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We introduce the Generalized Approximate Cross Validation (GACV) for estimat­
ing tuning parameter(s) in SVMs. The GACV has as its target the choice of param­
eters which will minimize the Generalized Comparative Kullback-Leibler Distance 
(GCKL). The GCKL is seen to be an upper bound on the expected misclassifica­
tion rate. Some modest simulation examples suggest how it might work in practice. 
The GACV is the sum of a term which is the observed (sample) GCKL plus a 
margin-like quantity. 
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16.1 Introduction 
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It is now common knowledge that the support vector machine (SVM) paradigm, 
which has proved highly successful in a number of classification studies, can be 
cast as a variational/regularization problem in a reproducing kernel Hilbert space 
(RKHS) , see [Kimeldorf and Wahba, 1971, Wahba, 1990, Girosi, 1998, Poggio and 
Girosi, 1998], the papers and references in [Scholkopf et al., 1999a], and elsewhere. 
In this note, which is a sequel to [Wahba, 1999b], we look at the SVM paradigm 
from the point of view of a regularization problem, which allows a comparison with 
penalized log likelihood methods, as well as the application of model selection and 
tuning approaches which have been used with those and other regularization-type 
algorithms to choose tuning parameters in nonparametric statistical models. 

We first note the connection between the SVM paradigm in RKHS and the (dual) 
mathematical programming problem traditional in SVM classification problems. 
We then review the Generalized Comparative Kullback-Leibler distance (GCKL) 
for the usual SVM paradigm, and observe that it is trivially a simple upper bound 
on the expected misclassification rate. Next we revisit the GACV (Generalized 
Approximate Cross Validation) as a proxy for the GCKL proposed by Wahba 
[1999b] and the argument that it is a reasonable estimate of the GCKL. We 
found that it is not necessary to do the randomization of the GACV in [Wahba, 
1999b] , because it can be replaced by an equally justifiable approximation which is 
readily computed exactly, along with the SVM solution to the dual mathematical 
programming problem. This estimate turns out interestingly, but not surprisingly 
to be simply related to what several authors have identified as the (observed) VC 
dimension of the estimated SVM. Some preliminary simulations are suggestive of 
the fact that the minimizer of the GACV is in fact a reasonable estimate of the 
minimizer of the GCKL, although further simulation and theoretical studies are 
warranted. It is hoped that this preliminary work will lead to better understanding 
of "tuning" issues in the optimization of SVM's and related classifiers. 

16.2 The SVM Variational Problem 

reproducing 
kernel 

Let T be an index set, t E T Usually T = Ed , Euclidean d-space, but not necessar­
ily. Let K(s, t), s, t E T, be a positive definite function on T 0 T, and let HK be the 
RKHS with reproducing kernel (RK) K. See [Wahba, 1990, 1982, Lin et al., 1998] 
for more on RKHS. RK's which are tensor sums and products of RK's are discussed 
there and elsewhere. K may contain one or more tuning parameters, to be chosen. 
A variety of RK's with success in practical applications have been proposed by var­
ious authors, see, e.g., the Publications list at http://www . kernel-machines. org. 
Recently [Poggio and Girosi, 1998] interestingly observed how different scales may 
be accommodated using RKHS methods. We are given a training set {Yi, td, where 
the attribute vector t i E T , and Yi = ±1 according as an example with attribute 
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problem 

vector ti is in category A or B. The classical SVM paradigm is equivalent to: find 
f>.. of the form canst + h, where h E llK to minimize 

1 n 

- 2)1 - ydi)+ + Allhll~K ' 
n i=1 

(16.1) 

here fi = f (ti) , and (T)+ = T, T > 0; = 0 otherwise. Similar regularization problems 
have a long history, see, for example [Kimeldorf and Wahba, 1971]. Once the 
minimizer, call it f>.. is found , then the decision rule for a new example with attribute 
vector t is: A if f>..(t) > 0, B if f>..(t) < O. 

