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Abstract

A fingerprint-based method for climate change detection and attribution with some
novel features is proposed. The method is based on a functional ANOVA (ANalysis Of
VAriance) decomposition of a time and space signal, further decomposed into global
time-trend and time-trend anomaly as a function of space. The method estimates the
signal as a component of forced minus background climate model output, and then
uses a partial spline model to estimate and test for the existence of signal in historical
data. The method is based on the classical detection of signal in noise, however there
are several features apparently novel to the fingerprint literature, in particular, the
analysis takes place directly in observation space, anomalies are fitted directly and there
is possibility for estimating certain parameters of covariance models for the historical
data as part of the analysis. Simulation studies using climate model runs from GFDL
and NCAR and historical data for NH Winter average surface temperature for the
period 1961-90 suggest that the linear component of the time trend anomaly has the
potential for strong detection and attribution, but by analyzing simulated data forced
with a GFDL signal, and tested via an NCAR signal, it is made clear that more accurate
climate model output for this signal, than that used in this study, is needed to realize
these benefits. The method generalizes to include a vertical dimension and indirect
observations, and to the examination of spatially varying time trends and drifts in
observed minus forecast data in forecast models.
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1 Introduction

In this paper, fingerprint methods based on an ANOVA decomposition of the time and space
varying historical NH Winter average surface temperature are developed. The ANOVA
decomposition, which is a function space analogue of the discrete ANOVA (ANalysis of
VAriance) decomposition familiar in introductory statistics courses, decomposes a function
defined on time and space into a grand mean, a main effect for time, a main effect for space,
and an interaction term. This decomposition is then further broken down to include the
linear component of the main effect for time (linear component of the global time trend),
and the linear component of the time trend spatial anomaly. The terms in the ANOVA
decomposition are then estimated from observations scattered in space and time by solving
a smoothing spline like variational problem. Here NH winter (DJF) average surface tem-
perature as a function of year (1961-90) and position (latitude, longitude) is examined, but
dependency on a vertical coordinate may also be considered, and various other observation
functionals, including indirect ones such as satellite radiances may be included via a slight
generalization. The approach here allows for varying kinds of fingerprints based on com-
ponents of this decomposition, including simple (here linear component of the global time
trend) and relatively complex (here linear component of the time trend spatial anomaly).

The choice of the pair of these fingerprints for study was based on Hegerl, von Storch,
Hasselmann, Santer, Cubash & Jones (1996), who looked at the time trend of the surface
temperature, as a function of space. Many other fingerprints have been studied by various
authors, and we discuss later how other fingerprints may be considered via the methods
proposed here. The method here is based on the smoothing spline ANOVA decomposition of
Luo, Wahba & Johnson (1998) to extract a signal from climate model output, and then the
method being proposed uses the theory of partial spline models (Wahba (1990)) to estimate
signal strength in the historical data. A fingerprint due to forcing is extracted from forced
minus background climate model runs, and then hypotheses tests are carried out concerning
the existence/strength of the signal in the historical data. The tests are carried out using
estimates of the variability of the test statistic(s) due to the natural variability of the climate
plus observational and subgrid scale noise. In this paper the variability estimates of the test
statistics are obtained in two different ways. The first uses a sequence of climate model
background runs, some forced runs, and realistic estimates of the subgrid scale observational
noise to simulate sets of background and forced observational data, and these data sets are
used to obtain Monte Carlo estimates of the distributions of the test statistics. The second
method uses the relationship between variational problems and Bayes estimates to identify
the tuning parameters in the variational problem that have been obtained from the data
with variance ratios, and then to compute theoretical test statistic variances based on them.

There are several more or less unique features of the approach here, although, like most
fingerprint methods, it has as its core classical signal in noise hypothesis tests. The novel
features include: climate model output is brought to observation space, rather than ob-
servations brought to model grid point space; familiar atmospheric anomalies are modeled
specifically in a functional (smoothing spline) ANOVA decomposition, which handles irreg-
ular observations in both time and space in a fairly natural way; covariances are modeled
with a very sparse parameterization, with the parameters being estimated from the data
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simultaneously with the test statistics, and the setup allows the generation of climate model
variability either via climate model runs, or from the modeled covariances. A variety of
signals can be handled within the paradigm proposed here.

A computational algorithm is developed here, signals are extracted from five different
1961-1990 forced and background climate model runs, natural variability is estimated, and
hypotheses that the historical record contains the signals are tested.

The two kinds of fingerprints considered here are at opposite ends of the complexity
spectrum. The first "fingerprint’, the linear component of the global time trend, (that is, the
average rate of change of the global mean temperature over the time span considered), is a
signal with one degree of freedom. The second, the linear component of the spatial anomaly
of the time trend is much more complex. It is a spatial pattern that has a number of degrees
of freedom which is a moderate fraction of the number of observing stations, which is 1000
in this paper.

This paper does not answer the question: Is there a highly statistically significant test
result that the observed warming is unlikely to have been generated by natural variability?
Rather it is observed here (as well as elsewhere) that by using a simple fingerprint the
historical data is more consistent with forced climate model output than with background
climate model output (at least for that used in the present study.) But there is a moderate
amount of variability in the ‘simple’ statistic , as generated by background variability in the
1000 year background run used here. It appears that the use of this simple statistic will
have to await a stronger signal before rejecting the no-signal hypothesis at, say, a P-value
of .000001. Furthermore it is shown here, via observational data simulated from both forced
and background climate runs, that if the complex signal used here is known highly accurately,
then the distributions of the test statistic under the null hypothesis that there is no signal vs
the alternative that the specified signal is present, are well separated, and strong attribution
results would be possible via the present methods. However, this is a rather big ‘if’. The
very specific complex patterns generated by our forced and background climate runs were
not found here in the historical data. However, when simulated observational data using
a complex signal from one forced climate run was analyzed using the signal from a similar
forced climate run from a different climate model, only weak separation of the signal and no
signal distributions were obtained. That is, the power of this ‘high powered’ test is very much
degraded by a simulated model error that is no doubt a lower bound on actual model error.
We are left with the conclusion (with various caveats based on limitations of the present
study, as well as some possibly strong assumptions concerning the reasonableness of additive
linear approximations to change due to forcing) (Ramaswamy & Chen (1997)) that if more
accurate climate model signal output were available, the potential is there for much more
powerful level of attribution than is possible with the simpler fingerprint at the present time.
We observe that is a tradeoff between using a complex signal, which has strong potential
for distinguishing signal from natural variability, and the more stringent requirements on
climate model accuracy to provide such a signal. Remarks concerning this tradeoff have
previously been made, for example, by Hegerl & North (1997).

There are many recent research works on methods for climate change detection and at-
tribution. Recent reviews and overview papers related to fingerprint methods include Levine
& Berliner (1999), Zwiers (1998), Hasselmann (1998). Recent papers on fingerprint and
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related signal-in-noise detection include: Barnett, Hegerl, Santer & Taylor (1998), Goody,
Anderson & North (1998), Haigh (1996), Hasselmann (1997), Hegerl, Hasselmann, Cubash,
Mitchell, Roeckner, Voss & Waszkewitz (1997), Hegerl & North (1997), Hegerl et al. (1996),
Leroy (1998), Leroy (1999), North, Kim, Shen & Hardin (1995), North & Stevens (1998a),
Santer, Taylor, Wigley, Penner, Jones & Cubasch (1995), Santer, Taylor, Wigley, Johns,
Jones, Karoly, Mitchell, Oort, Penner, Ramaswamy, Schwarzkopf, Stouffer & Tett (1996),
Stott & Tett (1998), Stevens & North (1996), Tett, Mitchell, Parker & Allen (1996), von
Storch & Zwiers (1999), Wigley, Jaumann, Santer & Taylor (1998).

