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Abstract

We discuss a class of methods for the problem of ‘soft’ classification in supervised learning.
In ‘hard’ classification, it is assumed that any two examples with the same attribute vector
will always be in the same class, (or have the same outcome), whereas in ‘soft’ classification,
two examples with the same attribute vector do not necessarily have the same outcome, but
the probability of a particular outcome does depend on the attribute vector. In this paper we
will describe a family of methods which are well suited for the estimation of this probability.
The method we describe will produce, for any value in a (reasonable) region of the attribute
space, an estimate of the probability that the next example will be in class 1. Underlying these
methods is an assumption that this probability varies in a smooth way (to be defined) as the
predictor variables vary. The method combines results from Penalized log likelihood estimation,
Smoothing splines, and Analysis of variance to get the PSA class of methods. In the process
of describing PSA we discuss some issues concerning the computation of degrees of freedom for
signal, which has wider ramifications for the minimization of generalization error in machine
learning. As an illustration we apply the method to the Pima-Indian Diabetes data set in the

UCI Repository, and compare the results to Smith et a/(1988) who used the ADAP learning
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algorithm on this same data set to forecast the onset of diabetes mellitus. If the probabilities
we obtain are thresholded to make a hard classification to compare with the hard classification
of Smith et al(1988), the results are very similar, however, the intermediate probabilities that
we obtain provide useful and interpretable information on how the risk of diabetes varies with
some of the risk factors.

KEY WORDS: soft classification, hard classification, penalized log likelihood estimation,
risk factor estimation, RKPACK, smoothing splines, analysis of variance, degrees of freedom for

signal, cross validation, unbiased risk estimate.

1 Introduction to ‘soft’ classification and the bias-variance trade-

off

A typical problem in medical data analysis is the following: Records of attribute vectors as well as
records of the outcome for each example (patient) for n examples are available as training data.
Based on the training data, it is desired to predict the outcomes, for any new examples that may
be presented in the future with only their attribute vectors. In this paper we will consider only
two outcomes (1 and 0), where 1 indicates that a particular medical condition of interest was
(later) found to be true, and 0 indicates that it was found not to be true. As a concrete example,
O’Sullivan, Yandell and Raynor(1986)(OYR) consider records from the Western Electric Health
study which gave patient blood pressure and cholesterol level at the start of the study, and an
indicator 1 or 0 indicating that the pa‘tiént did or did not have a heart attack in the 19 year
follow up period. Assuming that the attribute pair of blood pressure and cholesterol level has been
suitably scaled to a rectangle 7, the ‘hard’ classification problem would be to partition 7, or, more
precisely, some subregion of interest of it, into two non-overlapping regions, one labeled ‘1°, and the
other labeled ‘0. If a neural network (NN) is used for this task, the partition is generally not made
explicit, however, if a new example is presented to the (trained) NN, the NN will produce a 1 or a
0 according to which region the attribute vector for the new example lies. In ‘soft’ classification,
the desired (trained) algorithm will produce not a 1 or 0 but a value p (usually strictly) between
1 and 0, which is an estimate of the probability that the new example is, or will be a ‘1’. OYR
is a prototype for the ‘soft’ classification method that we will be describing. In order to do ‘soft’

classification by the methods we will be discussing, we will be assuming that the desired probability



varies ‘smoothly’ with any continuous attribute (predictor variable). Categorical predictor variates
will (later) be allowed, and if there are more than a few categories, some ‘smoothness’ penalties
on the categorical values will be required. We remark that to talk about probabilities we should
carefully construct a ‘worldview’ in which such probabilities make unambiguous sense, and we shall
do that later.

It is well known that smoothness penalties and Bayes estimates are intimately related (see, for
example Kimeldorf and Wahba(1970, 1971), Wahba(1978), Wahba(1990), Buntine and Weigend(1991)).
We will not discuss this further in the present paper except to note that our philosophy with regard
to the use of priors in Bayes estimates is to use them to generate reasonable penalty functionals
with appropriate free parameters to generate a structure on which estimates can be ‘hung’, (see
Wahba(1990) Chapter 3, also Wahba(1992)) and then use cross-validation (CV), generalized cross
validation (GCV), unbiased risk estimation (UBR) or some other performance oriented method
to choose the free (regularization) parameter(s) in the penalty functional to minimize some com-
putable proxy for the generalization error (a.k.a. the bias-variance tradeoff, see Geman, Bienenstock
and Doursat(1992).) A person who completely believed the associated prior might use maximum
likelihood to choose the free parameters, but maximum likelihood may not be robust against an
unrealistic prior (that is, it may not do very well from the generalization point of view if the prior is
not completely up to snuff), see Wahba(1985). Another proposal frequently put forward is to assign
a hyperprior to the free parameters. However, except in particular cases where much is known «a
priori, there is no reason to believe that the use of hyperpriors will beat out a performance ori-
ented criterion which is a good proxy for the generalization error, assuming, of course, that low
generalization error is the true goal.

The ‘soft’ classification structure that we will describe in this paper historically begins with
the penalized log likelihood risk estimate of O’Sullivan (1983) and OYR, which was extended by
Gu(1990) in such a way that penalized log likelihood risk estimation could be combined with
smoothing spline analysis of variance (SS-ANOVA) as described by Wahba(1986, 1990), Gu(1989),
Gu, Bates, Chen and Wahba(1989), Chen, Gu and Wahba(1989), Gu and Wahba(1991a,b, 1993a,b).
The SS-ANOVA allows a variety of interpretable structures for the possible relationships be-
tween the predictor variables and the outcome. Other recent work with the same goal but with

technically different approaches than that described here include Gray(1992) and Tibshirani and



LeBlanc(1992). For an informative overview of this area from a statistician’s point of view, see
. Ripley(1992).

