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Abstract 

It has been noticed by several authors that there is a small but non-zero probability that the GCV estimate 2 of the 
smoothing parameter in spline and related smoothing problems will he extremely small, leading to gross undersmoothing. 
We obtain an upper bound to the probability that the GCV function, whose minimizer provides ,~, has a (possibly local) 
minimum at 0. This upper bound goes to 0 exponentially fast as the sample size gets large. For the medium-to small- 
sample case we study this probability both by Monte Carlo evaluation of a formula for the exact probability that the GCV 
function has a minimum at 0 as well as by replicated calculations of ~.. 
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1. Introduction 

Consider the model  

Y i =  f ( t i ) + e i ,  i =  1 . . . . .  n, t i e [ O ,  1], (1) 

where e = (el . . . . .  /3n) T ~ N(O, a2In×n), 0 .2 unknown and f E Win, where Wm = { f  " f , f '  . . . . .  f i re- l )  
absolutely continuous, f01(f~m)) z dt < c~}. The smoothing spline j~i is the minimizer in Wm of  

" f0' 1 Z ( y  i f ( t i ) )  2 q- ~. ( f(m)(t))2 dt. 
n i=1 

(2) 

As is well  known, the smoothing parameter 2 controls the trade-off between the goodness of  fit and the 
roughness, and it is important to choose an appropriate 2. The GCV estimate 2 o f  2 is the minimizer o f  the 
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GCV function V(2) given by 

v ( 2 ) - -  - l l l ( I - A ( 2 ) ) y l 1 2  t r ( l - A ( 2 ) )  , (3) 
n 

where A(2) is the so-called 'hat '  matrix which relates ~;. = ( )~ ( t l )  . . . . .  )c~(t,)) T to y = (yl . . . . .  y,)T by 
~;. = A ( 2 ) y .  See [Wahba (1990)] and the references cited there. Several authors (for example [Wahba, 
1983]; [Thompson et al., 1989]) have noted that, with small sample sizes, there is a usually small, but pos- 
itive probability that GCV (erroneously) chooses an 'extremely small '  ,~. These extremely small cases can 
be easily distinguished from the bulk of  the other cases by the fact that estimates of  the variance based on 
them are several orders of  magnitude below the true 0 -2 while the other cases give reasonable estimates of  0-2. 
Theoretical results on the optimality of  ). when 2 is estimated by GCV have apparently needed to assume that 
,~ is the minimum of  V(2) in [2n, CXz], where 2, --~ 0 but not too fast, see [Cox (1988)], [Nychka (1988)] and 
[Nychka (1990)]. [Wahba (1990)] conjectured that the theoretical distribution of  ~. has a small mass point at 
2 = 0 for moderate n which decreases with n. We think that the remainder of  the distribution of  2 has, for 
practical purposes, a more or less concentrated density about an optimum 4, as contrasted to a 'very fat tail ' 
on the left. The remarks in Thompson et al. tend to agree with this, although they have apparently plotted 
their density based on samples of  2 with a tail rather than a mass point. Since both the numerator and the 
denominator of  V(2) behave like 42 as 2 ---+ 0, special care is needed to search for the minimum at or near 0. 
Thus, the question of  whether the distribution of  2 consists o f  a mass point at 0 plus a concentrated density, 
as opposed to a density with a very long left tail, is not straightforward to settle numerically, t It is known 
that there is a non-zero probability that V(2) has a (possibly local) minimum at 0. The main purpose of  this 
note is to provide theoretical and empirical results on the decrease of  the size of  the probability of  this local 
minimum at 0 as n becomes large. We also observed that the distribution of  ,~ may be described as having a 
mass point at 0 plus a fairly concentrated distribution away from 0 in the examples studied. 

In Section 2, we obtain an asymptotic approximation to the probability p that V(2) has a local minimum 
at 0, to use as an (asymptotic) upper bound for the probability that GCV chooses 2 = 0. We prove that 
this probability goes to zero at least exponentially fast. This asymptotic result is independent of  the unknown 
function and the variance of  the noise. [Nychka (1991 )] discusses the behavior of  an asymptotic distribution for 
,~ which is suggestive that any mass at 0 disappears quickly with n. In Section 3, we carry out a computational 
approximation to the exact probability that V(2) has a local minimum at 0. This probability does depend on 
the unknown f and 0-2 as well as n. We carry out the calculations for several combinations of  f and 0-2 and 
n = 32,64 and 128. This calculation is easy to do for any hypothesized f , 0 - 2  and design points. We then use 
these same f ' s ,  0-2 and n to replicate data and obtain samples of  2 by a search. The empirical fraction of  
extremely small ~. roughly agree with the computed probabilities o f  a local minimum at 0, and, furthermore, 
there are no 'moderately small '  cases. The computational approximation and the results of  the search give 
results which agree and for which the mass point at 0 shrinks quickly as n becomes large. 