In Section 2 the historical and climate model information that is used in this study is de-
scribed. In Section 3 the mathematical foundations of the approach are presented, including
descriptions of the smoothing spline ANOVA and partial spline models to test for the exis-
tence of a signal, and the relation of these objects to Bayes estimates and fingerprinting. The
computational algorithm is a generalization of that used in Luo et al. (1998) and described
in detail in Luo (1998) and Wahba & Luo (1997). The generalization of the algorithm to
fingerprinting is briefly described in this section. The method used to carry over gridded
climate output to the observing points in time and space, and the ANOVA decomposition of
the carried over model output is described in Appendix A. In Section 4 the results of several
fingerprinting experiments are described. Signal and test statistic reference distributions
were generated from long-run climate model output by Monte Carlo methods, and used to
analyze historical data. The experiment simulating observations from one climate model (in
observation space) and using signal from another climate model to examine the effects of an
erroneous signal is described. The reference distributions obtained by Monte Carlo methods
from climate runs are compared with theoretical test statistic variances obtained by simul-
taneously fitting certain covariance parameters along with the hypothesis tests. The results
of this comparison were mixed but somewhat encouraging. In Section 5 tradeoffs between
requirements for strong separation between forced and background test statistic distribu-
tions, and requirements for model accuracy are discussed. Section 6 discusses a number of
generalizations, including more general time-space covariance models than those used in the
present work, and extensions of the approach to include the vertical dimension and indirect
(satellite) observations. Other possible applications, in particular to the study of observed -
forecast biases, trends or drifts are also noted. Section 7 is a summary and conclusions.

2 The historical data and climate model output

2.1 The historical data

This study used the monthly mean historical surface temperature records converted to NH
winter (DJF) means archived in the in the Global Historical Climatology Network (GHCN).
The winter means were used only when all three of DJF observations were available. The data
were obtained from http://www.ncdc.noaa.gov/ol/climate/research/ghcn/ghen.html. The data
set used was extracted in January 1998. This site has moved to http://www.ncdc.noaa.gov/ol
/climatedata.html. A sample of 1000 stations for 30 years (1961-1990) was selected. The
stations in this report were selected to match that in Luo et al. (1998), which had used
an earlier version of the GHCN data set. However only 947 of the stations used there
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were available from the version available in January 1998. Then 53 stations were chosen
deliberately so that the 1000 stations are distributed as uniformly as possible on the sphere.
The black dots in Figure 5 and subsequent figures show the locations of these 1000 stations.
If a report had been available for every station at each of the thirty years, there would have
been 30 000 observation points, in fact not every station had complete data for every winter,
and there were only n = 23 119 data points distributed in time and space. We believe
that the stations chosen are fairly representative. The numerical values of estimated global
temperature may change somewhat if the station distribution were changed in a material
way, however, due to the fact that in this study, the climate model output is extrapolated to
the data points, we believe the conclusions here are relatively insensitive to minor changes
in the data distribution, and would not change much if the available observations from all
the stations reporting in the given period were used. See for example Wang & Shen (1999).

2.2 The climate model runs

In this study climate model runs from the Geophysical Fluid Dynamics Laboratory (GFDL)
which are as of June 1999 available at http://www.gfdl.gov/gfdl_research.html were used. To
obtain the ‘signal’ part of a 100 year run in which the C'O, concentration in the atmosphere
was increased by 1% per year (compounded) was used. This will be called the “forced run”.
The model control run was also used. This was a 1000 year run with greenhouse gases in
a steady state. This will be called the “background run”. Year 1 for the GFDL runs was
1958. These runs were used beginning with NH winter 1960-1961. The GFDL ‘signal’ used
here is based on the difference between the forced run and a corresponding segment of the
background run. The remainder of the background run was chopped up into 29 disjoint
30-year pieces and each piece used to simulate 30 years of “background noise”. Although
these pieces are not independent, the convenient fiction was adopted that it was reasonable
to treat them as independent in the applications described here. The GFDL model has been
described in detail in Manabe, Stouffer, Spelman & Bryan (1991) and Manabe, Spelman &
Stouffer (1992).

Four other signals were extracted from climate model experiments done at the National
Center for Atmospheric Research (NCAR) and provided courtesy of Jerry Meehl. The ex-
periments were performed with a global coupled GCM to include the indirect forcing effect
of sulfate aerosols in combination with transient greenhouse gas forcing and the direct effect
of sulfate aerosols, and are described in detail in Meehl, Washington, Erickson, Briegleb &
Jaumann (1996).

The first experiment was a 75 year experiment with CO, increasing at 1% per year
compounded relative to a reference CO, amount of 330 ppm in the background experiment,
(called “COs-only” in Meehl et al. (1996)). The second is a 75 year experiment with the
COs-only forcing plus the direct effect of sulfate aerosols (“1Xdirect”). The third is a
75 year experiment configured in the same way as 1Xdirect except that the time-evolving
forcing of the sulfate aerosol direct effect is doubled (“2Xdirect”). The fourth experiment
(“direct+indirect”) uses the time evolving forcing from the 1Xdirect experiment, and adds
the time-evolving forcing from an estimate of the indirect effect of sulfate aerosols derived
from Erickson, Oglesby & Marshall (1995). These four runs are labeled NCAR1, NCAR2,
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NCAR3 and NCAR4 in what follows. Only the same 30-year (1961-1990) winter temperature
simulations from both GFDL and NCAR models were taken for comparison. Both the GFDL
and NCAR model simulations are produced on a 48-by-40 Gaussian grid. Figures 1 and 2
give the GFDL and NCARI1 forced run mean of the 30 year average winter temperature at
each of the 1,920 grid points. Figures 3 and 4 give the ‘signal’ linear component of the spatial
time trend temperature in model grid point space for the GFDL and NCAR1 model output.
‘Signal’ here means the forced minus the corresponding background run. This was obtained
as follows: First, at each grid box, the 30 years x 1920 temperatures of the background run
are subtracted from the forced run. Then at each grid box, a least squares straight line is
fit to the 30 years of forced minus background temperature differences. The slope of this
line, plotted in degrees Centigrade per year, is taken as the trend due to forcing, and that is
what is plotted. It can be seen that the NCAR plot gives a cooling trend over Greenland, a
strong warming trend over Siberia and Australia, and so forth.

2.3 ANOVA decomposition of the historical data and the climate
model output

Figures 5 through 14 are based on a smoothing spline ANOVA fit and decomposition of
the historical data, and the corresponding ANOVA decomposition of the GFDL and NCAR
forced run after being carried over (quasi-interpolated) to the n = 23 119 observational
data points. The plots are obtained from components of the ANOVA decompositions, to
be reviewed in the next section. The carrying over of the climate model output to the
observational points renders the model output more directly comparable to the observational
data, and is believed to involve fewer assumptions than carrying the observational data to
the model grid points. Figure 5 gives the 30 year average temperature, based on the 23 119
values of the GFDL forced run obtained from carrying over the GFDL gridded data to
the observational data points, and then computing an ANOVA decomposition for these
‘observational’ points, and figure 6 is the same plot for the NCAR1 forced run. Figures 5
and 6 are to be compared with Figures 1 and 2. It can be seen that there is some distortion
of the gridded output, primarily, the irregular observations induce an artifactual high where
there are no ‘observations’ just east of Central America, that does not exist in the gridded
data. Otherwise the extrapolation beyond the observation points in Figures 5 and 6 appear
to be quite good. Figure 7 gives the historical 30 year average temperature, based on the
23 119 historical data points, using the same ANOVA decomposition as was used to obtain
Figures 5 and 6. The only difference in the analysis of climate model quasi-interpolated data
and historical data, is that the amount of smoothing of the climate model data is based on
the number of significant figures in the climate model output, (as described in Appendix A.2)
while the smoothing for the observational data is based on an estimated size of the subgrid
scale white noise in the observations, obtained via generalized cross validation (GCV). It can
be seen that in the neighborhoods of the observing stations the gridded climate model output,
the climate model output as seen through the ‘eyes’ of the time and location of the historical
data points, and the historical data, is in rough agreement, although the NCARI1 average
temperatures are warmer than the historical average temperatures which are in turn warmer
than the GFDL temperatures. Figure 8 gives the global NH winter mean temperature as
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a function of year for the historical data, panel (a); and for the five forced climate runs,
GFDL forced, (b); and NCAR1, NCAR2, NCAR3 and NCAR4 (c)-(f). These estimates of
global average winter temperature are based on an ANOVA decomposition which includes
averaging over the entire sphere. As a consequence, for example, the average of the 29
points in Figure 8, panel (a) (mathematically) equals the integral (in spherical coordinates)
over Figure 7. The global averages in Figure 8 panel (a) are warmer than the land average
temperatures computed in Luo et al. (1998), which represent an integral over the land areas
of Figure 7.

