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Nonparametric function estimation is a major research area at the present time and 
we just mention representative examples of modern techniques for multivariate function 
estimation in several dimensions: ACE (Breiman and Friedman 1985), MARS (Friedman 
1991), CART (Breiman, Friedman, Olshen and Stone 1984), Projection Pursuit (Huber 
1985), Regression Splines (Stone 1985, 1991), the --method (Breiman 1991), Additive 
Models (Buja, Hastie and Tibshirani 1989, Hastie and Tibshirani 1990). Neural net re- 
search is partly concerned with multivariate function estimation in the sense that we use 
it here; see, for example, Moody and Utans (1991). Each method has unique problems 
and successes in providing accuracy statements that we will not discuss here. 

In this article, we will be providing accuracy statements within the framework of 
a general form of smoothing spline analysis of variance (SS-ANOVA) in reproducing 
kernel Hilbert spaces (RKHS). An overview of SS-ANOVA as it applies to polynomial 
splines and tensor products of polynomial splines can be found in Wahba (1990). More 
recently this framework has been generalized to show how to include thin plate splines 
in an SS-ANOVA model (Gu and Wahba 1991a, 1993). The use of thin plate splines as 
part of the SS-ANOVA model allows the modeling of geographic and other variables as 
variables in main effects, interaction terms, and so forth. 

In SS-ANOVA (and other ANOVA in function space approaches, see, e.g., Friedman 
1991 and Stone 1985), f has a representation of the form 

f(t)= C + C f(ta) + y fa3(ta,tl) + 3 
fa3y(ta, t, ty) + .. (1.2) 

a ca</3 a<o3<y 

where the expansion is made unique and (usually) truncated in some manner. 
In the SS-ANOVA context the estimate fx of f is obtained by finding fA in an 

appropriate RKHS to minimize an expression similar to 

n 

E(yi f-(t(i)))2 
- E 0l'Ja(f)+ E O- JJa3(fa3)-- (1.3) 

i=l caEIM c, OEIAM 

where IM is the collection of indices for components to be included in the model, 
and the Ja, Ja, and so forth are quadratic "smoothness" penalty functionals. A is the 
main smoothing parameter, and the O's are subsidiary smoothing parameters, satisfying 
an appropriate constraint for identifiability. In previous work relevant to this article, 
a mathematical framework has been developed for fitting these models by penalized 
likelihood and in particular smoothing spline methods (Wahba 1986; Chen, Gu and 
Wahba 1989; Wahba, 1990). Numerical methods for fitting the smoothing spline models 
have been developed (Gu, Bates, Chen and Wahba 1989 and Gu and Wahba 1991b), and 
publicly available code developed (RKPACK, Gu 1989). 

The goal of this article is the establishment of component-wise Bayesian "confidence 
intervals" in the SS-ANOVA context, that generalize the univariate Bayesian "confidence 
intervals" of Wahba (1983). These were further studied by Hall and Titterington (1987), 
Nychka (1988, 1990), and Cox (1989), and recently extended to the non-Gaussian case 
by Gu (1992). In this article we derive these intervals for each component f,, f/p, etc. 
to be included in the ANOVA decomposition. More importantly we obtain them in a 
manner that allows a stable and efficient calculation. In addition we demonstrate how 
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they may be computed using RKPACK. We suggest their properties via a Monte Carlo 
study. 

It is a major task of nonparametric regression to provide some sort of accuracy infor- 
mation concerning the resulting estimate. Wahba (1983) described Bayesian "confidence 
intervals" for the (one component) smoothing spline model by deriving the posterior 
covariance for f given the Bayes model that is associated with spline smoothing. Then 
she showed by a Monte Carlo study that these confidence intervals appeared to have a 
certain frequentist property for f in certain function spaces. This property is an "across- 
the-function" property. "Across-the-function" means that when restricting the 95% confi- 
dence intervals to the n data points, around 95% of them will cover the values of the true 
curve there. A partly heuristic theoretical argument about why this could be expected was 
given by Wahba (1983), and later Nychka (1988, 1990), Hall and Titterington (1987), 
and Cox (1989) provided theorems concerning when and why they should work. Other 
definitions of confidence regions are of interest, in particular, a set of intervals that are 
required to cover 100% of the points with probability .95. Such intervals can be expected 
to be wider than the intervals considered in Wahba (1983). See, for example, Li (1989) 
and Hall and Titterington (1988). To us it is important and useful that the weaker defini- 
tion of "confidence interval" that was adopted in Wahba (1983) and assumed here leads 
to intervals that are easy to interpret psychologically. In simulations, when the intervals 
cover about 95% of the values of the true curve at the data points, the intervals more 
or less "graze" the truth, and the width of the intervals is visually interpretable by an 
unsophisticated user as an accuracy indicator. We note that these confidence intervals 
are not in general pointwise confidence intervals (there are not many "free lunches" in 
nonparametric regression)-the coverage will tend to be less than nominal where the 
true curve has sharp peaks or kinks and more than nominal where the true curve is 
smooth. If the user interprets them appropriately across the function, he or she will have 
a reasonable feel for the overall accuracy of the estimate. 

The results of the Monte Carlo study described here are suggestive that the 
component-wise confidence intervals roughly have the same "across-the function" cov- 
erage property for each component, in the examples we have chosen. The reader may 
judge from the plotted confidence intervals overlaying the true function the psychological 
information that is conveyed by the intervals. 

As a byproduct we obtain another useful graphical tool: In estimating functions 
of two (or more) variables by nonparametric methods, the data are frequently arranged 
irregularly. This is particularly true for geographic data. While it is tempting to plot the 
estimate in, say, a rectangle, once one is sufficiently far from the data the nonparametric 
estimates become meaningless. We propose using certain contours of constant posterior 
standard deviation to bound an area within which the estimated function is to be displayed. 