2. The probability p 

We use the same notation as in [Wahba (1990)]. Let ~ v ( t )  = t v - l / ( v -  1)!, v = 1 . . . . .  m; R l ( s , t )  = f 2 ( s -  
bl m--1 t u ~ m - l  d u / [ ( m  1)!]2; Tnxm { O v ( t i ) } i = l v = l ,  ~ ] n x n  1 n n )+ ( _ ~+ _ = . m . = { R  (ti, t j)}i=l j= 1. Let the QR decomposition 
of  T be 

(4) 

i Thompson et al. also have a few multiple minima in their examples, which had n = 47. 
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where Qt is n × m and Q2 is n × (n - m), Q = (Q1 : Q2) is orthogonal and R is upper triangular. Let the 
eigenvector eigenvalue decomposition of  Q~EQ2 be UDU', where U is (n - m) × (n - m) orthogonal and 
D = diag(21 . . . . .  )m-m). Let F = Q2U and z = (zl . . . . .  Zn_m) T = FTy. We can write 2 

In-m( n~v_ ~ 2 / ( ! n - m  n)L ) 2  

Following Thompson et al., we have 13 1 n - m  2 1 n--m Z2 1 
V'(0) = 2n 2 z~, _ _ _  

and so 

1 z~, _ (5) 
p = I , ( V ' ( O )  > o )  = e > 

\ v = l  It=l /t'2 v=l ,u=l 

In this section we investigate the large sample property of  p. We only consider the special case f periodic, 
j';. a periodic spline and t i = i/n. This case is simple to analyze while still giving insight into the general 
case. 3 Then, F T = W, the scaled discrete Fourier transform matrix. W is listed in Table 4.1 on p. 54 of  
[Wahba (1990)]. Let g = ( f (1 /n )  . . . . .  f ( n /n ) )  T, h = Wg and e = WE. Then e ~ N(0, aZln×,). Let f~.'s 
be the Fourier coefficients of  f .  Then f , ,  = f~ f ( t )cosZzrv td t  = [~n~=l(1/n)f(#/n)cosZrrv(l~/n)](1 + o(1)). 
Similar approximations hold for the sin's. So we have f = ( f l  . . . . .  f , ) T  = (1/x/n) Wg(1 + o(1 )). Substituting 
in the definition of  h we get h = x/~f(1 + o(1)). Following the arguments in Wahba (1990, Chs. 2 and 
5), we have that 2~ = n(21rv)-Zm(l + o(1)). Note for later reference that if  qm is an integer, we have 
f~(f(qm)(t))2dt = ~(27rv)Zmqf~, where, with some abuse of  notation, the sum is taken over both the sine 
and cosine coefficients. It is easy to prove that 

1 _ (2x) 2kin £ v2k m _ (2x)2km)n2km+l-k(l + o(1)). 
v=l ~ ~-  v=l (2km + 1 

Lemma 1. For any integer l, ~ , = l  vle2v/Cr2nl+l/(l + 1) 0 1 as n -4  ~ .  

Proof.  The moment  generating function of  the l.h.s, is 

Let 

{n } 
l 2 2 E e x p  t Z v e v / a  nl+l 777 

( / nl+l \ I = e x p  - - ~ £ 1 n  1 - 2 t v l / T - ~ )  
p = ] 

= e x p  t v t / ~ + o ( 1 )  ---,exp{t}, 

1 £ (  v6m 
A, = - -  k,2~n ~- 1 O'2C v=l 

rl2m p4m I 
4m + 1 e'2' 

n --+ 0 0 .  

2 This kind o f  formula  applies to the general  penalized least-squares problem, see W a h b a  (1990).  
3 In this case 1 - A(0)  is o f  rank n - 1 rather  than n - m so that the sums in V/(0)  go  from 1 to n - 1. With some abuse o f  notat ion 

we will jus t  write 1 to n. 
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~-~ ( v6m n2mv4m ) 4m2 )n6m+l(1 
c =  \ 2 m 7 1  4 m + l  -- ( 2 m + l ) ( 4 m + l ) 2 ( 6 m +  1 +o(1)).  