Figure 9 gives the estimated 1961-1990 30 year average rate of change of temperature as
a function of latitude and longitude for the historical data. Figures 10 through 14 give the
corresponding ‘signal’ plots for the GFDL and NCAR1 through NCARA4. Here ‘signal’ means
the difference between the average rate of change of the forced runs and the background runs,
as a function of space. The plots are left blank where there is no observing station within
500 km. Figures 10 and 11 may be compared to Figures 3 and 4. Figures 10 and 11 represent
a slightly distorted view of the average rate of change of the temperature as a function of
space of Figures 3 and 4, distorted by being seen through the ‘eyes’ of the observing system.
We will be comparing the information in the historical plot with the information in the
corresponding climate model plots 10 through 14.

3 Smoothing spline ANOVA models, partial spline mod-
els, Bayes estimates and fingerprinting

3.1 Functional ANOVA decompositions and anomalies

A functional ANOVA decomposition is a decomposition of a function of two (or more)
variables on a tensor product domain with components grand mean, main effects, and two
(or more) factor interactions. This rather abstract definition will be seen to fit in nicely with
the usual notion of anomalies in atmospheric sciences. More details may be found in Luo et
al. (1998), and more generally in Wahba, Wang, Gu, Klein & Klein (1995) in other contexts.
Details for the case of this paper will be given. The two variables will be the year index time,
t€{1,2,..,n} (ny = 30), and the location index P = (latitude, longitude) € S, where S is
the sphere. Hence the domain of the meteorological field is {1,2,..,n;} x S. Note that one
variable is discrete and the other continuous, even though observations exist at only a finite
number of locations in §. Define time and space averaging operators as follows:

t=1

1
&nf(t,P) = o [ 7t P)ap
47 S
Consider a direct sum decomposition of the identity operator defined in the following manner:

I=E+T-&)Ep+T—Ep)=EEp+ (I —E)Ep+EI —Ep)+ (I —E)I - Ep).
(1)
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Then any function on our domain has a unique decomposition of the form
[, P) =di + g1(t) + g2(P) + 912(t, P),

given by dy = &&pf, g1(t) = (1 = E)EpS, 92(P) = &I = Ep) f, g1a(t, P) = (I = &)(I = Ep)
and these component functions satisfy the following conditions:

&g = Eg12 = Epge = Epgia = 0.

If the linear time trend is of interest, another another operator can be defined to single out
the time trend by defining ¢(t) = ¢t — (n1+1)/2 and letting £, be the operator which projects
n1 ! !
any function of ¢ along ¢, (£;f)(t,P) = Ef’f%fc(—t(zfg;(t)ﬂt)
t'=1
(& + (I = &))) results in the decomposition of f as

. Decomposing ¢g; and g5 via

f(t, P)=dy + dap(t) + fi(t) + f2(P) + fs2(P)d(t) + frz(t, P). (2)

The component functions of f then satisfy the following moment conditions
Zfl(t) = Zfl(t)¢(t):qu(tap):Zflz(tap)¢(t):0 (3)
t=1 t=1 t=1 t=1
/ fo(P)dP = / fsa(P)dP = / fiat, P)dP = 0 (4)
s s s

for all t and P. See Wahba (1990), Gu & Wahba (1993) and Luo et al. (1998) for details about
formulating such ANOVA models. It is clear that these components are climatologically
meaningful. d; is the grand mean of average winter temperature; d, is the linear trend
coefficient of the global average winter temperature; d; + dod(t) + f1(t) is the global average
winter temperature history; d; + fo(P) is the average winter temperature at location P;
ds + fs2(P) is the linear trend coefficient of the average winter temperature at location P;
and daoo(t) + fi(t) + fo2(P)o(t) + fi2(t, P) can be considered the anomaly at (¢, P) over
the time average at P. Figures 5, 6 and 7 are d; + fo(P), Figure 8 is dy + do¢(t) + f1(t)
and Figures 9 through 14 are dy + f42(P). Note that (dy + fy2(P)) is the coefficient of ¢
and [ fyo(P)dP = 0; thus fs2(P) is the coefficient of the linear component of the spatial
anomaly of the time trend.

3.2 SS-ANOVA fits

Suppose the observations satisfy
yz:f(tZaPZ)+ela7’:152:an (5)
were the ¢; represent uncorrelated ‘noise’ that is, independent measurement errors and/or sub

grid scale phenomena, assumed to be approximately Gaussian, ¢; ~ N(0,0?), for some o?.
A smoothing spline ANOVA estimate fy is an estimate of the components di, da, f1, f2, fo,2

8
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and fi, obtained by finding them in an appropriate space® to minimize

n

Z(yi — f(ti, P))* + Jo(f) (6)

i=1

where Jo(f) = 0,1 Ji(f1) + 05 ' Ja(fo) + 05 Js(fs2) + 0, Ju(fiz). f(t,P) in (6) is as in
(2), and the J’s are suitably defined quadratic penalty functionals” which constrain the
functions to be ‘smooth’ in some sense. Some common choices of the J’s are the scattered
data equivalent to imposing a low-pass (Butterworth) filter on the observations. In this paper
Ji(f1) = S 2(fu(t4+2) = 2f1(t+1) + £1(t))?, Jo and J3 are the same, and are topologically
equivalent to f s(Af) )2dP, where A is the Laplacian on the sphere, and J is derived from J;
and Jy as the squared norm of the corresponding tensor product space. Some other choices
of penalty functionals are noted in Section 6.1.

Letting fp be the minimizer of (6), it is known that f, has a representation in terms of
n + 2 basis functions:

folt, P) = dy + da(t) + > c:iQol(t, P;ts, ) (7)

=1

where n of these basis functions are defined by
Qo(t, P;t'P ZGR (t,P;t', P, (t',P")=(t,P),i=1,- (8)

The Qg(-,-;t;, P;) i = 1,---n are known as representers. Here the R, are positive definite
functions (covariances) associated with the J,’s, and for later reference are reproduced from
Luo et al. (1998) in Table 6. The four penalized terms fi, fa, fs2 and fi can be identified
with the four terms on the right hand side of (8) and easily extracted once ¢ = (cy,- - ,¢,) is
given, see Appendix A.1. Note that the representers satisfy the relevant moment conditions
(3). A Smoothing spline ANOVA fit to a 30 year, 1000 station subset of an earlier version
of the GHCN data set, similar to the data set used here, was obtained in Luo et al. (1998),
using an algorithm noted in Luo et al. (1998), and given in Wahba & Luo (1997) and further
developed in Luo (1998) (to be called the LW algorithm). The LW algorithm does not
involve inverting or decomposing large (n x n) matrices, this is avoided via a combination
of backfitting, EM-like imputation and randomized trace methods. The LW algorithm will
be used directly and as a subroutine.