In Section 2 we briefly review and slightly extend the SS-ANOVA framework given 
in Gu and Wahba (1991a, 1993). This will establish notation and demonstrate the key 
ingredients of a general SS-ANOVA. In Section 3 we give the component-wise posterior 
covariance functions. The proof is relegated to the Appendix. In Section 4 we review 
some known reproducing kernels that are useful in SS-ANOVA. In Section 5 we provide 
the details of how RKPACK may be used to carry out the calculations of the Bayesian 
"confidence intervals", and in Section 6 we present the results of a small Monte Carlo 
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study on simulated data. In Section 7 we describe the application to some data on lake 
acidity as a function of geographical location and calcium concentration from the Eastern 
Lake Survey (Douglas and Delampady 1990). In our original submission we suggested 
what assumptions and lemmas might be necessary to extend the main theoretical results 
of Nychka (1988, 1990) concerning the properties of the (single component) Bayesian 
"confidence intervals" to the component-wise case considered here. This part has been 
deleted at the suggestion of the referees, but may be found in Gu and Wahba (1991c, 
Appendix B). 

2. ANALYSIS OF VARIANCE IN RKHS 
We will always assume that f is in some RKHS, that is, a Hilbert space of functions 

in which all the point evaluations are bounded. See Aronszajn (1950), Weinert (1982), 
Mate (1989), and Wahba (1990). The last two give expository descriptions of facts about 
RKHS that are used here. 

Let now H be some RKHS of real-valued functions of t = (tl,... ,td) e T = 
T(1) 0 ... 0 T(d), where we may allow t, E T), an arbitrary measurable index set, 
and, furthermore, suppose the one dimensional space of constant functions on T is a 
subspace of H. Then there are many ways that an ANOVA-like decomposition of the 
form (1.2) can be defined for f in such a space. We now give a general construction. 
For each a = 1,..., d, construct a probability measure d/, on T("), with the property 
that the symbol (,a f)(t), defined by 

(?af)(t) = T f(tl,..., td)dL, (ta) 

is well defined and finite for every f E H and t E T (although of course (?af)(t) 
will not vary with to). We need the further assumption, that considering (?af)(-) as 
a function of t, then it defines an element of 7i. We will henceforth assume that this 
assumption holds (we will construct a generic example shortly). Then we can consider E, 
as an operator from H to 7H. We will call such operators averaging operators. Consider 

I = (a + (I-a)) = lE + (I Ea) H E 
a a a f3$a 

+ -(I-E)(I-p) +... ( + +.(I-6 ). (2.1) 
a</3 yra,/ a 

This decomposition of the identity then always generates a unique (ANOVA-like) decom- 
position of f of the form (1.2), where C = (na, )f, ff = ((I-?a) IIp a ?3)f, f, = 
((I - Ea)(I - ?3) f-ya ,,P ?7)f, etc, are the mean, main effects, two-factor interactions, 
etc. Note that the components will depend on the measures dt,u and these should be 
chosen in a specific application so that the fitted mean, main effects, etc. have reasonable 
interpretations. 

This construction specializes to the ordinary two way layout by taking d = 2 
and T(a) = {1,2,..., K,} for a = 1,2, T = T (1) T(2) and letting ?lf(t) = 

K, Z l f(-y,t2), and similarly for ?2. f(.) and (?,f)(. ) should be thought of as 
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K = K1 x K2 vectors here. Although other averaging operators are obviously pos- 
sible, this pair seems to be in common use in the usual two-way layout without much 
particular justification. Note that if we adopt the ordinary Euclidean inner product for 
functions defined on K dimensional Euclidean space, then the ranges of the four op- 
erators 61E2,l1(I - p2), (I - ?1)62, and (I - l1)(I - 62) consist of four orthogonal 
subspaces of Euclidean K-space whose direct sum is Euclidean K-space. In that case 
the components are easy to estimate and have an intuitive meaning for the user. Note 
that in the usual d-way layout, the functions of interest are only defined on the design 
points, but that with the ANOVA that we will study, the functions may have a much 
larger domain, and, although the domain is required to have a tensor product structure, 
we will see that the design may not. 

In the general RKHS case the range of each operator of the form 

In J n (I-sp) 
Ql ,...,**ck a k+l, *.,ad 

is a subspace of 7H, however, these subspaces are not necessarily orthogonal with respect 
to the inner product in '7. In this article we will restrict ourselves to ANOVA decompo- 
sitions in RKHS such that the ranges of these operators are orthogonal. This will result in 
components that are relatively easy to estimate and that may have an intuitive meaning 
for the user. 

We will now show how to construct generic RKHS's satisfying the previously stated 
conditions, so that the subspaces that are ranges of products of the ?,O and I - ? are 
all orthogonal in the inner product of the space. Let H-() be an RKHS of functions on 
T(a) with fT(,) f(tc)dpa = 0, f C A(a), and let [1(a)] be the one dimensional space of 
constant functions on T(). Consider the space [1(a)] ?H((-), where E is tensor (or direct) 
sum. Then any f in this space will have a unique decomposition f = Pcf + (f- Pcf), 
with Pcf = f fdd^ E [1(a)] and (f - Pcf) E 7-((a). We endow this space with the 
square norm ||fI12 = (Pcf)2 + I|f - Pcfl(,) Now, let 

- = ?=, [[l(")] E H()], (2.2) 

where ?,=1 is the tensor product of the d Hilbert spaces in the outer brackets. See 
Aronszajn (1950) for a detailed discussion of tensor sums and tensor products of RKHS 
and Wahba (1990, Section 10) for examples. Further details will be given in Section 4. 