Gu(1992b) has brought to the fore some rather subtle issues concerning the implementation
of GCV and UBR in choosing (possibly multiple) smoothing parameters in the context of non-
Gaussian (that is, non quadratic) log likelihoods. Both of these estimates require the calculation of
the degrees of freedom for signal (df-signal). We claim that df-signal is going to be a key quantity
in any method which does not seek to fit the data exactly, since it is intimately related to how
close the model reproduces the training data. In this paper we will review and discuss some of the
results in Gu(1992bh) and apply them to a Penalized log likelihood Smoothing spline Analysis of
variance (PSA) model for ‘soft’ classification. Qur discussion concerning df-signal below is related
to an intriguing proposal of Moody (1991), and has possible ramifications in other structures for
machine learning, with respect to the calculation of df-signal in the general case where there is a
non-quadratic optimization problem to be solved numerically, We will in our example use a UBR.
method (see Craven and Wahba(1979) and references cited there) modified for the binomial case
and implemented by the self-voting algorithm in Gu(1992b), where these subtle issues are discussed
in some detail.

In Section 2 we review the penalized log likelihood estimate described in OYR and use that as
a simple vehicle to describe the bias-variance tradeoff (a. k. a. generalization error). In Section
3 we discuss the above mentioned subtle issues in choosing the smoothing parameters and the key
quantity df-signal. In Section 4 we describe the general PSA model, and discuss how to compute it.
In Section 5 we apply several PSA models to the estimation of the risk of diabetes mellitus, from
the Pima-Indian data set in the UCI Repository of Machine Learning Databases. We compare the
best of the PSA models to the use of the ADAP NN classification algorithm as applied by Smithet

al(1988) to the same Pima-Indian data set.

2 Soft classification and penalized log likelihood risk factor esti-

mation

First, to describe the ‘worldview’ adopted in this paper, let ¢ be a vector of attributes, t € € 7,

where 2 is some region of interest in attribute space 7. We imagine that the ‘world’ consists of



an arbitrarily large population of potential examples, whose attribute vectors are distributed in
some way over § and furthermore, considering all members of this ‘world’ with attribute vector in
a small neighborhood about ¢, the fraction of them that are 1’s is p(¢). We are implicitly assuming
that small neighborhoods about ¢ can be defined.

Our training set is assumed to be a random sample of n examples from this population, whose
classification is known, and our goal is to be able to estimate p(t) for any ¢ € Q. In ‘soft’ classifica-
tion, we do not expect classification to be a ‘sure thing’, that is we do not expect p(t) to be 0 or 1 for
large portions of 2. Here is how we would use our estimate p(t) of p(t) - if our classification is the
presence or absence of some medical condition, then, when a new patient (example) appears, with
attribute vector ¢, we announce that their risk of getting the medical condition is approximately
#(t), furthermore (in some situations) we can also announce that if they change their attribute
vector to ¢/, then they can, approximately, change their risk to p(¢'). A ‘hard’ classification can be
done if desired, by thresholding at a fixed value of p, however in medical applications in particular,
the ‘patient’ would probably prefer knowing 7, rather than just which side of the threshold that
they fell in. For example, the probability § may be useful in suggesting the urgency of treatment.
The concept of a probability is also useful in large demographic studies, where one may wish to
estimate what proportion of a population will later develop some medical condition.

We now review the penalized log likelihood risk estimate in O’Sullivan(1983) and OYR. First,
define the logit f(t) by f(t) = log[p(t)/(1 = p(t))], the logit provides a convenient and commonly
used means of transforming the unit interval into the real line, see for example McCullagh and
Nelder(1989). In OYR, ¢ is a vector containing two continuous variates, t = (¢1,%2), and the logit
f is assumed to be ‘smooth’ as a function of these continuous variates, in the sense of possessing
square integrable second derivatives. More precisely OYR assume that f is in an appropriately

defined collection of functions for which the thin plate spline 'smoothness penalty’ J( f) defined by

5 %] o0 32f 2 : 62f 2 82f 2 :
J(f)_/_m]_m (E‘T{) +2(8t-18t2) + a—f% diydty (Z:1)

is well defined and finite. (See Wahba and Wendelberger(1980), or Wahba(1990) and references

cited there for further information concerning this penalty functional.) The OYR estimate py(1)

of p(t) is then obtained, for any fixed non-negative ), as the minimizer, in the above mentioned



collection of functions, of -

—log likelihood{data, f} + gAJ(f). (2.2)

The log likelihood is defined as follows: Let the training data be {y;,%(7),7 = 1,...n} where y; has
the value 1 or 0 according to the classification of example ¢, and #(7) = (¢1(%), t2(¢)) be the attribute
vector for example 7. If the n examples are a random sample from our 'world’, then the likelihood

of this data, given p(+), is (with some abuse of notation)
likelihood{y, p} = Ty p(1(i))* (1 = p(1(£)))' ¥, (2.3)
which is the product of n binomial likelihoods. By substituting in f and taking logs, we have
—log likelihood{y, f} = L(y, f) = ilog(l + ef(t(i))) — vy f(1(7)). (2.4)

i=1
The minimizer, [y, of ,

L, )+ 50 (2:5)
will be taken as the estimate of f(¢). Assuming that the #(i) = (¢1(7),2(7)) do not fall on a straight
line, fy is known to be in the n dimensional space of functions with a representation

(1) = do+ dity +data + > eilt — (i) *logt — 1(3)], (2.6)