3.3 SS-ANOVA fits with signal (partial spline model)

In the fingerprint method focus is on the possible existence of particular patterns characteris-
tic of the effects of increased greenhouse gases, in the historical data. It is assumed that inter-
est is in a signal which is some linear combination of signals Y, _; axSk(t, P) = S(t, P), where

6The space will be a reproducing kernel Hilbert space, see Wahba (1990) but that concept is not needed
for the discussion here.
"They are squared norms in a reproducing kernel Hilbert space.
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the Sy are given. The signal will be added to the decomposition (2), and o = (a4, - , )
estimated, as part of the variational problem (6). That is, the observations are modeled as
p
k=1

where f(t, P) is as in (2) and ¢; is as before. Now, it is desired to find « and f to minimize

n p

Z(yz =) aSi(ti, ) — f(ti, B))? + Jo(f)- (10)
i=1 k=1
This is an example of a partial spline model as discussed in Wahba (1990) and elsewhere.
The minimizer fy is known to have a representation as in (7). The unknowns « and d and ¢
can be obtained via an iteration between a pth order least squares step and the LW algorithm
as follows: Let A(p)(6) be the influence matrix for the minimizer of (6), that is, if fy is the
minimizer of (6), then A)(f) satisfies

fo(t1, Pr)
: = A (0)y. (11)
fo(tn, Py)

Let S be the n x p matrix with ikth entry Sy (¢;, 5). Then, letting fo stand for the vector
on the left of (11), if fy is given, then o must satisfy

S'Sa=S5"(y— fo), (12)
and, if « is given, then fy must satisfy
fo= A 0)(y — Sa). (13)

Thus an iterative procedure can be carried out alternating between least squares and the
LW algorithm, and it can be shown to converge under general conditions provided that the
Sy are linearly independent and linearly independent of the constant function and ¢ over the
observation points.

3.3.1 Estimation of 0 and o2

For data following the models (5) and (9) where it was assumed that there is ‘white noise’
of nontrivial magnitude added to a ‘smooth’ signal the four components of # were cho-

sen by minimizing the GOV function V(8). For (6) V(6) = (ltmf@%:ﬁ(!j(a)))z and for (10)

V() = %, where A(f) is the influence matrix for the problem (10), that is, the
matrix satisfying fp + Sa = A(6)y. TraceA ) (0) and traceA(f) were estimated by the same
randomized trace technique used in Luo et al. (1998), Girard (1998), for a sequence of 6’s,
and V' (6) minimized as a function of four variables by the downhill simplex method (Nelder

& Mead (1965)). The variance o2 of the ¢; is estimated by the residual sum of squares divided

: A2 _ lly—Joll” ~2 _ lly=Sa—fs|?
by the degrees of freedom for signal, (Wahba (1983)) 62 = me(yPW and 62 = m

for the models (5) and (9) respectively. Luo et al. (1998) used a combination of subjective
methods for (61, 60;) and GCV for (63, 6,) but the results here are similar.
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3.4 Bayesian interpretation of the SS-ANOVA fit

It is well known (see, for example Kimeldorf & Wahba (1970), Wahba (1982b),Wahba (1983)),
that there is a relationship between the solutions to variational problems of the form (6)
and Bayes estimates, for particular given 6. This will provide the link between the spline
ANOVA /partial spline models just described; the classical detection of signal in noise; and
fingerprint methods. In our case the corresponding Bayes model for f is

Ft,P) = oxSk(t,P) +di + dog(t) + Z(t,P), t=1,---,n, PES, (14)

k=1

where non-informative priors are attributed to the o’s and d’s and Z(¢, P) is a zero-mean
Gaussian stochastic process with covariance

1
SEZ(L,P)Z(Y, P') = Qult, Pt P), (15)

where Qg(t, P;t'P') is given in (8). More details may be found in Wahba (1983), Wahba
(1990). Then the minimizer fp of (6) evaluated at (¢, P) is the conditional mean of f(t, P)
under the Bayes model (14),

fQ(tvp):E[f(t7P)|yla"'7yn]7 te{lv"'nl}v PESa (16)

and the posterior covariances of f and its components, given the observations follows, see
Wahba (1983), Gu & Wahba (1993) and below.

3.5 Fingerprinting

The previous results will now be related classical theory of the detection of signal in noise, and
to fingerprinting. Think of as S (¢, P), ..., Sp(t, P) as additive patterns induced by increases
in greenhouse gas concentration, sulfate aerosol, solar cycle effect, or other human activities
expected to impact the climate system. Information concerning the Si’s will come from
climate model output. In the classical signal in noise model (with parametric signal), the
observation vector y is modeled as

y=Sa+ Ny, (17)

where Ny, is a vector representing natural climatic variability plus sub grid scale processes
plus observational error, which may depend on some parameters (here #,0). Set Ny, =
fo.o + €, Where fy, is an n vector with ith entry fo,(t;, P;). Here fy,(t, P) represents
natural climate variability®, and €, = (e1,- -+ ,€,)" is a vector representing subgrid scale and
observational noise, which will be modeled as independent, identically distributed zero mean
Gaussian random variables with common variance o?. Assuming Ny, is modeled as a zero

8Here o enters as a parameter in fy , because the 6 are actually signal to noise rations rather than signal
intensities, due to the appearance of o2 on the left hand side of (15)
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mean random vector with covariance Cy,, then the minimum variance unbiased estimate &
of o is

&= (5'C,,S) 1S'Cyy. (18)

Statistical inference can be based on the fact that, under Gaussian assumptions on fy, and
€,, & has a multivariate normal distribution:

& ~ N(a, (S'C;;S)*l), (19)

see Rao (1973). It can be shown that & produced in the minimization of (10) produces the
& of (18), where Co. ; is the inverse covariance matrix of Ny, implied by the Bayes model
with f(¢, P) in (10) assigned the distributions given in (14) and(15) for fy,°.

A formal test of the no signal hypothesis may be written as

Hy: a=0 ws. Hy: a#0. (20)
If Cy,, is known, then the hypothesis test of (20) rejects Hy if

T = &(5'C;,S)d (21)
> A)(0),

where X7(9) is the upper (1006)th percentile of the chi-square distribution with p degrees
of freedom. Many, if not most of the fingerprinting methods being applied are based on this
hypothesis testing paradigm, see, for example Hegerl & North (1997).

Disregarding for the moment the preceeding theoretical results, the hypothesis tests here
will primarily be based on reference distributions obtained from forced and background
climate runs with added realistic sub grid scale noise. To study the variability of & under
the null and specific alternative hypotheses, simulated noisy observations were produced at
the observation points by carrying climate model output to the observation points (¢;, P;)
and adding subgrid scale noise with realistic variance, to produce replicates of simulated y
vectors, with and without signal. These simulated data vectors were then analyzed in the
same manner as the historical data vector, to obtain empirical reference distributions for the
test statistics. The test statistics based on historical data are then compared to the reference
distributions.

There are several theoretical and empirical results, generally in simpler contexts than
that involved here, which indicate that posterior variances obtained from implied covariance
matrices analogous to the one in (19) tuned by generalized cross validation can provide good
estimates of the variance of the test statistics. See Wahba (1983), Nychka (1988), Nychka
(1990), Gu & Wahba (1993). Therefore it was decided to compare the reference distributions
based on climate model background runs with the distribution in (19), to assess to what
extent the use of (19) may be reasonable.