The right side of (2.2) can be expanded as 

H = [1] e -[ 
- 
([)] E E [-H( ) ? 7- ( ..] , (2.3) 

a 3<a 

where we have written [1] to denote d=l[1(a)], the constant functions on T and, with 
some abuse of notation, we have suppressed [1(a)] whenever it multiplies a term of 
a different form. That is, we have written H(1) instead of H(1) Xd=2 [1()], and so 
forth. Hopefully this makes clear that the terms in brackets in (2.3) are all subspaces 
of functions on T, even though the functions in them do not all depend on all of the 
variables t,... , td. 
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Here f, E 7(a) is called a main effect, f-z E 7- (a) 7-{() is a two-factor interaction, 
and so forth. We are continuing with this notational convention, that is, fa is considered 
as an element of H even though it is a constant function of all the tg's except for P = ca. 

The subspaces in the outer brackets in (2.2) are all orthogonal in the tensor product 
norm induced by the original inner products. Thus the decomposition of f of the form 
(1.2) with C = (-I, ?a)f,fa c h(a), fa 7-C () 0 X() will be an orthogonal 
decomposition. For other interesting views of analysis of variance, see Antoniadis (1984) 
and Speed (1987). 

We want one further decomposition, to allow for the imposition of spline and related 
penalty functionals. Let H(a) have an orthogonal decomposition H({) -{H(a), where H(a) 
is finite dimensional (the "parametric" part; usually, but not always, polynomials), and 
H(a) (the "smooth" part) is the orthocomplement of H(a) in H(a). We will later let 
Ja(fa) = lIP()fa ll), where P(a) is the orthogonal projection operator in H(a) onto 

H() . Thus the null space of J, in H(a) is H(a). X(a) 0 H(p) will be a direct sum of 
four orthogonal subspaces: 

7HX(a) (0 8)' = [( n) 0 H ()] (2.4) 

0 [Ha) 0 NH! (2.5) 

E [nsa) 20 3 )] (2.6) 

0D [H(a) (0 n') ]. (2.7) 

By convention the elements of the finite dimensional space -H(a) 0R-d are not penalized. 
In Section 4 we will let the penalties in the other subspaces be their square norms. 

At this point we have (orthogonally) decomposed H into sums of products of un- 
penalized finite-dimensional subspaces, plus main effects subspaces, plus two-factor in- 
teraction spaces of the form parametric 0 smooth (7r, s) of the form (2.5), smooth 0 
parametric (s, 7r) of the form (2.6), and smooth 0 smooth (s, s) of the form (2.7), and 
so on for the three and higher factor subspaces. 

Now suppose that we have selected the model M; that is, we have decided which 
subspaces will be included. Next, collect all of the included unpenalized subspaces into 
a subspace, call it 7N?, of dimension M, and relabel the other subspaces as 'P, 3 = 
1,2,... ,p. For example, in the case Ja(fa) f= (fm)(u))2du, H(a) is spanned by the 
polynomials of degree less than m in ta that average to 0 under Ea, and ?0 is sums 
and products of such polynomials. N'3 may stand for a subspace N(a), or one of the 
subspaces of the form (2.5), (2.6), (2.7), or a higher order subspace. Our model estimation 
problem becomes: find f E M = H?0 0 p N'H to minimize 

1 (Yi- f(t(i)))2 + A E 0-1 llPf ll2 (2.8) 
i=l 13 

where PO is the orthogonal projector in M onto 'It. Given a basis for N7?, and repro- 
ducing kernels R,3(s, t) for 'HP, an explicit formula for the minimizer fx of (2.8) is well 
known; see, for example, Chapter 10 of Wahba (1990). The code RKPACK (Gu 1989) 
may be used to compute the GCV estimates of A and the 0's. 
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We end this section with a few remarks concerning the choice of the probability 
measure /,a. In the case 7T) consists of K, points it is natural to use the uniform 
measure on the points-in any case this is the common practice in (parametric) ANOVA. 
In the case that T( is a finite interval, a natural choice, which would lead to interpretable 
results, would be to let ft, be (a multiple of) Lebesgue measure. In the case that the 
uniform measure on T() cannot be scaled to be a probability measure (i.e., if T() = 
Ek() ), another choice must be made. A uniform measure over a finite region of interest 
or a measure reflecting the observational density could be used. In the examples in this 
article we will use Lebesgue measure when T) is [0,1] and uniform measure on the 
(marginal) design points when T() = Ek(a). 

3. BAYESIAN POSTERIOR COVARIANCES FOR COMPONENTS 
In this section we provide general formulas for the Bayesian posterior covariances 

for the components of f estimated by minimizing (2.8). The component-wise Bayesian 
"confidence intervals" are then computed from the relevant posterior standard deviations, 
generalizing the (single-component) Bayesian "confidence intervals" given in Wahba 
(1983). The computation of the relevant quantities will be discussed in Section 5. 