1=1

where [t —#(¢)| is the Euclidean distance between ¢ and #(7) and the {¢;} satisfy the three conditions
0=3Tq 6 =3 iqciti(2) = 10 cita(i), see Wahba(1990), Wahba and Wendelberger(1980) and
references cited there. A Newton-Raphson iteration can be used to compute the coefficients. The
likelihood function £ will be maximized if p(¢(¢)) is 1 or 0 according as w; is 1 or 0, hence, the
reader may convince theirself that as A — 0, f\ must tend to +00 or —oo at the data points.
Thus, by letting A be small, we can come close to fitting the data points, but it is fairly clear that
unless the 1’s and 0’s are well segregated in attribute space, f) will be a very ‘wiggly’ function
and the generalization error (which we have not exactly defined yet) is likely to be large. For the
moment, think of the generalization error as a failure of f(t) = pa(t) to adequately approximate
p(t) according to some meaningful criterion. If A is very large, it can be shown that fy will tend
to a linear function of the components of ¢. Then, unless the true logit function is of this form,
the generalization error can be expected to be large. We note that it is common in medical data

analysis to fit a parametric model to the data in which the logit is linear in the attribute vector



components, (see, for example McCullagh and Nelder(1989)). The choice of A here represents a
tradeoff between overfitting and underfitting the data, and this is the soft classification version of
the bias-variance tradeoff discussed in Geman et al(1992). In practice, it will generally be very
important to obtain a good value of A. Before proceeding, then, we should decide what we mean
by a good value of A. Given the family py, A > 0, we want to choose A so that py is close to the
‘true’ but unknown p in some sense. Then, if a large number of new examples arrive with attribute
vector in a neighborhood of ¢, py(t) will be a good estimate of the fraction of them that are 1’s.
"Closeness’ can be defined in a number of reasonable ways, for example as the norm of the difference
between p) and p in some function space. In this paper we will primarily use the Kullbach-Leibler
distance I L,(py,p), a commonly used criterion sometimes appearing in the NN literature under
other names. (Note that it is not a real distance.) We will mention other criteria later. If #(t) is

some probability measure on 7, define I L,(py,p) with respect to v as

Bl (m) = f [p(t)."og (%’;—)) (1 =050 (%p‘((;)))] v (). (2.7)

K L,(px,p) as a measure of closeness of py to p reflects the following ‘game’ Nature chooses a
new example with attribute ¢ according to the probability distribution v(¢). Then the computer
scientist-statistical data analyst (cs-sda) announces that the probability of a 1 for this example is
pa(t). Nature now chooses the outcome for this example as a 1 with probability p(¢) and 0 with
probability 1 — p(t). If the example turns out to be a 1 the ‘loss’ to the cs-sda is log (pp" ;; ) and if

the example is a 0, then the ‘loss’ is log (11__—7’;(%1) Thus the expected loss is

ployiog (2ed) + (1 - ) 10g (T2200) (28)

and averaging over the distribution v of the t’s gives (2.7). Note that the expected loss is minimized
if px = p. Since I'L, is not computable from the data, it is necessary to develop a computable
proxy for it. By a computable proxy is meant a function of A that can be calculated from the
training set which has the property that its minimizer is a good estimate of the minimizer of K'L,.

Note that to minimize /KL, it is only necessary to minimize

/ [p(2) log(pa(1)) + (1 — p(t)) log(1 — pa(t))] dv (1) (2.9)

over A since (2.7) and (2.9) differ by something that does not depend on A. Leaving-out-half cross

validation 1/2CV is one conceptually simple and generally defensible (albeit possibly wasteful)



way of choosing A to minimize a proxy for K L,(py,p). The n examples are randomly (important!)
divided in half and the first n/2 examples are used to compute py for a series of trial values of A.
Recall that, since py has a representation in terms of a set of basis functions, once the coefficients
have been computed p,(t) can be evaluated relatively cheaply for any attribute vector tin 2. Then,

the remaining n/2 examples are used to compute

T

Rliypov(d) = 2 3 [ulogma(t() + (1 - y)log(1 - pA(t()]
i=n/2+1
= 23 [hl) - log(1 + H ) (2.10)
i=n/2+1

for the trial values of A. Since the expected value of y; is p(t(z)), (2.10) is, for each A an unbiased
estimate of (2.9) with dv the sampling distribution of ¢(§ + 1),...,#(n). The parameter A would
then be chosen by minimizing (2.10) over the trial values. Note that it is inappropriate to just
evaluate (2.10) using the same data that was used to obtain fy, as that would lead to overfitting
the data. Variations on (2.10) are obtained by successively leaving out groups of data. A repeated
leaving-out-one (or ordinary cross validation(OCV)) proxy for ﬁ,,(p;,p) would go as follows: Let
f,[\k] be the estimate of fy (i. e. the minimizer of (2.5)) with the kth data point left out. Then the
OCV proxy for KL, is

RLoov(3) = = (ue A (e(k) — log(1 + e300 (2.11)

k=1

and A is chosen to minimize (2.11). Essentially this estimate was suggested by Cox and Chang(1990)
in the case of a single predictor variable with J(f) = [(f”(t))?dt. In this case f) is a cubic
spline, and Cox and Chang proposed a computational algorithm which used special computationally
efficient methods available for polynomial splines. While OCV represents a relatively efficient use
of the data, the computation required is likely to b.e expensive in general. In the next Section we
will describe approximate GCV and UBR proxies for (2.9), which we have been able to compute

in more complicated situations.

3 Df-signal and the GCV and UBR estimates for A

In order to understand the GCV and UBR estimates we will describe in the ‘soft’ classification

context, we will first describe their role in a simpler setup, namely when £ is quadratic in the data



and the unknown. This is the situation where we have n examples {y;,t(¢),7 = 1,2,...,n}, where

our ‘world view’ says that nature chooses ¢t from the distribution v, and then y; is related to f by

= fA) + €& i=1,..,m, (3.1)

where f is assumed to be smooth as before, and the ¢; are assumed to be independent, zero mean
Gaussian random variables with mean 0 and common, possibly unknown variance o?. It is desired

to estimate f from this data. The estimate f is the minimizer of

n

> (i = F((0)))* + nAJ(f). (8.9}

=1
These estimates are discussed in Wahba(1990) and in many of the 13 pages of references cited there,

sce also Wahba (1992). There is a so called smoother matrix A()\) defined by the property

)
= A(\)y. (3.3)

Smoother matrices are symmetric nonnegative definite and have all their eigenvalues in the interval
(0,1]. By analogy with ordinary regression, the trace of A()) is known as the degrees of freedom
for signal, (df-signal) see Wahba(1983), Buja, Hastie and Tibshirani(1989).

