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We combine a smoothing spline analysis of variance (SS-ANOVA) model and a log-linear model to build a partly � exible model
for multivariate Bernoulli data. The joint distribution conditioning on the predictor variables is estimated. The log odds ratio is used
to measure the association between outcome variables. A numerical scheme based on the block one-step successive over relaxation
SOR–Newton-Ralphson algorithm is proposed to obtain an approximate solution for the variational problem. We extend the generalized
approximate cross validation (GACV) and the randomized GACV for choosing smoothing parameters to the case of multivariate Bernoulli
responses. The randomized version is fast and stable to compute and is used to adaptively select smoothing parameters in each block one-
step SOR iteration. Approximate Bayesian con� dence intervals are obtained for the � exible estimates of the conditional logit functions.
Simulation studies are conducted to check the performance of the proposed method, using the comparative Kullback–Leibler distance
as a yardstick. Finally, the model is applied to two-eye observational data from the Beaver Dam Eye Study, to examine the association
of pigmentary abnormalities and various covariates.
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1. INTRODUCTION

Correlated Bernoulli outcomes may come from many appli-
cations. One motivation of this study is to develop a � exible
model for analyzing typical data from ophthalmological stud-
ies. Usually, paired observations are available for both eyes of
the same person. Both person-speci� c and eye-speci� c covari-
ates may be available as predictor variables. The outcomes
for the same person are expected to be correlated even after
adjustment for the available predictor variables. This associ-
ation re� ects the consequence of unmeasured or unmeasur-
able genetic, behavioral or other risk factors. Other examples
involving correlated outcomes include two-period cross-over
designs (Jones and Kenward 1989), twin studies (Cessie and
Houwelingen 1994) and typical longitudinal studies (Diggle,
Liang, and Zeger 1994). Sometimes it is also of interest to
model several closely related endpoints simultaneously. For
example, Liang, Zeger, and Qaqish (1992) considered two
endpoints from the Indonesian Children’s Study, respiratory
and diarrheal infections, in the same model.

We are interested in � nding the relation between the out-
come variables and the predictor variables, including condi-
tional correlations between the outcome variables. Due to the
complexity of biological processes, linear parametric assump-
tions on some scale, or even quadratic or cubic assump-
tions might not be adequate. When such an assumption is
far away from the truth, the results obtained under it may
even be misleading. Hence we are interested in building a
� exible statistical model. A nonparametric model of the type
considered in this article can also serve as an automated diag-
nostic tool for parametric � tting. The model should also have
readily interpretable results for multivariate function estimate
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and a reasonable assessment of accuracy after the model has
been � tted. This property is especially important for medi-
cal researchers, as the investigators are usually interested in
understanding the cause of certain outcomes.

It is not enough to simply estimate the marginal distri-
bution separately for the individual outcome variables. The
dependence structure can be useful for the ef� cient estima-
tion of the mean values, or it can be of direct scienti� c
interest. This is a very active research topic, with numer-
ous schemes proposed to study it. For example, Cox (1972)
expressed the likelihood function in terms of the multivari-
ate exponential family distribution, and Qu, Williams, Beck,
and Goormastic (1987) considered conditional logistic mod-
els. Lipsitz, Laird, and Harrington (1991), Williamson, Kim,
and Lipsitz (1995), and Heagerty and Zeger (1996) consid-
ered marginal models and used the (global) odds ratio as a
measure of association. Liang et al. (1992) discussed the dif-
ference between log-linear and marginal models. Molenberghs
and Ritter (1996) proposed a likelihood-based marginal model
and established the connection with the second-order gener-
alized estimating equations (GEEs). McCullagh and Nelder
(1989) and Golenk and McCullagh (1995) proposed a multi-
variate marginal logistic regression model. Other related work
has been done by Zhao, Prentice, and Self (1992), Fitzmaurice
and Laird (1993), and Carey, Zeger, and Diggle (1993). Katz,
Zeger, and Liang (1994) speci� cally discussed approaches to
account for the association between fellow eyes.

