — 1)/dBa and cos(2nty — fBs) = —d(sin(27ty — f5))/dfs. As expected, the
least squares fit gives 47 = (1.771,.394, .000,2.812,.000). Note that z1(0) = 29(0) = fol oy =
fol 24 = 0. The estimated fi(t1) is ﬁg(e’é“l — 1) = A2z1(t1) + Faze(t1) with an approximate
standard deviation (s%arf(tl) + 2583, 85, 7(F2, Y3)z1(t1)z2(t1) + sfmmg(tl))lfz. The estimated fo(t2)
is Bysin(2rty — Bs) = Faza(t2) + Ys24(t2) with an approximate standard deviation (s,%4a:§(t2) +
255, 55,7 (F4, ¥5)wa(t2)wa(tz) + 83 23(12))"/%.

In the third analysis, we used the two different configurations of cubic splines in Section 2 on the
two axes to comply with the two different side conditions f;(0) = 0 and f fo = 0. The interaction
is eliminated and the penalty on the remaining components is J(f) = 91_1 fol f1 dt, + 631 fol fgdtg.
The null space basis is {1,%;,?2 — .5}, {from which the matrix S was generated. Ri(s1,t1) =
Jl(s1 = u)y (b — w)pdu = (3t — 51)83/6 for s < t1, and Ra(sa,t2) = ka(sa)ka(t2) — ka(|s2 — ta]),

from which @, and @2 were constructed. The fit has an expression

f(ti,t2) = di+daty +ds(ta — .5) + Zci(elRl(tl,iatl) + 01 Ro(t5,5,12))
=1
[dy] + [daty + 64 Z ciRa(t1:, 1)) + [da(ta — .5) + 0, Z ciRa(ta:,t2)),

fz=1 1=

fl

where the brackets indicate the decomposition f = f3 + f1 + f2. Cross-validated fit and the related
posterior standard deviations were calculated using RKPACK facilities as described in Section 4.

The results of the analyses are summarized in Figure 6.1. The two columns of Figure 6.1
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correspond to the results for f; and f; respectively. The first three rows of Figure 6.1 correspond
to the linear model analysis, the nonlinear model analysis, and the smoothing spline analysis
respectively, where the solid lines are the truth, the dashed lines are the fitted, and the dotted
lines are the 1.96¢ Bayesian confidence intervals. The last row of Figure 6.1 compares the standard
deviations in the three analyses, with o indicating the ordinary linear model, n indicating the
nonlinear model, and s indicating the smoothing spline. As expected, the fewer the assumptions,
the wider the intervals. For fi, it can be seen that the impact of f;(0) = 0 fades out much faster
in the spline case than in the parametric cases. For f,, the smoothing spline is less sure about its
estimation near the boundaries of the data region.

Now consider a function f(t1,%3) = 1.5+ [[4(e38 — 1) + 2(1 — e~ 28)] 4 [2.75sin(2rty — ) —
Ssin(4rtg—7)] = fop+ f1+ f2. Note that both f; and f; are just slight modifications of the previous
ones. We generated new y; by evaluating this function on the same 50 design points and adding the
same 50 pseudo N (0, 1) perturbations. The maximum pairwise difference between the two sets of v;
is 1.045. The same three analyses conducted above were repeated on the new data set. The results
of the analyses are summarized in Figure 6.2 with further details omitted. Based on the inaccurate
assumptions, the 1.960 confidence intervals in the linear model analysis missed f; almost entirely
and missed f, over more than half of the [0, 1] interval. The nonlinear parametric analysis gave a
better estimate for f; because of the extra flexibility. However, the nonlinear f, point estimates
are almost the same as in the linear model since the phase flexibility didn’t help, although the
interval estimates are more honest because of the extra uncertainty in the assumptions. In contrast
to the parametric analyses, the performance of the smoothing spline analysis stays the same, and
is comparatively better than the parametric analyses on the new data set. The conclusion is clear.
More assumptions yield stronger claims, which are honest (hence better) when the assumptions are

accurate, but could be misleading when the assumptions are inaccurate.

7 Model Indexing and Cross-Validation

As a model selection tool, generalized cross-validation aims to minimize the mean square error
of the resulting estimate. Naturally, one would expect the cross-validated model to follow the
optimal model which delivers the smallest mean square error among the class of available models.

In examining the merit of cross-validation or any other model selection tools from this perspective,
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Fligure 6.1: A Comparison ot Nonparametric Analysis and Parametric Analyses with Correct Para-
metric Families. (a-b): Linear; (c-d): Nonlinear; (e-f): Nonparametric; (g-h): Comparison of

Standard Deviations.
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however, the proper indexing of the models is subtle. We shall illustrate this point via a set of
simple simulations, and briefly discuss some implications of our finding.