9Since d; and dy have improper priors, Cy , strictly speaking has components which are not finite, but
C, ! is well defined, see Wahba (1990)

T
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4 The experiments

4.1 Experiment 1. single signal

In the first experiment a single signal, p = 1 was considered. It was taken as the linear com-
ponent of the time trend of the spatial anomaly due to forcing. Thus, S(t, P) = fs2(P)¢(1),
where f, 2 is obtained from ANOVA decompositions of the form (2). First the five 30 year
forced runs from GFDL and NCARI, ..., NCAR4 were quasi-interpolated to the observa-
tional data points, and the ANOVA decomposition (2) obtained via the algorithm in Luo
et al. (1998) and Luo (1998), with # computed for climate model output as described in
Appendix A. Similarly the corresponding background runs are decomposed and the back-
ground fy2(P)¢p(t) was subtracted from the forced f,o(P)¢(t) at the observation points in
each of the five cases to obtain the five signals due to forcing, which are n-vectors, labeled
here Sgrpr, Sncary, - SNCAR4-

To obtain reference distributions for & under the null hypothesis, 29 disjoint 30-year pieces
of the GFDL 1000 year background run (not including the 30-year piece that corresponds to
the forced run) were used as proxies for natural variability. Let h; be the n = 23 119-vector
of the jth 30-year piece carried over to the observation points as in Appendix A. The h; were
treated as though they were random vectors independent of one another. Of course they
are neither random nor independent but we believe this to be a useful fiction. Twenty nine
simulated background climate data sets ui, -, us were obtained as u; = h; + e;, where ¢;
was a vector of n independent, zero mean Gaussian pseudo-random numbers with standard
deviation o = .4755. This value of o was obtained from the (GCV-based) estimate of o from
a decomposition of the historical data of the form (2). Other authors have reported similar
values for the subgrid scale standard deviation of surface temperature data, see for example
Jones (1994). GCV estimates of 6 were obtained for the first run, and the same 6 were used
for all twenty-nine runs. It was expected based some preliminary experimentation that the
would change very little from run to run. Next, 29 proxies for forced data sets with a = 1 were
generated by adding a term due to forcing to the simulated observational data. The simulated
forced runs u;, j = 1,---29 were obtained as u; = [GFDL forced — GFDL background] +
h;+¢€; where [GFDL forced —GF DL background] is the difference of the indicated climate
runs, after being carried over to the n observation points. GF DL background is the 30 year
background run for the same time period as GF DL forced. The resulting estimates of o’s
and their corresponding dy are given in Figure 15.

Note that dsy is the coefficient of overall linear trend and « is the coefficient of Sgrpr
representing the space-varying signal coefficient. Figure 15 panel (a) gives histograms of the
29 estimates of «, for the 29 forced simulated data sets and the 29 background simulated
data sets. Panel (b) gives histograms of the estimates of d, and panel (c) gives a scatter
plot of the (dg, ) pairs, along with a “*’ for the (dq, ) pair estimated from the historical
data. It can be seen that the forced and background distributions of the « estimates are
well separated, providing the potential for relatively strong attribution conclusions, while
the d, distributions are not so well separated. Analysis of the historical data resulted in
an observed estimate of dy equal to 0.01632°C'/yr, which was close to the average of the
forced proxy estimates, which was 0.01751. However, the estimate of a from the historical
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data, which was -0.06885, was quite different from the forced proxy estimate. This result
suggests that the GFDL model output is close to the historical time trend on a very large
spatial scale, but not on the scale of the spatial anomaly anywhere near the level of detail
that is incorporated in our signal here. It is fairly clear that the more complex the signal,
the greater the separation it potentially provides between forced and background climate
statistics. However, as we shall see by example, it also puts greater demands on the model
for a more accurate signal. A simple mathematical formalism illustrating this argument is
in Section 5. Other authors have made similar remarks, see, for example Santer, Cubasch,
Mikolajewicz & Hegerl (1993), Barnett et al. (1998), Hegerl & North (1997).

Similar results were obtained for the four NCAR signals using [NC AR forced—NC AR background)
for the term due to forcing, although it was necessary to use the 29 GFDL background back-
grounds (h;) as proxies for the natural variability, since long NCAR background runs were
not available to us at the start of this study. The results are given in Table 1 and, for NCAR1
in panels (d), (e) and (f) of Figure 15. The systematic bias in & for the forced runs (the true
« is 1), is believed to be at least partly related to the manner in which the simulated forced
runs were generated. The [forced — background] component not along the signal direction
appeared in each of the 29 runs and appeared as a common background component.

Table 1: Sample means and standard deviations of 29 estimates of o from the five sets of
forced and background proxies.

‘ Signal ‘ Runs ‘ Sample Mean Sample Std Dev ‘
GFDL | Background 0.018144 0.081337
Forced 0.947155 0.079970
NCAR1 | Background 0.015360 0.046893
Forced 0.844409 0.044854
NCAR2 | Background | -0.005143 0.056953
Forced 0.791295 0.056305
NCARS3 | Background -0.002736 0.064896
Forced 0.815897 0.064621
NCAR4 | Background -0.018810 0.067442
Forced 0.835242 0.071268

The historical data is searched using each of the five signals described above. In all five
cases, the estimated o was well within the interior of the no signal distribution of «. The
do, o pairs are given in Table 2.

4.2 Experiment 2. composite signal

Instead of a single signal, a composite signal was formed as a linear combination of the
NCARI1 and NCAR2 signals to test the ability of the method to extract a signal of this
form. The signal was formed as a3 Sycar: + ®2SNcaRr2, Where aq + ag = 1.

Twenty-nine sets of simulated observations were generated as before with the composite
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Table 2: Estimates of o and ds from the historical data.

Signal o do
GFDL -0.068850 | 0.016322
NCARI1 | -0.052302 | 0.015985
NCAR2 | 0.006250 | 0.015748
NCAR3 | -0.102460 | 0.016020
NCAR4 | -0.148983 | 0.015600

signal:
uj = o [NCARI forced] + au[NCAR2 forced] — [NCAR background] + h; +e;, (22)

with oy + a9 = 1, 7 = 1,...,29. For each data set, a partial spline model (9) was fitted
by minimizing (10). Histograms of the resulting o; and « estimates were obtained. The
previous set of 29 proxies for background data sets that were used to obtain null reference
distributions in Section 4.1 were also analyzed for a; and as. The histograms under the null
and under the alternative were very well separated. The results are plotted in Figure 16,
panels (a), (b) and (c), where the simulated (a4, as) = (0.65,0.35). Table 3 summarizes the
sample means and standard deviations. Similar results were obtained with other values of
(o, ag).

Table 3: Sample means and covariance matrices of estimates of « from forced and background
proxies, composite signal case.

| | Sample Mean Sample Covariance |
Background (-0.002356,0.025392)  [0.003704,-0.003077]
-0.003077,0.005636]
0.003950,-0.003342]
-0.003342,0.005879]

Forced (a1, ) = (0.65,0.35) | (0.563692,0.255347)

This suggests that if the forcing is representable as some (unknown) linear combination
of signals, then there is the potential for estimating the mixture and using the results in a
test. Other authors have considered multiple signals, included solar and volcanic forcing in
greenhouse studies. See, for example North & Stevens (1998a), also Hasselmann (1998). In
particular, an event of the magnitude of Pinatubo would probably adversely affect the linear
trend component if not accounted for.

The historical data was tested for the presence of a signal of the form a;Sycart +
asSncare. However some mixture of these two signals was not detected above the back-
ground natural variability, the estimated historical (a1, ao) was (—0.096466,0.072024).

4.3 Experiment 3. analysis with an erroneous signal

To try to get some idea of the requirements on signal accuracy when using S(t,P) =
fs2(P)¢(t) as the signal, the 29 proxy data sets forced with the GFDL signal as in Sec-
tion 4.1, were analyzed using the NCARI signal.
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It was found that when the 29 forced data sets containing the GFDL signal were analyzed
using Sycari, all but about five of the replicates had their estimated o down in the back-
ground « distribution. Hence, if the ‘true’ 1% CO, linear component of the time trend of
the spatial anomaly in the historical data were much like the GFDL signal, but the historical
data were analyzed based on the NCARI signal, detection would be moderately unlikely,
even though detection and attribution of a signal known very accurately would be highly
likely. Figure 17 and Table 4 summarize the result. The background distribution of the «
estimates is the same as that in the NC AR1 Background row of Table 1.