We will assume for simplicity that K is strictly positive definite on T ® 
T, although this is not necessary. The minimizer of (16.1) is known to be in 
the span {K ( ., ti ), i = 1"" n} , of representers of evaluation in 1£ K . The nmc­
tion K(· , ti ) is K(s , ti) considered as a function of s with ti fixed. The fa­
mous "reproducing" property gives the inner product in llK of two represen­
ters as < K(-, ti), K(-, tj) >1i.K= K(ti, tj) . Thus, if h(·) = 2::~=1 CiK(· , ti), then 
Ilhll~K = 2::~j=I CiCjK(ti, tj). Letting e = (l , ·· ·, l)',y = (Yl,"' ,Yn)' ,c = 
(cl , · · · ,en)' , (f(h) ,· ··f(tn))' = (h,···,fn)' , and with some abuse of notation, 
letting f = (h ," " fn)' and K now be the n x n matrix with ijth entry K(ti , tj) , 
and noting that f(t) = d + 2::~=1 CiK(t , ti) for some c, d, we have 

f=Kc+ ed 

and the variational problem (16.1) becomes: find (c, d) to minimize 

1 n 
- 2)1 - ydi)+ + AC' K c. 
n i=1 

(16.2) 

(16.3) 

16.3 The Dual Problem 

Let Y be the n x n diagonal matrix with Yi in the iith position, and let H = 
2;'>. Y KY. By going to the dual form of (16.3), it can be shown that c = 2;'>. Ya , 
where a is the solution to the problem 

.. L 1 'H ' maXImIze = --a a + e a 2 . (16.4) 

{ 
0 < a < e 

subject to - -
e'Ya = y'a = O. 

(16.5) 

Assuming that there is an i for which 0 < ai < 1, it can also be shown that 
d = l/Yi - 2::;=1 cjK(ti, tj). This is the usual form in which the SVM is computed. 
In the experiments reported below, we used the MINOS [Murtagh and Saunders, 
1998] optimization routine to find a, and hence c. The support vectors are those 
K(· , ti) for which a i =1= 0, equivalently Ci =1= O. d can be found from any of the 
support vectors for which 0 < a i < 1. 
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For future reference we review the relation between the (hard) margin (J) of the 
support vector machine classifier and L y ;JAi9 a.>,i. In the situation where we can 
separate the training set points perfectly, "( is given by 

(16.6) 

See [Cortes and Vapnik, 1995, Bartlett and Shawe-Taylor, 1999]. (Notice the 
notation is a bit different from ours in these papers.) By definition the margin 
of the (hard margin) support vector machine classifier is "( = Ilhll1iJC = (C'KC)-1/2. 
The equality (16.6) can be seen from the following: In the perfectly separable case, 
where all members of the training set are classified correctly, a.>,i is the solution of 
the problem below: 

1 , , 
maximize L = - -a H a + e a 

2 
subject to ai 2: 0 and y' a = o. 

(16.7) 

(16.8) 

Introducing the Lagrangian multipliers ~ = (6, ... '~n)' and f3 for the constraints, 
the Lagrangian for this problem is 

L 1 'H ' f3' (:, p=-2"a a+ea- ya-",a 

and aM satisfies the Kuhn-Tucker conditions: 

[) 
[)a Lp = -Ha + e - f3y - ~ = 0 

ai 2: 0, i = 1,2, ... ,n 

y'a = 0 

~i 2: 0, i = 1,2, ... ,n 

~iai = 0, i = 1,2, ... ,n 

From these and the relation that c = Ya.>,/(2nA), it is easy to get 

, 1, 1 [' , '] 1 [' ] eKe = 2nA a.>,Ha.>, = 2nA a.>,e - f3a.>,y - a.>,~ = 2nA a.>,e . 