Generate samples via y; = 3sin(27t; — 7) + €, t; = (i — .5)/100, ¢ ~ N(0,1),7 = 1,---,100,
and calculate estimates using the cubic spline of Example 2.1. The choice of the test function
is arbitrary and the signal to noise ratio is at best moderate. Knowing the truth, the optimal
model could be obtained via a fine grid search in log;ynA. After simulating 100 replicates, the
cross-validation log;ynA and the optimal log;,nA are plotted in the left frame of Figure 7.1. The
cross-validation A captured the magnitude of the optimal A, but the apparent negative correlation

appears bothersome. There is something wrong.

CV log_10 n*lambda

w )
S o w ] 2
£
J P _
= -
. B-a
D >
< &)
4 o 4
[T ]
-4.5 -3.5 -2.5 3.5 4.5 55
Optimal log_10 n*lambda Optimal log_10 rho

Figure 7.1: Behavior of Cross-Validation under Different Model Indexing. The left frame uses the
A indexing; the right frame uses the p indexing.

If the plot were not misleading us, then certainly cross-validation worked towards the wrong
direction! But wait, what is the meaning of A in this context? Recall Section 2, the underlying
models are most directly specified via J(f) < p, which unfortunately gets ignored once we start
to work with the convenient penalized least squares score (2.5). The subtle point rests right here:

The p indexing of models is apparently data independent whereas the indexing by the Lagrange
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multiplier A is data dependent through the least squares. This tells us that the same A value
in (2.5) generally implies different underlying models for different data, so the points in the left
frame of figure 7.1 are not comparable with each other. Now comes the right plot using the correct
indexing: We calculated p = J( f ) which codes the selected models, and plotted the cross-validation
log p and the optimal log p of the replicates in the right frame of Figure 7.1. Note that the penalty
enters (2.5) in the form of AJ(f), so the axes of the two plots are carefully scaled to the same
unit. Clearly, the counter-intuitive negative correlation disappears. Furthermore, the range of the
optimal models now appears much tighter, as it should be because the replicates are from a single
data source.

The negative correlation demonstrated in the A plot seems not a coincidence; it occurred in all
similar simulations we conducted. The same phenomenon has also been reported many times in
the literature for cross-validated kernel estimation applied to replicates generated from single data
source, where the parameter A is to be replaced by the kernel width; see, e.g., Hall and Johnstone
(1992) for a recent account.

The implications of this subtle observation are straightforward but somewhat striking; what
was deemed natural may now sound awkward. For example, it may not make sense to talk about a
fixed “optimal” A under repeated sampling from a single data source. Similarly, practical smoothing
parameter selection under the A indexing should only involve the observed data; this technically
rules out the use of resampling techniques in the selection of A. These implications do not extend
to the p indexing, which however is very inconvenient to work with.

Of course our finding is in the spline smoothing context to which the implication is limited.
Similar negative correlation in the kernel estimation literature between various forms of cross vali-
dation kernel widths and optimal kernel widths under repeated sampling from a single data source
tempts us to submit that the kernel width indexing of kernel estimates may share more properties
with the A indexing of splines than with the p indexing of spines. A thorough understanding of
related facts would require far more complicated analysis, however, and for now we shall leave it

to the reader to judge how far the implications of our finding may extend.
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8 Concluding Remarks

With the materials presented in Sections 2 through 6, we hope to bring to our readers’ attention
some of the recent developments in spline smoothing, their usefulness in data analysis, and the pros
and cons of a nonparametric analysis compared to a parametric analysis. The main features of the
smoothing spline technique are its generic explicit model specification and its generic continuous
model coding via the smoothing parameters. The former makes it easier to incorporate structures
on complex domains and the latter makes it possible to develop generic code for computation.
The role of the underlying models in nonparametric estimation has been largely neglected in the
literature, and Section 7 reminds us the possible pitfalls due to such a negligence. We omitted
several important topics in our exposition, such as the thin plate splines and the smoothing of
non Gaussian data; a comprehensive treatment can be found in Wahba (1990). Topics other than
regression such as density estimation and hazard estimation are also omitted in our treatment.

In Sections 2 and 3, discrete domain smoothing splines are described in some detail for the first
time, and are used as primary examples in our exposition. Although mathematically the simplest,
these models are probably the least understood from a nonparametric perspective. The pure discrete
models are potentially useful in handling large sparse contingency tables, and the mixed-covariate
models provide a means for conducting nonparametric analysis of covariance. Further study is

needed before routine use of these models can be recommended, however.

Acknowledgements

Chong Gu’s research was supported by NSF under Grant DMS-9101730. Grace Wahba’s research
was supported by NSF under Grant DMS-9002566.

32



References

Aronszajn, N. (1950), “Theory of Reproducing Kernels,” Transaction of the American Mathemat-
teal Society, 68, 337 — 404.

Bates, D. and Watts, D. (1988), Nonlinear Regression Analysis and Its Applications. Wiley.

Breiman, L. (1991), “The [] Method for Estimating Multivariate Functions from Noisy Data”
(with discussion), Technometrics, 33, 125 — 160.