Table 4: Sample means and standard deviations of estimates of a from forced and background
proxies, erroneous signal case.

‘ ‘ Sample Mean Sample Std Dev ‘
Background 0.015360 0.046893
Forced 0.146475 0.048926

This says that for this signal, the linear component of the time trend spatial anomaly,
to be practically useful for detection and attribution, it will be necessary to know it with
more accuracy than the difference between the GFDL and the NCAR1 1% (COs) runs. This
appears to be a rather negative result, but it is necessary to keep in mind the quite fine level
of detail of the signal being studied. Further comments concerning signal selection are made
in Section 5.

4.4 Bayes parameters

It is well-recognized in the climate change literature that the estimation of the covariance
matrix Cy, is a difficult task regardless of one’s view of the detection-attribution problems.
In this experiment, it is examined whether using the Bayesian interpretation of the solution
to the variational problems (6) and (10) with the GCV estimate of the parameters (6, 0)
results in realistic estimates for the distribution of & in the present context. Theoretical
results in simpler contexts suggest that this is a reasonable question, see Wahba (1983),
Nychka (1988), Nychka (1990), Gu & Wahba (1993). By substituting (13) into (12), it can
be seen that & can be estimated via backfitting as

&= (S"(I = A (0))S)~'S'(I = Aw(9))y, (23)

where A()(6) is the influence matrix provided a = 0 in the partial spline model. After some
algebra, the theoretical distribution of the estimate of «, assuming the Bayes model (14),
can be obtained as

& ~ N(o, o (S'(I — Ay (9))S) ™). (24)

Comparing (19) and (24) we find that o*Cy + = (I —A(q)(9)). Hence the parameters embed-
ded in the implicit covariance matrix for the natural variability are being directly estimated
from the data set being analyzed based on GCV. The Bayesian estimates of standard devi-
ation (Experiments 1 and 3) and covariance matrix (Experiment 2) based on (24) are given
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in Table 5. Note that A (#)S can be computed by giving the LW algorithm the columns
of S as ‘data’. Comparing Tables 5 and 1 it is seen that the Bayesian standard deviations
for the GFDL forced and background distributions are very close to the standard deviations
based on 29 segments of the GFDL climate background run, while the NCAR Bayesian stan-
dard deviations are systematically smaller than their counterparts from the climate model
reference distributions, which are themselves smaller than the GFDL reference standard de-
viations. This experiment also provided a chance to examine the estimates of ¢, the standard
deviation of the ¢;, which were simulated with the standard deviation ¢ = .4755, the his-
torical estimate. (The estimates and not the true value were used in computing the entries
in Table 5). The o estimates for the GFDL Background and Forced runs were .44 and .42
respectively and .43 and .41 for the four NCAR Background runs and the four NCAR Forced
runs respectively, about a systematic 10% underestimate.

Table 5: Bayesian standard deviation and covariance estimaes for Experiments 1,2, and 3.

| Corresp. Experiment | Run | Standard Deviation |
Experiment 1 GFDL | Background 0.083117
Forced 0.078358
Experiment 1 NCAR1 | Background 0.034204
Forced 0.037350
Experiment 1 NCAR2 | Background 0.035579
Forced 0.038933
Experiment 1 NCAR3 | Background 0.038064
Forced 0.041379
Experiment 1 NCAR4 | Background 0.038614
Forced 0.042108
Experiment 3 Background 0.034204
Forced 0.041274
‘ Corresp. Experiment ‘ Run ‘ Covariance ‘
Experiment 2 Background | [0.002016,-0.001334]
(,02)=(0.65,0.35) [-0.001334,0.002172]
Forced [0.002297,-0.001518]
[-0.001518,0.002484]

One limitation of the study here is that only the long GFDL background run was available
to create backgrounds, and so the GFDL background runs were used with both GFDL signals
and the NCAR signals. We believe that using GFDL background with an NCAR signal
is likely to be the reason why the NCAR Bayes standard deviation for & did not match
the NCAR reference standard deviation as well as the GFDL Bayes standard deviation
matched the GFDL reference standard deviation. If the GFDL signal with GFDL background
comparison provides the more realistic comparison, this could be attributed to be a result
of the GCV estimation estimation of the #, 0 from the data. These parameters capture the
most important tuning parameters in Cy,. This would support the proposition that it is
only necessary to fit a few of the most important parameters in covariance models when

17



Chiang, Wahba, Tribbia and Johnson July 13, 1999

using them as they are being used here. This will be discussed further in Section 6.1. We
do not know at this point whether more general conclusions from the GFDL experimental
result can be drawn, but if there are any to be drawn, it is that there is the potential for
estimating certain of the most important parameters in the required covariances (penalty
functionals) simultaneously with the signal intensities, directly from the historical data sets
being analyzed.

5 Tradeoffs in signal selection

There are many tradeoffs in the choice of signal, or fingerprint, certainly tradeoffs between
utilizing the various kinds of observational data with their systematic and non-systematic
errors. Other things being held fixed for expository purposes here a tradeoff between signal
specificity or complexity and model is examined. Suppose the data is analyzed using S, the
climate model output for signal, but the ‘true’ signal is actually S + A. Then the estimate
& will be biased,

E(a—a)=(S'C7'S)'S'C ' Aq, (25)

where the 6,0 is suppressed, to emphasize the generality of this argument. The bias can,
hopefully, be reduced as follows. Let F' be a ¢ x n matrix chosen so that F'A is believed to
be small (ideally 0). For example, if A is a ‘high frequency’ error then F' could be a filter
which damps out the high frequencies. Now consider the corresponding projected model

j=Fy=FSa+ FN=Sa+N. (26)

Then the covariance of N is C = FCF', say', and the estimate dp of a is
dp = (S'C718)718'C 1y (27)
The covariance of & is (S'C~1S)~1, which may be compared to the covariance of o/, which
is (S’C~1S)~1. Tt can be shown that for any p-vector z, z'(S'C~'S)~'z > 2/(S'C~'S) 'z
150 that the variance of any linear combination of the components is only increased by

projecting the observations via F', while the bias is decreased.

Considering the decomposition (2), it is much easier for a climate model to generate an
accurate dy than an accurate f,2(P). With observations scattered in time and space it may
be more intuitive to consider obtaining a less complex signal from a more complex signal

S(t, P) by smoothing or filtering S(¢, P) in the tensor product domain in ¢ and P. For
example one could consider

5(.P) = [ F(PP)paP)o(0P (28)

where f, 2 was obtained from climate model output as in Section 4 for appropriate F'(P, P').

0For arguments sake we are assuming that C' is reasonably correct here.