Since a'>'i = 0 if Ydi > 1, we finally get 

(16.9) 

16.4 The Generalized Comparative Kullback-Leibler Distance 

Suppose unobserved y/s will be generated according to an (unknown) probability 
model with p(t) = Ptrue(t) being the probability that an instance with attribute 
vector t is in class A. Let Yj be an (unobserved) value of y associated with tj. 
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GCKL 

penalized log 
likelihood 

Given f>. , define the Generalized Comparative Kullback-Leibler distance (GCKL 
distance) with respect to 9 as 

1 n 

GCKL(Ptrue, !>.J == GCKL(>") = Etrue - "Lg(Yjf>.j). 
n j=l 

(16.10) 

Here f>. is considered fixed and the expectation is taken over future , unobserved 
Yj. If g(T) = In(1 + e-T

), (which corresponds to classical penalized log likelihood 
estimation if it replaces (1 - T)+ in (16.1)) GCKL(>") reduces to the usual CKL 
for Bernoulli data l averaged over the attribute vectors of the training set. More 
details may be found in [Wahba, 1999b] . Let [T]* = 1 if T > 0 and 0 otherwise. If 
g(T) = [-T] *, then 

Etrue[-Yjf>.j]* = P[trueU[- f>.j]* + (1- P[trueU) [f.\j] * 

= P[trueJj, f>.j < 0 

= (1- P[trueJj), f>.j > 0, 

(16.11) 

(16.12) 

(16.l3) 

where P[trueJj = P[true] (tj) , so that the GCK L(>..) is the expected misclassification 
rate for f.\ on unobserved instances if they have the same distribution of tj as the 
training set. Similarly, if g(T) = (1- T)+, then 

E true(1- Yjf>.j)+ = P[trueJj(1 - f>.j), f>.j < -1 

= 1 + (1 - 2P[trueJj) f>.i> - 1 ::; f>.j ::; 1 

= (1 - P[trueJj)(1 + f>.j), f>.j > 1. 

(16.14) 

(16.15) 

(16.16) 

Note that [-ydi]* ::; (1 - ydi)+, so that the GCKL for (1 - ydi)+ is an upper 
bound for the expected misclassification rate - see Figure 16.1. 

16.5 Leaving-out-one and the GACV 

Recently there has been much interest in choosing>.. (or its equivalent, referred to 
in the literature as 2~C)' as well as other parameters inside K. See for example 
[Burges, 1998, Cristianini et al., 1999, Kearns et al. , 1997], surely not a complete 
list. Important references in the statistics literature that are related include [Efron 
and Tibshirani , 1997, Ye and Wong, 1997]. Lin et al. [1998] consider in detail the 
case g(T) = In(l+ e-T

). We now obtain the GACV estimate for>.. and other tuning 
parameters. 

1. The usual CKL (comparative KuIlback-Leibler distance) is the KuIlback-Leibler dis­
tance plus a term which depends only on P[trueJ. In this case 9 is the negative log likelihood 
and f>. plays the role of (an estimate of) the logit In[p/1 - pJ. See also [Friedman et al., 
1998J . 
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Let li- i] be the solution to the variational problem: find I of the form I = const + h 
with h E 1lK to minimize 

1 n 

:; Lg(Yj!i) + '\llhll~K-
j=l 

#i 

Then the leaving-out-one function Vo(,\) is defined as 

( ) _ 1 ~ ( [-i] Vo ,\ - - ~g yd)..i ). 
n i=l 

(16.17) 

(16.18) 

Since Iti
] does not depend on Yi but is (presumably) on average close to 1M , we 

may consider Vo('\) a proxy for GCKL(,\), albeit one that is not generally feasible 
to compute in large data sets. Now let 

Vo('\) = OBS('\) + D(,\), 

where OBS{'\) is the observed match of J>-. to the data, 

1 n 

OBS('\) = - Lg(YdM) 
n i=l 

and 

(16.19) 

(16.20) 

(16.21 ) 
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Using a first order Taylor series expansion gives 

( ) 1 ~ 8g ( [-i l ) D A ~ --~ 8f . f>... i - f>'i . 
n i=l >.t 

(16.22) 

Next we let f..L(J) be a "prediction" of Y given f. Here we let 

8 L: af/(Ydi). 
yE{+l,-l} 

(16.23) 