The OCV estimate of A in this context was suggested by Wahba and Wold(1975), we review it
here to show its relationship to GCV (generalized cross validation). Letting f;kl be the minimizer

of (3.2) with the kth data point left out, the OCV estimate of X is the minimizer of Vp()) defined

by
Vo(A) = = 3 (e — 8y (3.4)

L k=1

and the celebrated ‘leaving-out-one’ lemma (a proof is in Wahba(1990)) gives the identity

L

> (k= AR/ (1 = are(A))%. (3.5)

k=1

VD/\E

:3|>—‘

where agy is the kkth entry of A(A). The GCV estimate of A is the minimizer of V(A) defined by

V(X)) = Zn: (yx — NH(t(k)) 2/(l - %iam(/\))g (3.6)
k‘ =1

U - AU
(Ler(1 - A(A )2

(3.7)



Both Vp(A) and V(A) are proxies for the criterion R(A) defined by

RO = [(1(®) - F©)du(t) (38)

in the sense that the minimizers of V(\) and Vu()) are good estimates of the minimizer of the ex-
pected value of R(A), with V() having superior theoretical properties under certain circumstances,
and much superior computational properties. See Craven and Wahba(1979), Li(1985, 1986). The
expected value is here taken over the random variables ¢;. The UBR estimate in this context was
proposed by Craven and Wahba (1979) based on Mallows celebrated C),, Mallows(1973). This

estimate requires the knowledge of, or a good estimate of o2, and is the minimizer of
1 9 i
U = (T = AP + 2 trAQ). (3.9)

In what follows we will take the sampling distribution for the {t(7)} as a proxy for dv of (3.8).

Then U(A) is a proxy for R()) in that
EU(X) = ER()) + o2 (3.10)
We include a short proof since it is so simple: Let f = (f(#(1)),..., f(t(n))), € = (€1, ..., €x) , then
1 b
EUQ) = E|[(I~ A + Ol + 2ZtrA()
1 Sles ik g ol
= ;H(I — AN fl]* + —n—tT(I— A(N) + 27—1“'/1(/\)
! o8 2
= Lyr-aopsi+ Toraey o
= ER(\)+ o

We note that a crude version of the argument supporting the properties of V' (A) as a proxy for ()

in the case that o2 is not known goes as follows (see Craven and Wahba(1979) for more details):
1 1
EV(3) = (LI = AQ)AIR +0*r(d = A/ = Lera() (3.11)

Assuming that 1;17",4()\) is small compared to 1 in the neighborhood of the optimal A (a condition

insuring that this is true is necessary for GCV to work well) then

BV(A) ~ [%“(1 — AP + %0217‘(1 — A + %f.-rA(,\) T

o R0 = A+ Tt 4 071+ o)

~ [ER(A)+ a?][(1+ o(1)].



Now, let us return to the case of soft classification, where £ >°%,(y; — f(1(4)))? which is a

multiple of the Gaussian log likelihood, is replaced by a log likelihood of the general form
L0y, f) = SBUUE) - v D, (3.12)
=1

where b(+) is given. In the binomial case that we are discussing here b(f) = log(1 + €/), but many
likelihood functions can be represented this way. See McCullagh and Nelder(1989). For future use

we note that in the binomial case it is easy to verify that

. R0) ]
iy = pidll= iy = b(f(1(i))) (3.13)
N0)
vary; = p(#(#))(1 - p(4(8)) = (L eTE) = b (f(1(1))), (3.14)

however, these relations between the mean and variance of y; and the first and second derivatives
of b hold for any log likelihood of the form (3.12). Representing f either exactly by using a basis

for the space of functions in (2.6), or approximately by suitable basis functions write

N
Fe X o B (3:15)
k=1

then we need to find ¢ = (¢1,...,¢en)" to minimize
n N N 7
1) = 32003 ek BR(() ~ 5 ex Bi(t(i))) + SAeSe, (3.16)
=1 k=] k=1
where ¥ is the necessarily non-negative definite matrix determined by J(3°), ¢ Br) = ¢’Ze. Straight-

forward calculations show that the gradient s7J, and the Hessian 727y of I are given by

S

Bc]
Y = : = X'(pc —y) + nAZe, (3:17)
oL
den
V5 59
2 / -1 :
If = = XWX AL, 21
{V A}jk de;dey, S \B48)

where X is the matrix with 4jth entry B;(1(7)), pc is the vector with #th entry p.(¢(¢)) given by
pe(t(1)) = (T% where f.(1) = Zﬁ__l ¢k Bi(+), and W, is the diagonal matrix with #ith entry
pe(1(2))(1 = pe(t(2))), compare (3.13, 3.14). We next describe the Newton-Raphson iterate for c.
Given the £th Newton-Raphson iterate ¢}, a straightforward calculation shows that 1) §s given

by

(D) = @ _ (XWX + 0dE) (X (Y — puo) + nASc®) d9)

10



and another straightforward calculation shows that (1) is the minimizer of

Iﬁf)(c) = ||z - I/V:(/E)Z_X'c|[2 + nAc'Ze. (3.20)
where z(9) | the pseudo-data, is given by

20 =W (y - o) + Wi X O, (3.21)

Next, we note that the ‘predicted’ value 39 = T/Vcl(/;)zXc, where ¢ is the minimizer of (3.20), is
related to the pseudo-data 2(9 by
50 = 4@\, (3.22)

where A(®)(X) is the smoother matrix given by
AON) = WX (X' WeoX +nAE) X' W (3.23)

In Wahba(1990), Section 9.2, 1 it was proposed to obtain a GCV score for A in (3.16) as follows:

For fixed A, iterate (3.19) to convergence. Define V{)()\) as

_ 2T - 490202

V@A : 3.24
2
($er(z - 40 (x)))
Letting L be the converged value of {, compute
-1/2
P = A= ABONDIE WG~ paw)I (3.25)

(Lo - A0N))° (LT - ADA))
and minimize V(%) with respect to A. Gu(1992b) found that the following algorithm for a GCV
score for A in this case was superior. Gu’s algorithm goes as follows: Given a starting guess, from
) obtain A(\) and find A = A to minimize V(X); obtain eV by setting A = A@ in (3.19);
iterate until convergence. We remark that the algorithms in Gu(1992b) and in Wahba(1990), and
other algorithms, can be directly compared on simulated data by postulating a (synthetic) p(-)
as ‘truth’, generating attribute vectors #(7),7 = 1,...,n, and generating the y; for these attribute
vectors by a random mechanism which lets y; be 1 with probability p(4(7)). One can then estimate

p by various methods. Since the ‘true’ p is known, an objective comparison can be made between

'The definition of A there differs from the definition here by a factor of n/2. Please note the typographical error

in (9.2.18) there where A should be 2.