We first review some relevant facts. Let R/(s, t) be the reproducing kernel for 'HO 
and let ?1,..., (M span -0?. Let X (t), t E T = 0,T(a) be a stochastic process defined 
by 

M p 

X (t)= T v (t) + b l/ E Z (t) 
Iv=l /=1 

where r = (r,...,irM)' ~ N(0, I), and the Z3 are independent zero mean Gaus- 
sian stochastic processes, independent of the Tr, with EZ (s)Z'3(t) = R3(s,t). It 
follows that Z(t) = V O/OZ,(t) satisfies EZ(s)Z(t) = R(s,t), where R(s,t) 

, 0 RP (s, t). 
Now, let 

Yi = XF(t(i)) + i, i = 1,...,n, 

where e = (e..., .. n)' -) .V(O, r2I). Let 

fA(t) = lim E{X (t)Yi = yi, i = 1..., n} 

and set b = a2/nA. It is well known (Kimeldorf and Wahba 1971), that 

M n 

fx(t) = E d,vo(t) + E ciR(t, t(i)) , (3.1) 
v=l i=1 

where d = (dl,..., dM)' and c = (cl,..., cn)' are given by 

d = (S'M-lS)-lS'M-ly (3.2) 
c - (M-1- M-1S(S'M-~S)-lS'M- )y, (3.3) 
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where S is the n x M matrix with ivth entry 0,(t(i)) and M = E + nAI, Where E 
is the n x n matrix with ijth entry R(t(i), t(j)). It is always being assumed that S is 
of full column rank. Furthermore, for any A > 0, fA is the minimizer of (2.8). See also 
Wahba (1978, 1990). The projections of fA on the various subspaces are the posterior 
means of the corresponding components and can be read off of (3.1). For example, let 
gO, (t) = T7Ov(t) and go(t) - b'/2VOfZOZ(t), then we have 

E(go,v(t)ly) = dv4v(t) 
n 

E(go(t)jy) = >ciOfRo(t,t(i)). 
i= 1 

The posterior covariances of go,, and go are summarized in the following theorem. 

Theorem 1. 

1 = 

b v(go'V(8) go'1(t)1y) = V80') tI 

1cov(ggi(s), gfl(t)1I) = QdRvl(s, t)1- ci,p(s)QiRp(t , 
i-i 

I n~~~~~~~~~ 

cov(go(s), go(t)ly) = - >3 c(s)OR , sR(t,tt(i)) 
i-i 

where ev is the vth unit vector, and (di,0(s),... dm,o(s)) = do (s)' and (ci,f(s),..., 
cn,/3(s)) = co(s)' are given by 

( OfRfl(s , t (1)) 
do(s) = (S'IM1S)-1S'M'1 (3.4) 

0O R,3(s, t (n))/ 
(OflR13(s, t(1)) 

cW(s) = [M-' - M-IS(SMM-1S'S')M-l ] . (3.5) 

K0 6/Rf3(S, t (n))/ 
The proof is given in the the Appendix. It is clear that the calculation of the posterior 

covariances boils down to the calculation of (S'M-1S)-1, co and do, which we will 
pursue in Section 5. 

4. SPLINE PENALTY FUNCTIONALS AND REPRODUCING 
KERNELS FOR SS-ANOVA MODELS 

We remind the reader (see Aronszajn 1950) that reproducing kernels (RK's) for 
tensor products of RKHS are just the products of the individual RK's. In symbols, if 
J-((') and H(2) are RKHS of functions defined on TO') and T(2) respectively, with RK's 
R(l)(t1,t') and R(2) (t2i t) then the RK R for jU(1) 0 N(2) is the function of (tl, t2) 1 21`\2(2 ICI IC \\1 V L'\II` 3 1~ UILVIV L)L2 
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and (t1, t2) given by R(ti, t2; t[, t') = R(1)(tl, t1)R(2)(t2, t'). By iterating this process 
(and silently using the fact that the RK for [1(a)] with the norm defined implicitly just 
before (2.2) is the constant 1) it can be seen that all of the R/3(s, t) that we need will be 
known once we know the reproducing kernels for the 7-') and 7-(). In the following 
simulations we will use -t(")'s that correspond to polynomial and thin plate splines 
respectively. Examples of reproducing kernels for these cases appear in the literature and 
we will just display the results that we will use in the following Monte Carlo and data 
analysis studies. 

4.1 UNIVARIATE POLYNOMIAL SPLINES 

For T) = [0, 1] the polynomial spline penalty functional is Ji (f) = (f(m)(t))2 
dt. The null space of this penalty functional is the m-dimensional span of the polynomials 
of degree less than m. -ra) is of dimension m - 1, and is the span of these polynomials 
satisfying the side condition that they integrate to 0 with respect to /,. The elements 
of 7(a) also integrate to 0 with respect to ,Ua and will satisfy m- 1 side conditions 
to guarantee orthogonality with ( a). RK's are given in Gu, Bates, Chen and Wahba 
(1989) and Wahba (1990, Chapter 10), for /,a Lebesgue measure and side conditions 
periodic boundary conditions. We will use the case of m = 2 in the Monte Carlo study 
in Section 6, and the RK's RX and Rs for H(a) and -Ha) in this case are reproduced 
here: Letting ke = Be/i!, where Be is the Eth Bernoulli polynomial, 

R,(t, t') = kl(t)kl(t') (4.1) 

R(t, t') = k2(t)k2(t') - k4([t-t']), (4.2) 

where [r] is the fractional part of r. For future reference we remark that in this case 
-(H) is spanned by k1. 

4.2 THIN PLATE SPLINES 

For Ta) = Ek, k = 1, 2,... the thin plate penalty functional is 

Jk(f) = y (m' ) dxl ... dxk 
Yl+...+k=M Y!... 'k! J -00 .-00 1 k 

For technical reasons it is necessary that 2m - k > 0. The null space of this penalty 
functional is the M (m+k-l) polynomials of total degree less than m in k variables, 
and H7a) is the M- 1 dimensional space spanned by these polynomials constrained to 
integrate to 0 with respect to /,a. This integration must be well defined, so we cannot take 
p/a as Lebesgue measure over Ta) here. Reproducing kernels for this case have been 
given in Gu and Wahba (1993) for uz, any probability measure nontrivially supported 
on a finite unisolvent set of points. (A unisolvent set of points is a set for which least 
squares regression on polynomials of total degree less than m in k variables is unique.) 
The elements of -ta) integrate to 0 with respect to this measure and must satisfy M - 1 
additional moment conditions. In the data analysis study in Section 7 we will let Ta) 
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be E1 or E2, and m = 2. The reproducing kernel R, for X(ar) in Gu and Wahba (1993) 
was obtained by choosing M linearly independent polynomials 1l,..., ,M, in the k 
variables, of total degree less than m so that 01 = 1 and so that they are orthonormal 
under the inner product (%,,? ,) = f 0s,?,d/,. Then the RK R, for T-() with this 
inner product is 