When g(7) = In(l+e- T
) then f..L(J) = 2p-l = E{Ylp}. Since this g(7) corresponds 

to the penalized log likelihood estimate, it is natural in this case to define the 
"prediction" of Y given f as the expected value of Y given f (equivalently, p). For 
g(7) = (1- 7)+ , this definition results in f..L(J) = -1 , f < -1; f..L(J) = 0, -1 ::; f ::; 1 
and f..L(J) = 1 for f > 1. This might be considered a kind of all-or-nothing prediction 
of y, being, essentially, ±1 outside of the margin and ° inside it. Letting f..L>'i = f..L(J>d) 
and f..L~~il = f..L(Jt il ), we may write (ignoring, for the moment, the possibility of 
dividing by 0) , 

n 8 (f f[- il ) D(A) ~ _..!:. ~ ----.!L >.i - >.i ( . _ [-:il) 
~ ~ £:If . [-il Yt f..L>.t 

n i=l U >.t (Yi - f..L>'i ) 
(16 .24) 

This is equation (6.36) in [Wahba, 1999b]. We now provide somewhat different 
arguments than in [Wahba, 1999b] to obtain a similar result , which, however is 
easily computed as soon as the dual variational problem is solved. 

Let f>...[i, x] be the solution of the variational problem (16.1) 2 given the data 
{Yl,···, Yi-l, x, Yi+1,·· · , Yn}. Note that the variational problem does not require 
that x = ±1. Thus f>...[i,Yi](ti) == f>.i. To simplify the notation, let f>...[i,X](ti) = 
f>... i [i, x] = f>...dx]. In [Wahba, 1999b] it is shown, via a generalized leaving-out-one 
lemma, that f..L(J) as we have defined it has the property that ft il = f>... [i, f..Ltil](ti). 
Letting f..L~~il = x, this justifies the approximation 

(16.25) 

Furthermore, f..Lt il == f..L(Jt il ) = f..L(J>. i ) whenever ftil and f>... i are both in the 
interval (-00, -1), or [-1, 1], or (1 , (0), which can be expected to happen with few 
exceptions. Thus, we make the further approximation (Yi - f..Ltil) ~ (Yi - f..L>.i) , and 
we replace (16.24) by 

1 L:n 
8g 8f>...i D(A) ~ -- --(Yi - f..L>. i ). 

n 8f>. · ay· i=l t t 
(16.26) 

2. d is not always uniquely determined; this however does not appear to be a problem in 
practice, and we shall ignore it. 

i~ .. 
'I 

!I 
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Now, for g(T) = (1 - T)+ 

8g 
8hi (Yi - J1>.i) = -2, Yd>.i < -1 

= -1, Yd>.i E [-1,1] 

= 0, Yd>.i > 1, 

(16.27) 

It is not hard to see how 8/.:: should be interpreted. Fixing A and solving the 
variational problem for h we obtain a = a>., C = c>. = 2~>' Ya>. and for 
the moment letting h be the column vector with ith component hi, we have 
h = Kc>. + ed = 2~>.KYa>. + ed. From this we may write 

(16.28) 

The resulting GACV(A), which is believed to be a reasonable proxy for GCKL(A), 
is, finally 

1 n 

GACV(A) = - 2)1 - Yd>.ih + iJ(A), 
n i=l 

(16.29) 

where 

If K = Ke, where () are some parameters inside K to which the result is sensitive, 
then we may let GACV(A) = GACV(A, ()). Note the relationship between iJ 
and ~Yi!Ai9 aM and the margin I. If K(·,·) is a radial basis function then 
IIK(·, ti)II~K = K(O, 0). Furthermore IIK(-, ti) - K(-, tj)II~K is bounded above by 
2K(0, 0). If all members of the training set are classified correctly then Ydi > ° 
and the sum following the 2 in (16.30) does not appear and iJ(A) = K(O, 0)jnI2. 

We note that Opper and Winther (Chapter 17) have obtained a different approx­
imation for hi - ftiJ. 