Researchers have already realized the merit of a nonpara-
metric approach to model correlated data. We note that addi-
tive smoothing splines with � xed smoothing parameters have
been used by Wild and Yee (1996) and Yee and Wild (1996).
These authors gave a nonparametric extension to both GEE
and likelihood approaches. Heagerty and Zeger (1998) used
the log odds ratio as a measurement of dependence and
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smoothing splines with � xed degrees of freedom to estimate
it. Their model was � tted using GEEs. Lin and Zhang (1999)
proposed a generalized additive mixed effects model and used
smoothing splines to estimate the additive � xed effects term.
Berhane and Tibshirani (1998) also provided a generalized
additive model for the GEE method.

In this article we explore how to combine smoothing spline
analysis of variance (SS-ANOVA) and log-linear models to
build a partly � exible model for multivariate Bernoulli obser-
vations. We also propose a method for choosing the smooth-
ing parameters adaptively in this multivariate outcome case.
Classical log-linear models have been widely used to esti-
mate joint conditional probabilities (see Bishop, Fienberg, and
Holland 1975). SS-ANOVA provides a general framework
for multivariate nonparametric function estimation that allows
both main effects and interaction terms. The popular additive
spline models discussed by Hastie and Tibshirani (1990) and
implemented in S (Chambers and Hastie 1992) are special
cases of SS-ANOVA models restricted to main effects. Hastie
and Tibshirani (1990) also commented on interaction spaces.

SS-ANOVA models have been studied extensively for
Gaussian data. Recently, Y. Lin (2000) obtained some gen-
eral convergence results for the tensor product space ANOVA
model and showed that the SS-ANOVA model achieves
the optimal convergence rate. Wahba, Wang, Gu, Klein,
and Klein (1995) gave a general setting for applying SS-
ANOVA to data from exponential families. They success-
fully applied their method to analyze demographic medical
data with univariate Bernoulli outcomes. X. Lin (1998) pro-
posed using SS-ANOVA to analyze data with polychotomous
responses. Wang (1998a) developed a mixed effects smooth-
ing spline model for correlated Gaussian data. Brumback and
Rice (1998) proposed smoothing spline models for correlated
curves (see also Wang 1998b; Wang and Brown 1996). Inter-
esting connections between SS-ANOVA models and graphical
models, as discussed by Whittaker (1990), Jordan (1998), and
others also may be observed.

It is of particular interest to us to explore the nonlinear-
ity of the conditional logit functions. We use the log odds
ratio to model the association among multivariate Bernoulli
outcomes. We restrict the log odds ratios to simple paramet-
ric forms and estimate them using maximum likelihood esti-
mation. However, the methods that we propose here can be
easily generalized to estimate log odds ratios nonparametri-
cally, and to other cases when the log-likelihood can be fully
speci� ed. An extension of the generalized approximate cross-
validation (GACV) proposed by Xiang and Wahba (1996) to
multivariate responses is derived for choosing the smoothing
parameters. It is derived starting with an approximate leaving-
out-one-subject argument, in contrast to the leaving-out-one-
observation argument used by Xiang and Wahba (1996) in the
original derivation of the GACV. Then the randomized trace
technique for computing the GACV obtained by Wahba, Lin,
Gao, Xiang, Klein, and Klein (1999) and Lin, Wahba, Xiang,
Gao, Klein, and Klein (2000) is generalized to the extension of
the GACV just derived. An ef� cient numerical approximation
scheme and iterative algorithm involving a tailored block one-
step successive over relaxation SOR–Newton-Raphson algo-
rithm is proposed to compute the conditional logit functions

and log odds ratios along with the smoothing parameter esti-
mates. Simulation studies are presented to demonstrate the
ef� cacy of the methods, and � nally, the results are applied to
two-eye observational data from the Beaver Dam Eye study
to examine the association of pigmentary abnormalities and
various covariates.

2. LOG-LINEAR MODEL FOR MULTIVARIATE
BERNOULLI OBSERVATIONS

We � rst present the log-linear model for multivariate
Bernoulli data. Assuming that there are J different endpoints,
and Kj repeated measurements for the jth endpoint, let Yjk