1l



the ‘true’ p and the estimates, by computing the KL distance or other objective criterion. Gu
made the comparison using the symmetrized KL distance (= K L(p,p) + K L(p,p)).

-1/2
W (y=po)II

by [|[W=12(y — p)||? where W is the diagonal matrix with iith entry p(t(#))(1 — p(t(?))) we have

Now, considering the numerator in the right hand side of (3.25), if we replace

a sum of squares of random variables involving y;/+/p(t(2))(1 — p(¢(4))) with variance o? = 1. This

suggests replacing the approximate GCV estimate V' of (3.25) with the UBR estimate
2
v = %H(I — 4O + 2Z4r 4O () (3.26)

with 02 = 1. Gu(1992b) suggests using this unbiased risk estimate computed via the following
algorithm: Given a starting guess, from c(), obtain A()(A) and find A = A to minimize U®O());
obtain ¢(41) by setting A = A in (3.19); iterate until convergence. Monte Carlo studies in
Gu(1992b) suggest that this estimate is better than the approximate GCV estimate computed in
a similar manner, based on a comparison of the symmetrized K L distance. In the remainder of
this paper we will be using Gu’s algorithm for the unbiased risk estimate for A. It would be nice
to have a good understanding of the difference between the ‘iterate-to-convergence’ algorithm and
Gu’s algorithm, both in the case of UBR and GCV. An argument in the UBR case is a little bit
more transparent. To get a good estimate of A from UBR in the Gaussian case it is clear that it is
necessary to have a reasonably good estimate of ¢, furthermore, two A’s compared via U(A) on the
basis of different values of ¢? cannot be expected to be comparable. In the UBR estimate here, the

variances for different y; are in general different, but if p(2(2))(1 — p(¢(i))) were known, then the

data would be rescaled by +/p(t(z))(1 — p(1(%))) so that the variances of the rescaled data would all

be 1. v/p(t(2))(1 — p(i(i))) is not known, but the rescaling is being done implicitly with an estimate
of it. If the iteration is carried to convergence before U(A) is minimized, then the rescaling is being
done with different estimates of the standard deviations for different A’s and the comparison of
different A’s by looking at U(A) is not necessarily valid. In Gu’s algorithm, at the £’th iteration
different A’s are being compared based on the same estimate diag W ) of the variances of the y;,
so, at each iteration at least, U(A) for different A's can be expected to be more directly comparable.
O’Sullivan(1988) has considered approximate UBR estimates in the case of penalized log-density
and log-hazard estimates which involve the computation of an estimated degrees of freedom for

signal. However the estimate there does not include an implicit estimate of a variable variance.
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Moody(1991) discusses what may be considered a generalization of the unbiased risk estimate
in situations which are in one sense more general than the setup we have been discussing. Since his
generalization raises an important question for the case when the penalty functional or regularizer
is not quadratic, we will discuss the relationship of his estimate to the UBR discussed here and
note the issue. Moody assumes (in our notation) the model (3.1), where he assumes that the ¢;
are independently distributed with mean 0 and common variance o?, (either known or estimated)
but not necessarily Gaussian. Ile considers more general methods of approximating f, he mentions
‘multilayer perceptrons and radial basis functions or other learning systems’. Once the architecture
is determined, he says that f will be estimated by f, determined by a set of weights w; (which play
the role of our ¢), which in turn depend on a smoothing parameter A\. Moody next defines &(y,w)
by

1
Eyw) = =3 Blyi, full() (3.27)

i=1

where E(y;, fu(t(i)) is an unspecified distance between y; and f,(#(7))). For fixed A, f = fi ., is

obtained by finding w to minimize
Ly, w) = E(y,w) + AS(w) (3.28)

where S'(w) is a ‘smoothness’ penalty on f,, not necessarily quadratic. Moody proposes that A be
estimated as the minimizer of £(y, w) + 25’5;)&”(/\), where pess(A) is called by Moody ‘the effective
number of parameters’ and by us the ‘degrees of freedom for signal’, and is the trace of what he

calls the generalized influence matrix G' = %}:(H*IX’ where X and H are the matrices defined by

5 L e :
Xia = Fo5-6W) (3.29)
g T
H = — : 3
af awa awﬁ I,\(LU‘) ('3 ?'0)

It is easy to check that G plays the role of the influence matrix A(A) in the case that £ and §
are both quadratic with the y;’s treated as though they were independent with a common known
variance, by considering

L(y,w) = |ly = Xo|* + nAw'Zw, (3:31)

then X = 2X,H = 2(X'X 4+ nAD), and G = X(X'X + nAX)"1X’, compare (3.20), (3.22) and

(3.23). If, however, %%S(y,w) or Ef}—naiﬁ S(w) depends on w, then it is possible that where the



derivatives are taken will make a difference, just as happens in the case considered earlier with &
taken as L.

We remark that in an entirely different context, varying df-signal can be related to varying the
stopping criterion in an iterative fitting method, see Wahba(1987), we suspect that this phenomenon

is fairly general in NN algorithms.