16.6 Numerical Results 

We give two rather simple examples. For the first example, attribute vectors t were 
generated according to a uniform distribution on T, the square depicted in Figure 
16.2. The points outside the larger circle were randomly assigned +1 (" +") with 
probability P[trueJ = .95 and -1 (" 0") with probability .05. The points between 
the outer and inner circles were assigned + 1 with probability P[trueJ = .50, and the 
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points inside the inner circle were assigned +1 with probability P[trueJ = .05. In this 
and the next example, K(s , t) = e-~lIs-tIl2 , where (7 is a tunable parameter to be 

chosen. Figure 16.3 gives a plot of 10glO(GACV) of (16.29) and 10glO(GCKL) of 
(16.10) as a function of log 10 A, for 10glO (7 = -1. Figure 16.4 gives the corresponding 
plot as a function of 10glO (7 for 10glO A = -2.5 , which was the minimizer of 
10glO(GACV) in Figure 16.3. Figure 16.5 shows the level curve for 1>. = 0 for 
10glOA = -2.5 and 10glO(7 = -1.0, which was the minimizer of loglO(GACV) 
over the two plots. This can be compared to the theoretically optimal classifier, 
which the Neyman-Pearson Lemma says would be any curve between the inner and 
outer circles, where the theoretical log-odds ratio is O. For the second example, 
Figure 16.6 corresponds to Figure 16.2, with P[trueJ = .95, .5 and .05 respectively in 
the three regions, starting from the top. Figure 16.7 gives a plot of 10glO(GACV) 
and loglO (GC K L) as a function of 10glO A for loglO (7 = -1.25 and Figure 16.8 
gives 10glO(GACV) and 10glO(GCKL) as a function of 10glO(7 for 10glOA = -2.5, 
which was the minimizer of Figure 16.7. Figure 16.9 gives the level curves for 1>. 
at 0 for 10glO A = -2.5, 10glO (7 = -1.25, which was the minimizer of 10glO(GACV) 
over Figures 16.7 and 16.8. This can also be compared to the theoretically optimal 
classifier, which would be any curve falling between the two sine waves of Figure 
16.7. 

It can be seen that 10glO GACV tracks 10glO GCKL very well in Figures 16.3, 
16.4, 16.7 and 16.8, more precisely, the minimizer of 10glO GACV is a good estimate 
of the minimizer of loglO GC K L. 

A number of cross-sectional curves were plotted, first in 10glO A for a trial value 
of 10glO (7 and then in 10glO (7 for the minimizing value of 10glO A (in the GACV 
curve), and so forth, to get to the plots shown. A more serious effort to obtain 
the global minimizers over of 10glO(GACV) over 10glO A and 10glO (7 is hard to do 
since both the G ACV and the GC K L curves are quite rough. The curves have 
been obtained by evaluating the functions at increments on a log scale of .25 and 
joining the points by straight line segments. However, these curves (or surfaces) 
are not actually continuous, since they may have a jump (or tear) whenever the 
active constraint set changes. This is apparently a characteristic of generalized cross 
validation functions for constrained optimization problems when the solution is not 
a continuously differentiable function of the observations, see, for example [Wahba, 
1982, Figure 7] . In practice, something reasonably close to the minimizer can be 
expected to be adequate. 

Work is continuing on examining the G ACV and the GC K L in more complex 
situations. 
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Figure 16.2 Data for Example 1, Wit h Regions of Constant (Generating) Prob­
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Example 1: n= 200. log10(sigma) = -1 .0 
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Example 1: n = 200. IoglO(lambda) = -2.5 
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Figure 16.4 Plot of loglOGACV and loglOGCKL as a function of !og IOO" for 
loglO>' = -2.5. 

Example 1: log10(lambda) = -2.5, log10(sigma) = -1.0 
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Example 2: n = 200 
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Example 2: n = 200, log10(lambda) = -2.5 
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Figure 16.8 Plot of loglOGACV and loglOGCKL as a function of loglOO' for 
loglO>' = -2.5. 

Example 2: log10(lambda) = -2.5, log10(sigma) = -1.25 
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