M 

R (t, t') = E ) (t)cf(t'). 
v=2 

Letting P? be the projection operator in X-(") defined by 
M 

P,f = E vfMvdIa, 
v=l 

suitable moment conditions on elements in -() are defined by P4f = 0. The RK 
Rs(t, t') for 7-s) was obtained as a function of the semi-kernel (variogram) Ek associ- 
ated with thin plate splines, given by Ek (r) oc {T12m-k, where k is not an even integer, 
and E (r) oc 1rT2m-k log 171, where k is an even integer. Letting E(t, t') = E (It-t'l), 
where It - t' is the Euclidean distance between t and t' in Ek, and letting Pr(t) be P, 
applied to what follows considered as a function of t, then, it is shown in Gu and Wahba 
(1993), that the RK for 'HX) is given by 

Rs (t, t') = (I- P(t))(- Pr))(tt'). 

We remark that this result in the one-dimensional case (k = 1) goes back to deBoor 
and Lynch (1966), see also Wahba and Wendelberger (1980). The k = 1 case results in 
polynomial splines for the main effect, although the side conditions on M-O) are different 
here from those in Section 4.1. 

5. COMPUTATION 
Generic algorithms for computing smoothing splines have been developed by Gu et 

al. (1989) and Gu and Wahba (1991b), with the smoothing parameters 0 and A either 
being selected via the generalized cross-validation (GCV) method of Craven and Wahba 
(1979) or being estimated by the ML-II (or generalized maximum likelihood-GML) 
method under the Bayes model. These algorithms are implemented in RKPACK. We 
illustrate in this section that the quantities in Theorem 1 can be calculated via immediate 
adaptation of the generic algorithms. 

We first outline the relevant steps in the generic algorithm (Gu and Wahba 1991b). 
Let the QR decomposition of S be S = FR = (F,F2) ( ) and let z = Fyy. 

Let CS be the n x n matrix with ijth entry Rp(t(i),t(j)), and let EI, = F2E3F2. 
Let S = Z,= 03E,. The GCV score V(A, 0) and the GML score M(A, 0) which are 
minimized to obtain A and 0 are given by 

z'(t + nAI)-2z 
(trace(2 + nAI)-1)2' 
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M(A 0)-= z'( + nAI)-lz 
(det(E + nAI)-1)1/(n-M)' 

see Wahba (1990). After calculating z and the Ef, the GCV or GML score is minimized 
with respect to 06's and A iteratively. In this process each iteration consists of a 0- 
step followed by a A-step, where the 0-step updates 0/'s to find a better orientation 
of X/0f's and the A-step conducts a line search along the updated orientation. The 
minimizing smoothing parameters are then used in calculating the fits. The initialization 
takes O(n2) flops, each 0-step takes (2/3)(p- l)n3 +O(n2) flops, and each A-step takes 
(2/3)n3 + O(n2) flops. In the A-step (Gu et al. 1989), E is decomposed as E = UTU', 
where U is orthogonal and T is tridiagonal (Householder tridiagonalization), to facilitate 
the fast evaluation of the GCV or GML scores at different values of A. Recalling that 
M = E + nAI, it can be shown that M-1 - M-1S(S'M-1S)-1S'M-1 = F2U(T + 
nX)'U'F2' and (S'M-1S)- S'M-1 = R1'(FF- (F EF2)U(T + nI)- U'FT), where 
E = ELP OBE]. So at the converged 00's and A the algorithm returns 

c = F2U(T + nI)'U'F2y 
d = R11(Fly- (F'FF2)U(T+ nI)-lU'F'y), (5.1) 

which are used to compute d and c of (3.2) and (3.3). Now it is clear that to obtain d,(s) 
of (3.4) and c,(s) of (3.5) one only needs to replace y by 

(03pR(s,t(l)).., R(s, t(n)))' 

in (5.1). F and U are usually stored in factored form, the applications of F', F, and 
(T+nAI)-1 on vectors are of linear order, and the applications of U' and U on vectors are 
of quadratic order, so for a single s these quantities require O(n2) flops extra calculation. 
For S'M-1S we have 

(S'M-1S)-1 = R1'[(FIEF1 + nAI) 
-(F[1'F2)(F2EF2 + nIA) -1(FEFI)] (R-11)' 

= R1 [(F'EF, + nAI) 
-(F(FF2)U(T + nAI)-'U'(Fj2F,)](R 1)', (5.2) 

which can be calculated in O(n2) flops. 
Finally, we need an estimate for b. In this article we calculate it from an estimate of a2 

via b = r2/nA. The computational form for the variance estimate usually associated with 
the GCV selection of smoothing parameters is b cv = nAz'(E + nAI)-2z/trace(E + 
nAI)- , and the GML estimate is `2ML = nAz'(YE+n- I) -z/(n-M). A more familiar 
form for &GCv i s GCV= (residual sum of squares/degrees of freedom for noise); see 
Wahba (1983, 1990), Gu (1989), and Gu and Wahba (1991b), Hall and Titterington (1987) 
for further information about o~GCv. 