denote the kth measurement of the jth endpoint. For exam-
ple, in ophthalmological studies, we have two repeated mea-
surements for each disease: left eye and right eye. In a typ-
ical longitudinal study, we have repeated measurements over
time. Y = 4Yjk1 j = 11 : : : 1 J 1 k = 11 : : : 1 Kj5 is a multivariate
Bernoulli outcome variable. Let Xjk = 4Xjk11Xjk21 : : : 1XjkD5
be a vector of predictor variables ranging over the subset ¸
of ²D , where Xjkd denotes the dth predictor variable for the
kth measurement of the jth endpoint. Some predictor vari-
ables may take different values for different measurements,
whereas others may be the same for all Yjk’s. For example,
in ophthalmology studies both person-speci� c predictors and
eye-speci� c predictors may be present. The person-speci� c
predictors are the same for each person. For the eye-speci� c
predictors, the set of predictor variables is the same, but
the variables may take different values for the left and right
eyes. We can treat observations from both eyes as corre-
lated repeated measurements in our model. Let X = 4Xjk1 j =
11 : : : 1 J 1 k = 11 : : : 1 Kj5. Then 4X1Y5 is a pair of random
vectors. For a response vector y = 4yjk1 j = 11 : : : 1 J 1 k =
11 : : : 1Kj5, its joint probability distribution conditioning on
the predictor variables X can be written as

P4Y = y—X5

= exp
JX

j=1

KjX

k=1

fjkyjk +
JX

j=1

X

k1<k2

� jk11 jk2
yjk1

yjk2

+
X

j1<j2

X

k1 1 k2

�j1k11 j2k2
yj1k1

yj2k2
+

+ �111121 : : : 1JKJ
y11y12: : : yJKJ

ƒ b4f1 �5 1 (1)

where

b4f 1�5 = log 1 +
X

j1 k

efjk +
X

j11 k1

X

j21 k2

e4fj1 k1
+ fj2k2

+ �j1 k1 1 j2k2
5

+ + e
4
P

all f
f+

P
all �

�5
0 (2)

Let M =
PJ

j=1 Kj be the length of the vector Y. There
are a total of 2M ƒ 1 parameters: 4f 1�5 = 4f111 f121 : : : 1
fJKJ

1 �111 121 : : : 1 �111 121 : : : 1 JKJ
5, which may depend on X.

The parameter space is unconstrained. They have straight-
forward interpretations in terms of conditional probabilities;
for example,

fjk = logit4P4Yjk = 1—Y4ƒjk5 = 01X55 (3)
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is the conditional logit function;

�j1k11 j2k2
= logOR4Yj1k1

1 Yj2k2
—Y4ƒj1k1 1 ƒj2k25 = 01X5 (4)

is the conditional log odds ratio, which is a meaningful way
to measure pairwise association; and

�j1k11 j2k2 1 j3k3
= logOR4Yj1k1

1 Yj2k2
—Yj3k3

= 11

Y4ƒj1k1 1 ƒj2k2 1 ƒj3k35 = 01X5

ƒ logOR4Yj1k1
1 Yj2k2

—Yj3k3
= 01

Y4ƒj1k1 1 ƒj2k2 1 ƒj3k35 = 01X5 (5)

measures three-way association. Here Y4ƒ 5 denotes the subset
of vector Y, except Y , and

logit4p5 = log
p

1 ƒ p
1

OR4v1w5 =
P4v = 11w = 15P4v = 01 w = 05

P4v = 11w = 05P4v = 01 w = 15
0 (6)

Now assume that we have n independent observa-
tions 4xi1yi51 i = 11 : : : 1 n, where yi = 4yi111 yi121 : : : 1 yiJKJ

5

and xi = 4xi111xi121 0 0 0 1xiJKJ
5. Here yijk and xijk =

4xijk11 xijk21 : : : 1 xijkD5 are the outcome variable and predic-
tor vector for the kth measurement of the jth endpoint of
the ith subject. From now on we use fi and � i to denote
the parameters for the ith subject, while y = 4y11 : : : 1yn5,
f = 4f11 : : : 1 fn5, and � = 4� 11 : : : 1� n5. We can write the log-
likelihood function based on the observed data

¬4y1 f 1�5

=
nX

i=1

JX
j=1

KjX

k=1

fijkyijk +
JX

j=1

X

k1<k2

� ijk1 1 ijk2
yijk1

yijk2

+
X

j1<j2

X

k11 k2

� ij1k1 1 ij2k2
yij1k1

yij2k2
+

+ � i111 i121 : : : 1iJKJ
yi11yi12 yiJKJ

ƒ b4fi1� i5 0 (7)

We call (7) the log-linear model for multivariate logistic
regression. Here fijk is the conditional logit function for the
kth measurement of the jth endpoint of the ith subject. Scien-
ti� cally, except for the possibility that the fijk may take differ-
ent predictor values from measurement to measurement, there
is little reason to believe they will take different functional
forms for the same endpoint. Hence we can assume that fijk =
fj4xijk5. The same reasoning applies to the association terms;
for example, we can assume that � ij1k1 1 ij2k2

=� j1j2
4xij1k1

1 xij2k2
5.