4 Smoothing spline analysis of variance (SS-ANOVA)

In the ANOVA approach to estimating a function of d variables, f(t) = f(t,...,tq) is decomposed

as

f()=p+ Z falte) + Z .faﬁ(tﬂatﬁ) 3 Z fcrﬁ’T(tO'viﬁ?t’Y) ST (4:1)

alj a<F<y

where the elements in the expansion are made unique in some manner or other, and, the expansion
is truncated in some manner. See, for example Stone(1985), Friedman(1991), Buja, Hastie and
Tibshirani(1989). In the smoothing spline ANOVA context, with Gaussian data, the estimate fy g
of f is obtained by finding f ¢ of the form of (4.1) in an appropriate function space (a reproducing

kernel Hilbert space) to minimize

3 (s~ SN + Mo(f) (4.2)
1=1
where
Jﬂ(f): Z Hglja(fcx)+ Z 8;1J0’,6(f0’,5)+"‘ (4.3)
aeM a,BeEM

The referenced function space has been constructed so that the mean g, the main effects f,, the two
factor interactions f,3 and so forth are projections onto orthogonal subspaces whose elements satisfy
certain side conditions. This generalizes the usual ANOVA decomposition familiar to veterans of
some introductory statistics courses, see for example Hogg and Ledolter(1987), Chapter 6. IHere
M is the collection of indices for components with penalty functionals to be included in the model,
the Jo, Jop and so forth are quadratic ‘smoothness’ penalty functionals, and A and the f5’s satisfy
an appropriate constraint for identifiability.

We will first describe what happens in this quadratic (Gaussian) context, then we will show how

code in the quadratic case can be used as a subroutine in the computation of a PSA model for soft

14



classification. References for the quadratic (SS-ANOVA) case are Gu(1989), Gu, Bates, Chen and
Wahba(1989), Chen, Gu and Wahba(1989), Gu and Wahba(1991a,b,1993a,b), Wahba(1986,1990).
First, for convenience, linearly relabel the, say, ¢ terms included in the model in (4.3) so that 3

may stand for a, af3, a8y and so forth, to obtain
q
Jo(f) = 85" I(fs)- (4.4)
=1
It is known in the SS-ANOVA setup that the minimizer of (4.2) is in the n dimensional space of
functions with representation

M n q
Do) =D dudu(t)+ ) ey BgRp(t,1(i)) (4.5)

v=1 =1 =1
where the ¢, span the null space of the penalty functional Jp, the Rg(-,-) are certain reproducing
kernels associated with the corresponding terms Jg in the penalty functional and the {¢;} satisly
the M conditions 3 7, ¢;h(2(2)) = 0,v = 1,..., M. Letting ¥y be the n x n matrix with 7jth

entry Y% _ 83 Rp(1(1),t(7)), the coefficients d = (dy,...,dp)" and ¢ = (e, ...,¢,)", are obtained by
f=1Y04p

substituting (4.5) into (4.2) which then becomes 2
%Hy — (Zge + Td)||* + Ac'Zge. (4.6)
The minimizing (¢, d) satisfy
(Zg+nA)c+Td = y (4.7)
Fe = i, (4.8)

See Wahba(1990), Chapter 10. The generic code RKPACK(Gu(1989)) can be used to compute
trA(A, 8), where A(),60) is the matrix which satisfies §j = A(A,8)y, where § = (Zgc + Td), to
determine A/85,8 = 1,2,..,¢, by UBR or GCV, and to obtain ¢ and d, given the ingredients y, 3
and T, and in the case of UBR, o2.

We now return to the problem of soft classification, where we suppose that y; is 1 or 0 with
probability p(t(%)), and where t = (11, ...,dq). We suppose that f(t) = log[p(t)/(1— p(t))] as before,
but we will model f as

f(t) = p+ Z fa(ta) + Z Jap(lastg) + - (4.9)

aE M a,fEM

By the properties of reproducing kernels it can be shown in the setup discussed here that

Jn(z €i Z BﬁR'@(-, 1(1)) = C’}:QC.
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Replacing (4.2) by
£y, )+ 5AI0(f) (4.10)

where L(y, f) is given by (2.4), it can be shown that the minimizer has a representation (4.5) for

some (c,d), with the same M conditions on ¢. Furthermore, it is shown in Gu(1990) * that the

Newton iterate (c(“+1), d(¢+1) for the minimization of (4.10) with f as in (4.5), is the minimizer of
{’ {f /1/2 2 1

I W (c d) = jl= Wiy (Zgc + Td)||* + nAc'Ege, (4.11)

where we are here and below writing the subscript (£) as shorthand for the subscript (c(g),d(f)),

and z(9| the pseudo-data, is given by
29 = Wi Py - py) + W (Zoc® + TdO), (4.12)

compare (3.20,3.21). For fixed (£), make the change of variables in (4.11):

é = TI/-—)I/‘Z , (4.13)
T ka ; 1/2 1/2 i
S = Wi ZeWy', (4.14)
= 1/2 _
T = Wy'T (4.15)
d = d (4.16)
to obtain
I9(E,d) = 129 — (Spe + T)|? + nA&Eoé. (4.17)

Equation (4.17) is of the same form as (4.6). A(®)(),0) is the matrix which satisfies 3(9 =
ABN )20, where 30 = (54¢ + Td). Given the ingredients z(9,%;, and T, RKPACK can
be called at the (£)th step as a subroutine to obtain the UBR (or GCV) estimates of A and 63, and
(then) the Newton update with these updated values of the smoothing parameters. (RKPACK im-
poses conditions guaranteeing uniqueness, the solution only depends on the ratios A/#z). Thus, the

algorithm is: given a starting guess, from ¢, d(0, obtain AD(), 0) and find ), 8 = A®) H( )

to min-

imize U®(), 8) given by (3.9) with 02 = 1, and A (A) replaced by A (), 0); obtain ¢(é+1) g(t+1)

from (4.11) with A,d = )A\(f), é(c); iterate until convergence.