Buja, A., Hastie, T., and Tibshirani, R. (1989), “Linear Smoothers and Additive Models” (with
discussion), The Annals of Statistics, 17, 453 — 555.

Cleveland, W. and Devlin, S. (1988), “Locally Weighted Regression: An Approach to Regression
Analysis by Local Fitting,” Journal of the American Statistical Associalion, 83, 596 — 610.

Craven, P. and Wahba, G. (1979), “Smoothing Noisy Data with Spline Functions: Estimating the
Correct Degree of Smoothing by the Method of Generalized Cross-Validation,” Numerische
Mathematik, 31, 377 — 403.

Draper, N. R. and Smith, H. (1981), Applied Regression Analysis (2nd ed.) Wiley.

Friedman, J. (1991), “Multivariate Adaptive Regression Splines” (with discussion), The Annals of
Statistics, 19, 1 — 141.

Friedman, J. and Stuetzle, W. (1981), “Projection Pursuit Regression,” Journal of the American

Statistical Association, 76, 817 — 823.

Gu, C. (1989), “RKPACK and Its Applications: Fitting Smoothing Spline Models,” Proceedings

of Statistical Computing Section: American Statistical Association, 42 — 51.

—— (1992), “Diagnostics for Nonparametric Regression Models with Additive Terms,” Journal

of the American Statistical Association, 87, 000 — 000.

Gu, C., Bates, D. M., Chen, Z., and Wahba, G. (1989), “The Computation of GCV Functions
through Householder Tridiagonalization with Application to the Fitting of Interaction Spline

Models,” STAM Journal on Matriz Analysis and Applications, 10, 457 — 480.

33



Gu, C. and Wahba, G. (1991a), “Minimizing GCV/GML Scores with Multiple Smoothing Param-
eters via the Newton Method,” SIAM Journal on Scientific and Statistical Computing, 12,
383 — 398.

—— (1991b), Discussion of “Multivariate Adaptive Regression Splines” by J. Friedman, The
Annals of Statistics, 19, 115 — 123.

—— (1991c), “Smoothing Spline ANOVA with Component-Wise Bayesian “Confidence Inter-

vals”,” Journal of Computational and Graphical Statistics, tentatively accepted.

——(1993), “Semiparametric ANOVA with Tensor Product Thin Plate Splines,” Journal of the
Royal Statistical Society, Ser. B, 55, 000 — 000.

Hall, P. and Johnstone, I. (1992), “Empirical Functionals and Efficient Smoothing Parameter
Selection” (with discussion), Journal of the Royal Statistical Society, Ser. B, 54, 475 — 530.

Hastie, T. and Tibshirani, R. (1986), “Generalized Additive Models,” Statistical Science, 1, 297 —
318.

—— (1990), Generalized Additive Models. Chapman and Hall.
Huber, P. (1985), “Projection Pursuit” (with discussion), The Annals of Statistics, 13, 435 — 475.

Kimeldorf, G. and Wahba, G. (1970), “A Correspondence between Bayesian Estimation of Stochas-
tic Processes and Smoothing by Splines,” The Annals of Mathematical Stalistics, 41, 495 —
502.

—— (1971), “Some Results on Tchebycheffian Spline Functions,” Journal of Mathematical Anal-

ysis and Applications, 33, 82 — 95.

Nychka, D. (1988), “Bayesian Confidence Intervals for Smoothing Splines,” Journal of the Ameri-
can Statistical Association, 83, 1134 — 1143.

—— (1990), “The Average Posterior Variance of a Smoothing Spline and a Consistent Estimate

of the Average Squared Error,” The Annals of Statistics, 18, 415 — 428.

Stewart, G. W. (1987), “Collinearity and Least Square Regression,” Statistical Science, 2, 68 —
100.

34



Stone, C. (1985), “Additive Regression and Other Nonparametric Models,” The Annals of Statis-
tics, 13, 689 — 705.

Wahba, G. (1978), “Improper Priors, Spline Smoothing and the Problem of Guarding against
Model Errors in Regression,” Journal of the Royal Statistical Society, Ser. B, 40, 364 — 372.

—(1983), “Bayesian “Confidence Intervals” for the Cross-Validated Smoothing Spline,” Journal
of the Royal Statistical Society, Ser. B, 45, 133-150.

—— (1986), “Partial and Interaction Splines for the Semiparametric Estimation of Functions of
Several Variables,” in Computer Science and Statistics: Proceedings of the 18th Symposium

on the interface, ed. T.J. Boardman, American Statistical Association, pp. 75 — 80.

—— (1990), Spline Models for Observational Data, CBMS-NSF Regional Conference Series in
Applied Mathematics, Vol. 59, SIAM.

Wecker, W. and Ansley, C. (1983), “The Signal Extraction Approach to Nonlinear Regression and

Spline Smoothing,” Journal of the Americam Statistical Association, 78, 81 — 89.

35