v= l  

The moment generating function of An is 

E exp { tAn } { ' I  1 E l  n l _ _ 2 t (  v 6m 
=exp  - ~ = 1  c \ 2 ~  

= exp ~ ~=l \2m~- 1 

{ t2 ( ! ) }  
= exp t ÷ - -K 2 ÷ O 

2n 

n2mv4m~] 
1 ~mm-~ l J J  } 

n2mv 4m ~ 1 4t 2 ( V 6m 
a n t i  J + 2--c5- k,2m~- 1 

n2m~4m ) 2] 
4 m +  1 +oil/} 

where 

t¢ 2 = (4m + 1)2(6m + 1)2(56m2 + 6m + 1) 
2m2(8m + 1)(10m ÷ 1)(12m ÷ 1) 

So x/-n(An - 1 ) / x  d_~ Z as n ~ cx~, where Z is the standard normal random variable. 
Let us go back to the original problem. We have 

/;1 
.,=, . = ,  

v=l v=l v=l 

1 V "  v6me2 V ~ v6mh2 
Z-.a v 2 m + l  L~,=Z--~l v +  v=l + 2  v= l  v6mhvev (1 +o(1))  

= P ( A n  < Bn)(1 +o(1)) ,  (6) 

where 

Bn 1 1 .6mL2 n2m . 4mi_2 n = - -  V n v + 2 v6mhvev v n v + 2 v4mhve v . 
a2c 4m + 1 

v = l  v = l  v= l  v= l  

Suppose that [h~ [~< b x / ~ ( 2 n v ) - q ( l + o ( 1  )), where b is a constant independent of v and n. For f to be a periodic 
So' g ' function with ( f tm) ( t ) )2  dt < cx~, we need ( f (m) ( t ) )2d t  = ~'~(2rcv)2mf 2 < cxz, that is, q > i + m. It is 

easy to prove that if q > 3, Y']7=l "v6mh2n v ~ n 6m+2-2q = n-1/20(n6m+l ), and Var(y~= I n  v6mh~e~ ) ~ n12m+2_2q ____ 
n-lo(n12"~+2). So ~--]v~=l v6mh~ev = n-l/20p(n6m+l),  where for any random variables X, and In, Xn > 0, we 
define Yn = op(Xn) if Yn/Xn ~ 0 in probability as n ~ cx~. Similarly, if q > 3, n2m ~ n = l ,  4mr.2 n6m+2-2q V f l  v ~ ' J  
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n-l/20(n 6re+l) andn 2m ~n~= l v4mhvev = n-1/20p(n6m+l). Combining them together, we have nl/2B,, = Op(1). 
From (6), 

p = P ( x / ~ ( A n  - 1) < v~(Bn - 1))(1 + o(1))  

= P ( v ~ ( A ,  - 1) < -v /~ ) (1  + 0(1)) 

= ~ (--v~--nv/-n) (1 + 0(1)), 

where q~ is the standard normal distribution. Note that ~ = 1  v4mf~ = fo(f l2m)(t))2dt(  1 + 0(1)) and 
~'-~n=l v 6 m f  2 = f~(f~3m)(t))2dt(1 + 0(1)), provided that these converge. So the above approximations are 
obvious if fol(f~3m)(t)) 2 dt < exp. But in the approximations above, we only need that q > 3. So the result 
holds provided only that ~ , .~t  2mq 2 V f,.  ~< ~ for some q > 3/4. When n is large, a simple upper bound for p 
is (2K/2v/2-~)exp{-n/2K}.  So p goes to zero at least exponentially fast. [] 

3 .  S i m u l a t i o n s  

Case 1 : 

Case 2: 

Case 3: 

where 

Notice that the bound we get in Section 1 does not depend on a and f .  It is not a sharp bound for p. It 
is a good approximation when n is large since the dropped term Bn is asymptotically much smaller than the 
dominating term An provided q > 3. But it may not be a good approximation for modest n. A local minimum 
of  V at zero does not imply that GCV chooses ). = 0. On the other hand, if  GCV numerically picks a very 
small ~ (not zero), that does not imply that V has a local minimum at zero. V(2) may have a local minimum 
near zero. It would be nice to know how much difference there is between these two possibilities. 

The value p in (5) can be calculated by Monte Carlo methods if we know the true function f and 
variance 0 -2. We can simply generate observations y from the true function. Then we can calculate zv's and 
,~v'S. Comparing the summations inside (5), we record 1 if the inequality holds and 0 otherwise. Repeat this 
process N times. The Monte Carlo estimate of  p is simply the frequency of  l ' s .  

In the following, we conduct simulations to calculate Monte Carlo estimates of  p and compare them to the 
number of  times that GCV chooses a very small 2. 