"UTo see this we need to show that (S'F/'(FCF')"'FS) > (S'C~'S)~!, equivalently S'C~'S =<
S'F'(FCF')~'FS, equivalently C~!' < F'(FCF')"'F, equivalently I < C'/2F'(FCF')~'FC'/?, where
A > B means that A — B is positive definite, and C'/2 is the symmetric square root of C. The result follows
by substituting in the singular value decomposition for FC'/2.
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6 Generalizations

6.1 Other covariances

The ANOVA decomposition (2) is well defined for any function f (¢, P)t € 1,2,--- ,n;,P €S
independent of any choice of penalty functional, (equivalently, any covariance). The models
here are built up from tensor products of time and space models, which admit of a variety
of generalizations. However, the tensor product structure makes it easy to compute the
anomalies, as well as to carry out the backfitting via the LW algorithm. Second difference
and Laplacian penalties and their associated reproducing kernels (covariances) were chosen
because they are fairly robust general purpose smoothers or low pass filters. Only a few free
parameters (6, o) are considered, partly because of the limitations of fitting models with more
parameters given the scattering of the observations in time and space, and partly the lack
of obvious physical reasons for choosing other particular models, although such may exist.
It is straightforward to replace the covariance associated with J, with other covariances
on the sphere, if warranted. J;(f;) may be replaced, for example, by the third difference:
M (f(t+3)=3f(t+2)+3f(t+1)—f(2))%. Then L in Appendix A.1 becomes the analogous
ny X (ny —3) matrix with first row (1, —3,3,—1,0,---0). J; then has two unpenalized vectors
(in addition to the constant vector), namely, ¢1 = ¢, and ¢, where ¢o(t) is quadratic in ¢
and orthogonal to the constant vector and to ¢;. There will be more terms in the ANOVA
decomposition, including the quadratic component of the time trend. Penalties of the form
Ji(f) =>2(f(t+ 1) — af(t))? and higher order generalizations can also be used. The trend
terms will then be vectors which are in the null space of J;.
A general class of stochastic models discrete in time and continuous in space (on the
sphere) may be described as

Zzu, O/, (P) (29)

where the z,, may be fixed functions, may satisfy difference equations driven by discrete
white noise, the z,, may be independent or not, they may be chosen for simplicity, fitted
to data or model output, or derived from some physical principles, and the ¥, , may be
spherical harmonics, eigenfunctions of some differential operator relevant to the problem
at hand, empirical orthogonal functions or mixtures of these. Alternatively X may be the
solution of some partial difference-differential equation driven by some stochastic process,
see Bennett (1997), Wahba (1998). A short list of papers involving various kinds of time
and space models would include Kaplan, Kushnir, Cane & Blumenthal (1997), Kaplan,
Cane, Kushnir, Clement, Blumenthal & Rajagopalan (1998), Polyak (1996), North & Stevens
(1998b), Bloomfield & Nychka (1992), Kooperberg & O’Sullivan (1996), North & Stevens
(1998b), North & Stevens (1998a), Polyak (1996).

To be useful, of course, appropriate computable expressions for the covariances must be
available. A variety of special cases can be fitted via the LW algorithm. The model used
here is equivalent to

Z Zzu, OAN2W,(P), =1, ¥y(P) =1, (30)

pu=—1v=0
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where > AU, (P)V,(Q) = Ry(P,Q), with R,(P, Q) given in Appendix A.1. The z,,(-)
vectors are independent for u, v # p'v', and

zo10(t) = di Zzo1,(t) = zo1, ~ N(0,0), v=1,2,---
Zo,o(t) = d2¢(t), ZO,U(t) = ZO,IJ ~ N(O, 03), vV = 1, 2, s
Zl,O(t) ~ N(O, 91Rt(t, 7')), 217,,(15) ~ N(O, 04Rt(t, T)), vV = 1, 2, ...

the univariate random variables d; and d, have diffuse priors, and the n; X n; covariance
matrix R;(t,7) for the random vector 2 (-) is given in Appendix A.1.

To use the methods here, a small set of the most important and relatively unaliased
free parameters (here 6, 0) must be isolated and the models tuned appropriately. Maximum
likelihood estimates of certain parameters may also be considered, see Dee, Gaspari, Redder,
Rukhovets & daSilva (1998). However, we believe that that our present conclusions are
relatively robust to reasonable changes in the model used here.

6.2 Three space dimensions

A vertical coordinate may be included, which may be discrete or continuous, depending
on the application. Santer et al. (1996), Tett et al. (1996) and others have considered the
vertical temperature distribution. Letting z be a (continuous) vertical coordinate, mapped
into [0,1] (not to be confused with the random variables in the preceding section). It is
necessary to define a vertical averaging operator, for example

1
e.fP.2) = [ f(t.P o) (31)
0
Then, analogous to (1) there is decomposition of the identity:

I=(&+ T —E)Ep+ T —Ep))E+ (I -E)) (32)

which can be expanded as before, to obtain the anomalies of interest. A commonly used
penalty functional is fol( 1"(2))*dz, see Wahba (1990) for a reproducing kernel associated
with this penalty functional, details are omitted. Examples of ANOVA decompositions of
several variables in a different context may be found in Wahba et al. (1995).

6.3 Indirect observations

The analysis so far considered only direct observations (a.k.a.‘point evaluations’) that is, di-
rect observations of f(¢;, P;), or, if a vertical dimension is included, f(t;, P;, z;). Considering
a three dimensional analysis, and linearizing (a matter which has to be justified or accounted
for), suppose indirect (satellite) radiance information which may be (approximately!) de-
scribed in the form

to;
yf - / p Kl(B,Z)f((tl, Pi: Z)dZ +6 = Ll(f) + €, [Sa’y]’ (33)

ur face
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is available, where K; (which is assumed here to be invariant over time) is known. The
superscript s has been inserted to indicate satellite information. Then a term of the form

> il = L) 5 = Li() (34)

can be added to the variational problems (6) or (10). Here the w;; represent a quadratic form
which should encode the covariance (scaled relative to the errors of other observations) of the
€; which now may not be independent. In practice, L; might most conveniently represent a
(carefully chosen) linear combination of raw observations (‘superob’). The (exact) solutions
of the minimization problems then include basis functions which are the representers of the
L;. They are functions of the form n;(¢, P, z) = Liw pr (L, P, 2)Qe(t', P', 2';t, P, z), where
Ly pr .y means the linear functional L; applied to what follows, considered as a function of
(t', P',2"). See Kimeldorf & Wahba (1971), Wahba (1990) Section 1.3, O’Sullivan & Wahba
(1985), Bennett (1992). In practice approximate methods will no doubt be necessary.

6.4 Other applications

The ANOVA decomposition and signal detection approach here has potential for use in other
applications. For example, consider a forecast model, where observations minus forecast (O-
F) are available in observation space, for a series of successive time periods. The methods here
may be used to look for possibly spatially dependent biases, trends or drifts by examining
the various anomalies. If a systematic model error may be obtained as an approximately
additive signal, by for example, looking at the difference between forecasts after perturbing
some quantity in the model that is suspect of being in error, then this ‘signal’ may possibly
be searched for in the O-F data sets by the methods described here.

7 Conclusions

Smoothing spline ANOVA and partial spline methods provide a flexible family of methods
for examining fingerprints in observation space, and to compare historical data and climate
model output from different models. They allow the analysis to be carried out in observation
space, thus reducing the errors and assumptions made when carrying scattered historical data
to climate model output coordinates. Mixtures of signals can be handled by the proposed
methods.

It is shown via a set of experiments that this class of methods has the potential for high-
powered signal detection, but to reap these benefits, a higher degree of accuracy of climate
model output is required than was available for this study.

There is some evidence that a small number of parameters in (prior) covariances can be
estimated simultaneously with signal statistics from historical data. Further work is neces-
sary here, but it may be possible to reduce somewhat the reliance on extensive background
runs, or at least provide corroborating information, directly from historical data.