*Please note the following typographical errors in Gu(1990): & = W>1%¢ and not W1/%¢ il = W’__llg(ﬁ-’[f.n_ —u_)

and not § = TfVi/QU"VW'q, — u_), also wj in (2.6) should be w;_
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5 Application to the Pima-Indian data set

We have built and compared several PSA models for estimating p(¢) on the Pima Indians Diabetes
Database which we retrieved from the UCI Repository of Machine Learning Databases and Domain
Theories (ics.uci.edu: pub/machine-learning-databases) on October 7, 1992. This data set has also
been analyzed using the ADAP learning algorithm by Smith et al(1988) so we will be able to
compare some of our results with theirs. This database contains records of 768 instances, which
were medical records from Pima-Indian women at least 21 years of age. Below is reproduced the

list of 8 attribute variables and the class variable (response):

1. Number of times pregnant

2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test
3. Diastolic blood pressure (mm Hg)

4. Triceps skin fold thickness (mm)

5. 2-Hour serum insulin (mu U/ml)

6. Body mass index (weight in kg/(height in m)~2)

7. Diabetes pedigree function

8. Age (years)

9. Class variable (0 or 1)

The class variable was an indicator (1) for a positive test for diabetes between 1 and 5 years from
the examination determining the other variables, or (0) a negative test for diabetes 5 or more years
later. The repository index reports that there were 268 cases with ‘1’ as their indicator and 500
with ‘0’. It also reports that there are no missing attribute values, however, after some investigation
into peculiar behavior of some of our results, box-plots of each set of attribute values revealed that
there were 11 instances of 0 body mass index and 5 instances of 0 plasma glucose, both physical
impossibilities(!). We have deleted those cases, leaving 752 instances for our experiments. Smith
et al(1988) report that they used 576 randomly selected cases to train the ADAP algorithm, and
then used the remaining 192 test cases as an evaluation set, to study the properties of the trained
ADAP algorithm. Smith ef al(1988) note that the ADAP algorithm is an ‘interactive associative
learning model using the Hebbian learning rule’, and give a brief description of the algorithm and
further references. Given a new instance, the algorithm will output a score (real number) which is

evidently intended to be larger if the new instance is more like the training 1’s and smaller if the
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new instance is more like the training 0’s. However, there is no suggestion that this score is intended
to have the meaning of a probability. In any case, once a threshold level on this score is chosen,
a ‘hard’ classification (forecast) is made. The authors present a plot of specificity and sensitivity
against a horizontal scale consisting of the ranks of the individuals in the the evaluation set ordered
with respect to the output score. The sensitivity as a function of the rank is the fraction of true
positives in the evaluation set with higher rank, and the specificity is the fraction of true negatives
in the evaluation set with smaller rank. Thus, one can read the false positive and false negative
rates off this plot as a function of threshold rank (or score, if it were provided). By inspection of
the curves it appears that they cross at about rank 112 (out of 192). Smith et al(1988) report that
the score at the crossing point is .448, and if this score is used to enforce a ‘hard’ classification,
then the rate of successful classification for both the true negatives and the true positives is 76%.

Our existing code is a big time and storage hog, as a result we found it necessary to be more
modest than we would like in the data analysis. Thus, we decided to see how well we could do with
fewer variables, and with a somewhat smaller training set. We randomly selected 500 instances
out of 752 for the training set, and set aside the remaining 252 as the evaluation set. We used the
glm function in S (Becker, Chambers and Wilks(1988)), which implements the GLIM models of
McCullagh and Nelder(1989), to fit several parametric models to the data in an effort to select a
few of the most influential predictors. The GLIM model finds f(ty,...,%4) as a linear combination of
simple parametric functions in the variables (¢y,...t4). The linear GLIM model would, for example
gat Py, vl = cH»Zi:l bata, and find @ and the b, to minimize L(y, f) over f’s of this form. The
linear GLIM fit suggested that variables 1,2,6 and 7 were ‘significant’ (assuming that you believed
this model). Running one variable at a time through the linear GLIM model gave all relatively

poor fits to the data compared to models with more than one variable, as measured by

5 2252

Klovar = 505 3 [ f(t(0)) — log(1 + /O] (5.1)

i=1

where f is the GLIM model based on the training data and the sum in mﬁ;v,w is over the
evaluation data. Running the variables two at a time, the best pairwise variables according to
-ﬂEVAL were (2,6), (1,2) and (2,7), in that order, and the best of the three variable combinations
was (1,2,6). For the application of PSA we decided to concentrate on a two variable model (2,6),

a three variable model(1,2,6), and a four variable model (1,2,6,7). We considered variables 2, 6

18



and 7 as continuous variables, but we decided to consider variable 1 (number of pregnancies) as a
categorical variable, with the four categories C7 = 0,Cy = {1,2},C3 = {3,4,5} and Cy = {> 5}
We considered the following four models: Model I: f(t) = p + fao(t2) + fo(ts), Model II: f(t) =
i+ fa(te) + fe(ts) + f2,6(t2,t6), Model III: f(t) = p+ 2221 Yeli(t1) + f2(t2) + fo(ts) + fa,6(t2,ta),
where I(tx) is an indicator function which is 1 if variable 1 is from category C} and 0 otherwise,
and Model IV: f(t) = p + et ele(t1) + fa(ta) + fo(ts) + f7(t7). Models III and IV, which
have linear combinations of a small number of unpenalized functions of known form (here indicator
functions), are known as partial spline models, see Wahba(1990). From an algorithmic point of
view, these functions are simply added to the set of functions spanning the null space of the penalty
functional. *

Each of these models have a GLIM model as a special case, which is obtained by replacing
1+ fa(ta) + fo(te) by pu+ asty + agts or o+ fo(t2) + fo(ts) + fa,6(t2,t6) by p+ asts + agts + az gtats,
and similarly for t7. The GLIM model would be fitted as a special case of the corresponding PSA
model if all the A/d5 were estimated as oo.