The experimental design is the same as in Wahba (1983). Three functions are used: 

1 l l f ( t )  = ~fllo,5(t) + ~f17,7(t) ÷ ~fls, lo(t); 

f ( t )  ~- 6f130,17(t ) + 4 •3,11(t); 

f ( t )  = ½f120,5(t) + ½fl12,12(t) + 1 ~fl7,30(/); 

flp, q ( t ) - -  F ( P + q )  t P - 1 ( 1 - t )  q-l ,  0 < t <  1. 
F ( p ) F ( q )  

Cases l, 2 and 3 have 1, 2 and 3 bumps, respectively. They reflect increasing difficulty to fit with a spline. 
The experiment consists o f  3 × 3 × 5 = 45 combinations of  Case 1, 2, 3, n=32,  64, 128 and a=0.0125,  
0.025, 0.05, 0.1 and 0.2. In all cases, ti = i/n. Data are generated for 100 replications of  each of  these 45 
combinations. In all simulations in this report, random numbers are generated using the Fortran routine rnor 
of  the Core Mathematics Library (Cmlib) from the National Bureau of  Standards. Spline fits were calculated 
using RKPACK, 4 see [Gu (1989)]. 

4 The RKPACK default golden section search was used to find the minimizer of V(2). 
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Table 1 
Number of replications out of 100 total that have )~ smaller than -14 in logl0 scale 

n = 128 n = 64 n = 32 

1 2 3 1 2 3 1 2 3 

a = 0.0125 0 0 0 0 4 4 8 70 100 
a = 0.025 0 0 0 0 3 4 7 24 57 
a = 0.05 0 0 0 0 3 4 7 12 22 
a = 0 . 1  0 0 0 0 0 2 7 8 11 
a = 0.2 0 0 0 0 0 0 7 7 8 

0 

0 

0 
04 

0 
T-  

O 
i i ~ i i 

-14 -12 -10 -8 -6 

log10(lambda.hat) 

Fig. 1. Histogram of 100 samples of ,~ for the n = 64, cr = 0.05, Case 3 example of Table 1, illustrating the gap between 'extremely 
small' and the rest of the distribution. 

Table 1 lists the number  o f  replications out o f  100 s imulat ion replications that have a G C V  estimate of  ,~ 
smaller  than - 1 4  in logl0 scale. GCV  estimates of  ). for all other cases are bigger  than - 9  in log10 scale. 
All  cases in Table 1 also have ratio 6 / a  < 0.001, where 62 = III-A(2)Yll2/tr(l-A(2)). All  other cases had 
6 / a  > 0.1. So in practice, it is easy to identify these ' ex t remely  smal l '  cases i f  a is known  to within an order 
of  magnitude.  Fig. 1 gives a histogram o f  the 100 replicates o f  ,~ for the n = 64, a = 0.05, Case 3 example 
o f  Table 1, which shows clearly the gap be tween the ' ex t remely  smal l '  cases and the other cases. 

The Monte  Carlo estimates o f  p ' s  in percentages are listed in Table 2. For  these calculat ions we 
took N = 106, with the same seed for each table entry. The similari ty between the two tables suggests 
that there is little gap be tween the probabil i ty that V(2) has a local m i n i m u m  at zero and the probabil i ty  
that GCV chooses an extremely small  ,~. In other words, the results suggest that they happen at the same 
time. 

Tables 1 and 2 also indicate that for small  sample sizes, the probabil i ty that GC V chooses a very small  ,~ 
and the probabil i ty  that V(2) has a local m i n i m u m  at zero do depend heavily on ¢r,n and the shape o f  the 
function. The probabil i t ies decrease as sample size increases, a increases or the number  o f  bumps  decreases. 
The upper bound  obtained in Section 1 does not work for the sample size n = 32. 



G. Wahba, Y. Wang~Statistics & Probability Letters 25 (1995) 105-111 

Table 2 
Monte Carlo estimates of  p ' s  in percentages 

111 

n - 128 n =- 64 n - 32 

1 2 3 1 2 3 1 2 3 

a ~ 0.0125 0.3 0.3 0.3 3.0 3.5 3.3 I 1.5 67.9 98.9 
cr = 0.025 0.3 0.3 0.3 3.0 3.1 3.1 10.8 25.6 61.5 
a = 0.05 0.3 0.3 0.3 3.0 3.0 3.0 10.7 13.9 23.3 
¢r ~ 0.1 0.3 0.3 0.3 3.0 3.0 3.0 10.6 11.4 13.5 
a ~ 0.2 0.3 0.3 0.3 3.0 3.0 3.0 10.6 10.8 11.3 
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