The class of methods generalizes to include vertical information, and to include indirect
as well as direct observations.
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A tradeoff needs to be be made between choosing a ‘simple’ signal with few degrees of
freedom (broad averages, generally) which climate models can be expected to produce accu-
rately as a result of greenhouse forcing, but which are harder to separate from ‘background’,
and more detailed or complex signals, which are easier to separate cleanly from background,
but harder to generate realistically. It is clear that improved climate models are of extreme
importance, and further work is required to understand how to optimize this tradeoff, given
a particular climate model.
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Figure 1: Mean of the GFDL forced run average winter temperature (°C), 1961-1990, 1920
grid points.
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Figure 2: Mean of the NCAR1 forced run average winter temperature (°C), 1961-1990, 1920
grid points.
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Figure 3: Linear trend of the GFDL forced minus background average winter temperature
(°C/yr), 1961-1990, 1920 grid points.
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Figure 4: Linear trend of the NCARI forced minus background average winter temperature
(°C/yr), 1961-1990, 1920 grid points.
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Figure 5: Mean of the GFDL forced run average winter temperature (°C), 1961-1990.
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Figure 6: Mean of the NCARI forced run average winter temperature (°C), 1961-1990.
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Figure 7: Mean of the historical average winter temperature (°C), 1961-1990.
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Figure 9: Linear trend of the historical average winter temperature (°C/yr), 1961-1990.
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Figure 10: Linear trend of the GFDL forced minus background average winter temperature
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Figure 11: Linear trend of the NCAR1 forced minus background average winter temperature
(°C) in 1961-1990.
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Figure 12: Linear trend of the NCAR2 forced minus background average winter temperature
(°C), 1961-1990.
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Figure 13: Linear trend of the NCAR3 forced minus background average winter temperature
(°C), 1961-1990.
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Figure 14: Linear trend of the NCAR4 forced minus background average winter temperature
(°C), 1961-1990.
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A Quasi-interpolation and scaling for decomposition of
climate model output

A.1 The reproducing kernels

To establish notation for later, we give the four reproducing kernels Ry, Ry, R3, R4 of Equation
(8). More details may be found in Luo et al. (1998). Let L be the n; X (n; — 2) matrix

1 -2 1 00 0
0 1 -2 10 -0

L=| . . (1)
0 0 o --- 1 =21

then Ji(f1) = ||Lf1||* and the reproducing kernel for J; is the n; x n; matrix with ¢, 7th entry
Ry(t,7) = (L'L){, of (L'L)", the Moore Penrose generalized inverse of L'L. An approximate
reproducing kernel for J,(f), which we used here, is

1

. ?)

where z = cos(y(P,Q)), 7(P, Q) is the angle between P and @, and

Ri(P,Q) = 5 -[50(2) -

o(z) = %{m(u(%yﬂ)[m(

1— 1—
—12(—= 5 )3/2 + 6(

1—=2
2

1—=2

)" = 4(

5)+1}

)]

(from Wahba (1981) formulas (3.3) and (3.4)). The exact reproducing kernel for Jo(fs) =
Js(Af)*dP involves a Green’s function for A-A and a closed form expression is not available.
Further details are given in Wahba (1981), Wahba (1982a). The reproducing kernel for the
one dimensional subspace spanned by ¢ is just ¢(t)¢(7). The reproducing kernels for H?,
v=1,2,3,4, are defined and summarized in Table 6.

Table 6: Reproducing kernels for the four subspaces that contain the four nonparametric
components in (6).

v Reproducing Kernel

1 Ri(t, P;7,Q) = Rt(t 7)

2 R2 (ta P; T, Q) ( )

3 Ry(t,P;7,Q) = ¢(t)¢ ( )Rs(P, Q)
4 Ry(t, P;7,Q) = Ry(t, 7)Rs (P, Q)

Given ¢, note that fi(t) = Y21, cibi Ry(ti, 1), fo(P) = Y°7_; cibh Ry(P;, P),
f¢,2(P) = 2?21 ci92¢(ti)Rs(BaP)a and le(ta ) = Zz 10104Rt(t1at)Rs( uP) It is also
useful to recall that Jp(>_; ciQo(-,1ti, F5)) = >, ; ciciQo(ti, Pity, P;), (the ‘reproducing’
property), see Wahba (1990)).
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A.2 Quasi-interpolation on the sphere

Consider a variable defined over the sphere, in this study the average winter temperature
for a particular year. Suppose we have climate model output at a grid of ng locations (here
ng = 1920)

where P; € S, the sphere. The ¢; now represents roundoff or truncation error. To quasi-
interpolate the gridded u; we first find fy, a function on the sphere, in the appropriate space,
to minimize

n

> (uj = f(P) + 657 Re(f), (4)

j=1

R; is defined in (2). See Wahba (1981, 1990) for more details. f, has the representation
fo(P)=d+0) ¢;R,(P,P), (5)
j=1

where c is a vector of dimension ng. Since the ‘errors’ are no longer random, but are (here
being treated as) roundoff errors, 6, will be chosen so that (% > 238 (uj — f(P;))?) matches
an assumed standard deviation corresponding to roundoff error. The subroutine dsidr of
RKPACK (Gu (1989)) was used to find d,c and 6. Then fj can be evaluated at the desired
values of P to obtain the quasi-interpolated data. See Bates, Reames & Wahba (1993) for
the effects of roundoft error in global interpolation methods. Roundoff error was assumed
to be uniformly distributed between 4.5 x 107*, where k is the number of figures carried
beyond the decimal point, giving a roundoff standard deviation of about .3 x 107%. The
GFDL and NCAR output was given respectively to k = 2 and k = 3 figures past the decimal
point and these were the values used in the quasi interpolation. Note that that .J, for quasi
interpolation was deliberately chosen to agree with with Jy in the ANOVA decomposition.
Local piecewise linear interpolation (for example) is likely to induce more extraneous high
frequency ‘noise’ into the carried over climate model output.

A.3 Decomposition of climate model data

As above, we expect the spline ANOVA model to fit the data points to a specified number
of figures after the decimal. However, for roundoff error, the penalty terms in (6) will be
small and the fitting procedure becomes numerically unstable, and there is no guarantee
that there is a unique set of four #’s that will match the input data to a specified degree of
accuracy. From equation (2.3.6) of Luo (1996), if it happens in the computational algorithm
6, increases much faster than #;, then the main effect for time will converge to zero.

One way of overcoming this is to enforce relations between the 6’s by scaling arguments.
We do this by re-define the reproducing kernels in Table 6 as follows: Let 6, = Ab;, 6, =
Abs, O3 = Absby, and 04 = Abbs, where by, b,, by, and A are positive real numbers. The
representation in (8) does not change if we re-define the four reproducing kernels as shown in
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Table 7: Scaled reproducing kernels for climate model output decomposition.

v Reproducing Kernel

Ry (t, P;7,Q) = by Ry(t,7)

R2(ta P; T, Q) = bsRs(P7 Q)

R3(t, P;7,Q) = bybsd(t) (1) Rs (P, Q)
Ry (t, P;7,Q) = bibsRy(t, 7)Rs(P, Q)

=W N =

Table 7. Let by = 107 %! and by = 10, as in Luo et al. (1998). Both are chosen such that the
trace of the marginal smoothers (Buja, Hastie & Tibshirani (1989)), tr((Ry+ I/b;) "' R;)/28
and tr((Ry + I/b,) "' Ry)/1000, are about .99. Here R, is the matrix obtained by evaluating
Ry(t, P;T,Q) at the observation points in space. This will ensure that fi(¢) and fo(P) are
in effect being smoothed only negligibly. b, is derived from the ranges of fo(P) and fs2(P)
in historical data. Specifically, the range for fo(P) and fs2(P) are about (—40,40) and
(—0.2,0.2) respectively. We let the ratio of Ry(t, P;7,Q) to Rs(t, P;7,Q) be equal to the
square ratio of 80 and 0.4. That is,

1 80

@Y o0, 04

This gives b, = 107547 After this formulation, the residual root mean square is a monotone

function of A and we increase A until the root mean square residual is less than 0.3 x 10?2
for the GFDL datasets and is less than 0.3 x 102 for the NCAR datasets. This procedure
will guarantee that the fitted values match the data points by at least two figures after the
decimal for the GFDL datasets and three figures after the decimal for the NCAR datasets,
and that the relative scales of the components remain realistic.
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