To facilitate the application of the technique developed in this article, two 
self-documented utility routines have been added to RKPACK to carry out the 
calculations in (5.1) and (5.2). The routines are to be used in conjunction with the 
RKPACK drivers and the usage is illustrated in our simulation code. (See Section 6 
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for simulations.) The RKPACK package including the simulation code is available from 
statlib@temper.stat.cmu.edu in the general directory as rkpk and from 
netlib@research.att.com. in the gcv directory as rkpk.shar. Write to either 
of these addresses with "send index" in the body of the message and the robot server 
will respond with instructions for using the system. 

6. SIMULATIONS 
We present the results of a pilot simulation study in this section to illustrate the 

practical performance of the component-wise Bayesian "confidence intervals". Because 
the method applies to a generic class of nonparametric models we are not attempting 
a definitive study. Instead, we apply the technique to a single arbitrary but nontrivial 
test example and collect and describe the results. Our simulation code has been briefly 
commented and is available to the public so that interested readers may choose to augment 
our simulations by running the code on our examples or on test examples of their own 
choice. 

Our test example is on T = T(1) 0 T(2) T(3) = [0, 1]3, using a model built up 
from the 7-H() spaces in Section 4.1 with ,u Lebesgue measure. We generated design 
points t(i) (once and for all) from the uniform distribution on [0,1]3 and generated 
responses by y = C + fi (t) + f2(t2) + f12(t1, t2) + e with e ~ N(0, a2). Note that there 
was no dependence of the response on t3. The components of the test function used in 
our simulations were C = 5, fi(tl) = e3tl -(e3 - 1)/3, f2(t2) = 106[t(1 - t2)6- 
Be(12, 7)] + 104[t3(1 - t2)1 - Be(4, 11)], and f12(tl, t2) = 5 cos(27r(tl - t2)), where 
Be(p,q) is the Beta function. These component functions satisfy the side conditions 
0 = ?Efl = ?2f2 = Elfi2 = ?2f12, where S,() = f (.)dta. 

We chose to fit a model with three main effects and one two-factor interaction: 

f(t) - C + fl(tl) + f2(t2) + f12(t1,t2) + f3(t3). (6.1) 

The unpenalized space H?O is the five-dimensional span of { 1, kl (tl), k (t2), k (t3), kl (tl), 
kl(t2)} and there are six penalized spaces, each with a separate smoothing parameter, 
consisting of three spaces of the form H(") for the three main effects and three spaces 
for the tl-t2 interaction of the form (2.5), (2.6), and (2.7). 

For the simulations, we have chosen to use a model that is (one component) bigger 
than the true model, to see whether the method will correctly suggest that the spurious 
component is not present. In the simulations below we have taken n = 100 and 200, 
and the six smoothing parameters that we have in the model are probably about as many 
smoothing parameters as one can expect to deal with with these small sample sizes. Thus, 
we deleted a priori the tl-t3 and t2-t3 interactions. The point of view we are taking here is 
that the SS-ANOVA should, strictly speaking, be thought of as a top-down approach, that 
is, the models being entertained should ideally contain the true model. Model selection 
is, of course very important, but beyond the scope of the present paper. We just note 
that 1) in the simulations below the confidence intervals do indicate that the f3 term 
is not present, and 2) if the model is too small, then of course the estimate of ao2 is 
likely to be inflated. See Gu and Wahba (1993) for a discussion of some model selection 

108 



SMOOTHING SPLINE ANOVA 

- 
Ep-a-IE3--- I I 

f f1 12 f12 f3 

i * 

f f1 f 2 f 12 f3 

1 1 1 * l I 
I 

* 1 
* *~~~~~~ 

* *~~~~ 

0. 

0 

CO 

a, 
0 

N4 . 
Co 

0 _ 

CO 
0 
0 

0 _ 
0 

q 

f f1 f2 f12 f3 

q 

OR 0 

(P 0 

0 
04 

c\i 
0 

9 - 
0 

**-E; --- - E --E -- 

t 

I f2 

f ft f2 f12 f3 

I + 

I I 

.1 C 

f f1 f2 f12 f3 

+ I 

i 

f f 1 f2 f12 f3 
Figure 1. Coverage Percentages of 95% Intervals in the Experiments. Top row: n = 100; bottom row: n = 200; 
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coverage. 

methods. Although we have not done a full fit including all the two-factor interactions, 
we conjecture that it can be done with a larger sample size, and that the results would 
correctly suggest that dependence on t3 is absent. 

Letting g(t) stand for any one of the four estimated components fi, f2, f12 or f3, the 
95% Bayesian "confidence interval" at t is then given by g(t) ? 1.96sg(t), where s2(t) 
is the posterior variance for 3(t) obtained from Theorem 1 by collecting the relevant 
terms, including cross-terms, from the penalized and unpenalized components. We note 
that the three penalized spaces in the t1-t2 interaction term, which had been kept separate 
for smoothing parameter selection, are lumped together as a single penalized term, for 
display and for computing the posterior variance. 

Six experiments were run, with two levels of n (100, 200), crossed with three levels 
of c (1, 3, 10). One hundred replicates were generated for each experiment, and data 
for the 50%, 75%, 90% and 95% confidence intervals were collected. In each case, the 
number of data points at which the confidence intervals covered the true values of f, fi, 
f2, f12 and f3 were recorded. These numbers were then divided by the corresponding 
sample sizes to form the coverage percentages of the intervals on the design points. We 
summarized these coverage percentages using boxplots and some of them are presented 
in Figures 1 and 2. Figure 1 collects the coverage percentages of the 95% intervals in 
all the six experiments, with the two rows corresponding to n = 100 (top) and n = 200 
(bottom) and the three columns corresponding to a = 1 (left), a = 3 (center), and 
a = 10 (right). Figure 2 augments the center bottom frame of Figure 1 with the coverage 
percentages of the 90%, 75%, and 50% intervals for the n - 200 and a = 3 experiment. 
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Figure 2. Coverage Percentages of n = 200 and a = 3 Experiment. Left: nominal 90%; center: nominal 75%; 
right: nominal 50%. Plusses: sample means; dotted lines: nominal coverages. 