We can now compare all eight these models by looking at their action on the 252 cases that

have been left out. We estimate (2.9) for the PSA models by

252

— ] ; —(t(z =
K LEVAL = —QE Z[yifm(t(l)) = 10g(1 + ef,\,e(ﬁ( )))]’ (0.2)

i=1
where again the sum is over the evaluation data and fﬁ is one of the four models that has been fit on
the training set, using Gu’s algorithm for the UBR to get X, 8. See Seaman and Hutchinson(1985),
Wolpert(1992), and Schaffer(1993) for closely related approaches to this model selection problem,
and Gu(1992a) and Gu and Wahba(1993b) for philosophically different approaches to this problem,
based on the sizes of each estimated component rather than a predictive criterion as we are using
here. It would of course no longer be ‘fair’ to compare the best of these models against the ADAP
or other model on the basis of the same evaluation set, since the evaluation set has now been used

to select the model. A ‘fair’ comparison would be to take the model selected this way and compare

“The representations (4.5) for these models were constructed as in Gu and Wahba(1993b) by rescaling 2, ts and {7
to the unit cube with the largest and smallest values mapped to 1 and 0, and using the reproducing kernels of (4.1) and

(4.2) of that paper as building blocks. The main effects penalty functionals were Jo( fo) = fl (f (ta))*dta, see Gu and

0
Waliba(1993a,b) for further details. Gu and Wahba(1993b) is available until publication from wahba@stat.wisc.edu

as UW-Madison Statistics Dept. TR 881.
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it against a competitor on another evaluation set. Table 5.1 gives K Lgyap the four PSA models

and the four corresponding GLIM models.

Model PSA | GLIM

I 0.4929 | 0.5075

11 0.4861 | 0.5004

111 0.3925 | 0.5222

v 0.4157 | 0.5226

Table 5.1: ﬁEVAL

The table identifies the PSA Model IIT as the ‘winner’. We do not (as yet) have an objective
criterion for saying which, if any of these 8 models are significantly different (either in a statistical
or a practical sense) from the ‘winner’ although it appears that theoretical criteria relating to
statistical significance can be developed. We remark that in PSA Model IV the main effect for
variable 7, diabetes pedigree function, was quite small compared to the other main effects, and so
PSA models III and IV were very similar, in a practical sense. We will restrict further description
to PSA Model I and its GLIM counterpart. The solid lines in Figure 5.1 (a) and (b) give the
main effects f; and fs for variables 2 (plasma glucose) and 6 (body mass index) for PSA Model
111, and Figure 5.1 (c) gives the interaction term for PSA Model III. The dashed lines in Figure 5.1
(a) and (b) give, for comparison, the corresponding GLIM main effects, which are, by construction,
straight lines. and Figure 5.1 (d) gives the GLIM interaction term, which is of necessity bilinear
in ¢y and tg. The fitted interaction term in the PSA model actually was estimated as very close
to bilinear in ¢; and tg, and very small, possibly negligible. The interaction term in the GLIM
model, which does not have a ready interpretation, was not statistically significant, according to
the criteria of the GLIM code, which assumes that some GLIM model is true. Figure 5.2 gives
contour plots of p(t1,1s,%s) corresponding to t; = {0},{1,2},{3,4} and {> 5} pregnancies, as a
function of variables 2 and 6. Visually the plots for the first three categories do not appear much
different, but being in the fourth category ( > 5 pregnancies) appears to increase the risk at all
levels of (19,1). On a logit scale, the difference between the fourth category and the average of

the first three was about .92. Figure 5.3 gives the same contour plots based on the GLIM model.
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Figure 5.4: Scatterplot of Body Mass Index and Plasma Glucose.

Iigure 5.4 gives a plot of the body mass index vs plasma glucose for the 500 member training set,
1’s are plotted with a **’ and 0’s are plotted with a ‘-’. There are just two cases of body mass index
above 55, so the models should not be taken too seriously much past 55. Methods for providing
confidence statements for these model outputs which suggest the regions in which they can be
trusted are discussed in Gu(1992c) and Gu and Wahba(1993b).

Note that in this population all of the cases with body mass index less than about 23 did not
later turn out to have diabetes. Similarly all of the cases with plasma glucose less than 78 did
not later turn out to have diabetes. The greater flexibility in the PSA model allows the main
effects to drop much more steeply than the GLIM model to accommodate this. Note also that the
contribution of body mass index main effects in the PSA model is fairly flat along the range of
about 30 to 40 body mass index, suggesting the desirability of keeping one’s body mass index in
that range.

In order to compare this method with the analysis in Smith et a/(1988) we give in Figure 5.5(a)
a plot of the sensitivity and the specificity scores for PSA and GLIM Model III, plotted against
the ranked evaluation data, ranked according to the probability estimate. The sensitivity and

specificity curves cross at about rank 146 (out of 252). If the score at this rank (which was about
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Figure 5.5: Specificity and Sensitivity for the PSA Model 11 and GLIM Model 111.

.74 ) , were used to enforce a ‘hard’ classification, then the rate of successful classification for both
the true negatives and the true positives in the evaluation sample would be about 74%. Figure 5.5
(b) gives the same plots for the GLIM Model III. The successful classification rate at the crossover
point for GLIM Model III was about 72%. The sensitivity vs specificity curve given in Smith et
al(1988) is visually very similar to Figure 5.5(a), the corresponding success rate for the ADAP
analysis, using the crossover point as threshold was reported as 76%. This raises an interesting
point about the ADAP algorithm. Its score report is evidently not claimed to be a probability,
however, the Neyman-Pearson Lemma tells us that if we knew the correct probability, then any
optimum threshold would depend on it, thus, we might ask if the ADAP score (or other neural net
scores) can be reasonably transformed into a probability by a monotone transformation. For more
on this point, see Richard and Lippman(1991). In Figure 5.6, we provide a plot that suggests that
the ‘score’ p really does have a reasonable meaning as a probability. The evaluation data set of 252
cases has been rank ordered by their associated p’s and then arbitrarily divided into 5 groups of size

50,50,50,50 and 52 respectively. Returning to our ‘world view’, suppose that the 252 probability
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estimates associated with these 252 cases represented ‘true’ probabilities - say the first 50 values
were pp, ..., pso. 1Then the expected fraction of 1’s in this group would be 5]—0 2211 pr. In Figure 5.6
(a) -(d) we have plotted the observed fractions for the five groups against their expected fractions,
for the Spline Models [-1V. If the estimates were ‘on the money’, they would fall on the solid line.
We were somewhat surprised that Model I appears visually to be more ‘on the money’ than Model
[II by this criterion, which of course is not exactly the same as the KL distance. At this point we

have not made a study of the variability of these comparisons.
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