The sample means of the coverage percentages are marked as plusses in the boxplots 
and the nominal coverages are superimposed as dotted lines. Boxplots corresponding to 
Figure 2 for the cases not shown had a similar appearance. 

In the n = 100 experiments here, the GCV criterion chose to (nearly) interpolate the 
data in four of the one hundred a = 1 replicates and in one of the oa = 3 replicates. These 
cases can be readily detected by estimates of a2 which are many orders of magnitude too 
small, and by their plots, which are highly wiggly. There were no such near-interpolating 
cases in the oa = 10 replicates nor in any of the three hundred n = 200 replicates. 
This phenomenon, a small fraction of unacceptable results in small sample sizes that 
disappears in larger sample sizes, has been noted elsewhere. See, for example Wahba 
(1983). The 5 near-interpolating cases have been omitted from Figure 1. We note that as 
the difference between the fit and the data comes close to machine 0, the calculation of 
posterior variances by adding terms in Theorem 1 may become unstable. 

We visually inspected many of the plotted intervals and (with the above five excep- 
tions) they all convey a similar visual impression. Therefore we will just display "typical" 
n = 100 and n = 200 95% cases for the a = 3 runs. These cases were actually the 
first replicates in the two runs. Here the data for the n = 100 case form a subset of the 
n = 200 case data. In Figure 3, the main effects are plotted in the top row and three 
slices of the interaction are plotted in the bottom row, where the solid lines are the test 
functions, the dashed lines are the n = 200 intervals, and dotted lines are the n = 100 
intervals. 

Note that although we have plotted the intervals as continuous bands for a clear visual 
interpretation, these curves should not be considered as defining classical simultaneous 
confidence bands. In order to make statements about their frequentist properties for fixed 
f's (as discussed in Wahba (1983), Nychka (1988, 1990) and Gu and Wahba (1991c)), 
we have to evaluate the coverage at the n data points and then average across the 
data points. Coverage percentages aside, the 95% intervals appear to have the right 
magnitude as judged by the fact that they just about graze the true curves over a few 
percent of the domain. For the n = 200 case shown, considering the 95%, 90%, 75% and 
50% confidence intervals for the entire function (not shown), they covered, respectively 
97%, 89.5%, 72.5% and 43% of the values of the true function at the data points. The 
corresponding numbers for the n = 100 case were 98%, 95%, 78% and 48%. 

A point worth noting is the apparently different behavior of the intervals for f3 
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compared to the other components, as can be seen in the boxplots of Figures 1 and 2 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

and in the f3 curves of Figure 3. In the test function f3 = 0, the GCV criterion often 
effectively removed the penalized space for f3 so that the fitted f3 was dominated by the 
parametric term, which is a multiple of k (t) = t- 2. In this case sf, is also a multiple of 
k1. Therefore, if the penalized space component is removed completely then confidence 
intervals evaluated at the data points would cover the test function f = 0 at all or none 
of the design points depending on whether the confidence interval for the parametric 
coefficient covered 0 or not. This has happened in the example shown in Figure 3. This 
can explain why the means of the f3 boxplots are roughly at their nominal values but the 
spread tends to be larger than for the other components. The all-or-none coverage pattern 
has been diluted somewhat by the fact that in some of the replicates a small "smooth" 
component has been included in the f3 fit. 

7. APPLICATION: LAKE ACIDITY STUDY 

We further illustrate possible applications of the Bayesian "confidence intervals" on a 
real data problem in this section. From the data edited by Douglas and Delampady (1990) 
based on the Eastern Lakes Survey of 1984 by the Environmental Protection Agency 
(EPA), we extracted observations on 112 lakes in the southern Blue Ridge mountains area. 
The response y is lake water acidity (surface pH), as dependent on geographic location 
and calcium concentration. A model of the form f = C + fi(ti) + f2(t2) + f12(t1, t2) 
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Figure 4. Fitted Main Effects Model of Blue Ridge Lake Acidity. Left: Calcium main effect plus mean, with pH 
data (*). Right: Contours for geographic main effect. Circles are lakes and dotted lines state borders. 

was fitted in Gu and Wahba (1993). Here t1 is calcium concentration and t2 = (x1, x2) is 
geographic location. We let T(1) = E1, T(2) = E2, and ,u and /2 be uniform measures 
over the (marginal) design points. We let _.(1) and 7-((2) be as in Subsection 4.2 with 
m = 2. The norm in 7X(2) is "rotation-invariant" and hence is suitable for modeling 
geographic effect; more technical details can be found in Gu and Wahba (1993). In 
Gu and Wahba (1993) the interaction term f12 was retained in the model. When we 
obtained component-wise Bayesian "confidence intervals" for this model as part of the 
present study, however, the 95% intervals for f12 almost completely covered zero on 
the design points. Thus we dropped the f12 term and refit the main-effect-only model 
f = C + fl(tl) + f2(t2). As usual, 1f = ?2f2 = 0, here Sfc = n i=l fU(tc(i)). 

The left and right frames of Figure 4 give the fitted main effects for pH and geog- 
raphy respectively. The constant term has been added to the fg main effect so that the 
fitted fl can be visually compared to the data marked by *'s. The fitted fi main effect is 
essentially a straight line. Contours for the estimated f2 main effect are the solid lines in 
the right frame. The locations of the 112 lakes in the present study are marked as circles 
in th rht a e right frame of Figure 4, where the dotted lines indicate the state borders. It can be 
seen that the lakes run roughly along the Blue Ridge mountains, which run southwest to 
northeast in Georgia, Tennessee, South Carolina, North Carolina, and Virginia. Although 
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there is no data in the northwest and southeast corners, the estimate of f2 is defined ev- 
erywhere. It is clear that as one gets far enough away from the data the estimate carries 
little information. Our first task here then is to obtain a reasonable graphical display of 
what is hopefully the meaningful part of the estimated f2. To this end, we plotted as the 
dashed lines in the left frame of Figure 5 the contours of the posterior standard deviation 
calculated according to Theorem 1. We plotted the contours of the estimated f2 as solid 
lines in the center frame of Figure 5 but only within a region with the posterior stan- 
dard deviation smaller than .15 (pH). The choice of .15 is about 3 times the minimum 
posterior standard deviation in the left frame of Figure 5 but is otherwise arbitrary. The 
right frame of Figure 5 presents a cross section of the 95% intervals for f2 taken along 
the diagonal from the lower left to the upper right corner. The minimum value of the 
estimated geographic component of the lake acidity occurs roughly where this diagonal 
intersects the 82 degrees longitude line, roughly the location of Mt. Mitchell, the highest 
point in North Carolina, at the high point of the crest of the Blue Ridge mountains. 

To check how trustworthy the estimate and the intervals were, we simulated data 
on the same design points with the above fitted main-effect-only model as the truth and 
the associated variance estimate a2 = .0655 as the variance of the additive Gaussian 
noise. Similar to simulations in Section 6, 100 replicates were evaluated. The coverage 
percentages were collected and are summarized in Figure 6. There were 3 replicates in 
which the fits interpolated the data, and these cases are omitted from Figure 6. As seen 
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in Figure 4 the model fitted to the real data has a strong but linear calcium main effect 
which is in the null space of the penalty, and as a consequence the intervals for fi in 
the simulations demonstrated a fairly clear all-or-none coverage behavior. Based on the 
first replicate in the simulation, Figure 7 presents a parallel to Figure 5 but with the truth 
superimposed in the right frame as the solid line. 

APPENDIX: PROOF OF THEOREM 1 

We can see how to prove the various parts of Theorem 1 by a unified method if we 
first prove the following: Qx(s,t) = E((fx(s)- f(s))(fA(t) - f(t)) Y = y) is given 
by: 

/ ( l(t) 

/ R(tt(l)) % 
-Qx( ( *i(s),..., M(s))(S'M-1 S)-l M- 

/ R(t,t(n)) / 

( R(s, t(l)) \ 

-(1(t), .., M(t))(S'M S)-S'M-1 
R(s,t(n)) 2 

+R(s, t) - (R(s, t(l)),..., R(s, t(n))) 
/ R(t,t(l)) 

x[M-1 -M-lS(S'M-1S)-lS'M-l] . 

, R(t,t(n)) 

After we prove this, which is equivalent to Theorem 2 of Wahba (1983), we show that 
by a simple substitution in the proof, each of the posterior covariances of the components 
is obtained by the same technique. 

Let y = f + e, where f and e are 0 mean Gaussian random (column) vectors with 
Eff' = bEff, Eee = a2I, Eef' = 0, and let g,h be zero mean Gaussian random 
vectors with Egh' = bEgh, Egf' = bEgf and Efh' = bEfh. Let a2/b - nA. Then we 
have 

cov(g, hly) = b(Egh - Egf(Eff + nAI)- 1Ef). (A.1) 

Let f(t)= 1E i TV,,(S) + bZ(t), where r = (r7,... rM)' - N(O,I), EZ(s)Z(t) = 
R(s, t), and r and Z(t) are independent. Letting ? = 7l/b, then 

M 

Ef(s)f(t) - b[r, E v,(s)v,(t) + R(s, t). 
v=l 

114 



SMOOTHING SPLINE ANOVA 

Now, let f = (f(t(l)),..., f(t(n))), g = f(s) and h = f(t) and let S, E, and M be as in 
the text. Let 0(s) = (q1(s),... , M())', and let R(s) = (R(s,t(1)),...,R(s,t(n)))'. 
We have, upon substituting these into (A.1), 

Qx(s, t) = rl'(s)q(t) + R(s, t) - (rlq(s)'S' + R(s))(r1SS' + M)-l(riSq(t) + R(t)). 
(A.2) 

Upon collecting terms the right side of (A.2) becomes 

0'(s)[rl - rjS'(rSSS' + nAI)- 1rS]0(t) 
- rq'(s)S'(r7SS' + M)-'R(t) 
- R(s)'(rSS' + M)-lrS77 (t) 
+ R(s, t) - R(s)'(rSS' + M)- R(t). (A.3) 

Now, the following formulas are known (Wahba, 1983, Eq. (2.14), and 1978, Eqs. (2.8) 
and (2.7) respectively): 

lim --oo rI- rqS'(r7SS' + M)-Sr = (S'M-'S)-1 
lim ~oo rjS'/(rSS' + M)-1 (S'M-1S)- 1S'M-1 

lim-0(77rSS' + M)-1 = M-1 -M-1 (S'M-15)-IS'M-.' 
(A.4) 

Substitution of (A.4) into (A.3) gives the result. In order to get the posterior covariances 
of the components of fx, as given in the theorem, we can now see that by letting g and 
h in the proof be any of Try, ,(s), bl/2 /QZo(s), rT,,,(t), and b1/2V/QZ_(t), instead 
of f(s) and f(t), we will obtain the posterior covariances of the theorem. Similarly, the 
posterior covariance of components which are the sum of several components may be 
obtained by letting g and h be the relevant sums. 
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