In practice, the number of parameters to be estimated can
be reduced in many ways. For example, in many situations
scienti� c interest is focused primarily on the conditional logit
function fijk and log odds ratio � ij1k1 1 ij2k2

, which measures
pairwise association. The existence of three-way associations
� ij1k1 1 ij2k21 ij3k3

and higher-order associations are usually dif-
� cult to verify in practical situations and may attract less
scienti� c interest. Hence it is possible to set all higher-order
associations to be 0 and to � t only a parsimonious model
instead of the saturated one described in (7). The reduced

model is a member of the quadratic exponential model of Zhao
and Prentice (1990).

3. PENALIZED MULTIVARIATE LOGISTIC
REGRESSION USING SMOOTHING
SPLINE ANALYSIS OF VARIANCE

To simplify notation, we consider a parsimonious model
here, by setting all higher-order associations than pairwise to
be 0 in (7). Thus the negative log-likelihood function simpli-
� es to

¬4y1 f 1�5 = ƒ
nX

i=1

l f4xi51 �4xi5 = ƒ
nX

i=1

JX

j=1

KjX

k=1

fj4xijk5yijk

+
JX

j=1

X

k1<k2

�jj 4xijk1
1 xijk2

5yijk1
yijk2

+
X

j1<j2

X

k11 k2

� j1j2
4xij1k1

1 xij2k2
5yij1k1

yij2k2
ƒ b4fi1� i51 1 (8)

where

b4fi1 � i5 = log 1+
X

j1 k

exp4fj4xijk55

+
X

j11 k1

X

j2 1 k2

exp4fj1
4xij1k1

5 + fj2
4xij2k2

5

+ �j1 j2
4xij1k1

1xij2k2
55 + + exp

X

j1 k

fj4xijk5

+
X

j11 k1

X

j2 1 k2

� j1j2
4xij1k1

1 xij2k2
5 0 (9)

We are interested in relaxing the parametric assumptions
to build a � exible log-linear model. We are particularly inter-
ested in exploring the nonlinearity of the conditional logit
functions f . We also could model the � nonparametrically,
but because a larger number of observations would be needed
to estimate and tune many multivariate smooth functions non-
parametrically, we assume in this article that the � are of
simple parametric form possibly depending on some set of
parameters ‚, and leave more general � for future study. We
use the penalized likelihood method to model the fj nonpara-
metrically. To relax the parametric assumptions, the penal-
ized likelihood method (O’Sullivan 1983) assumes that the
function to be estimated is smooth in some sense. This is
done by assuming that the function to be estimated is in
a given reproducing kernel Hilbert space of “smooth” func-
tions, where “roughness” is measured by the size of some
quadratic functional, typically a square norm or seminorm, and
a roughness penalty is imposed in obtaining the estimate. The
reproducing kernel Hilbert space theory (see Aronszajn 1950;
Kimeldorf and Wahba 1971) can then used to character-
ize the solutions of very general penalized likelihood prob-
lems. We assume then that fj

2 ¨ j , where ¨ j is a given
reproducing kernel Hilbert space of functions on ¸ .
Hence, f = 4f11 f21 : : : 1 fJ 5 2 ¨ 1 ¨ J . The penal-
ized multivariate logistic regression estimate of f and � =
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4�111�121 : : : 1 �JJ 5 is the minimizer of the variational prob-
lem

¬å4y1 f 1�5 = ƒ
nX

i=1

l4f4xi51�4xi55 +
n

2
ªå4f11 : : : 1 fJ 51 (10)

where the � rst part is the negative log-likelihood, the second
part is the roughness penalty, and å = 4å11 : : : 1åJ 5 are the
smoothing parameters that control the smoothness of the esti-
mated fj’s. We assume an additive form of the penalty func-
tional for simplicity and easy interpretation,

ªå4f11 : : : 1 fJ 5 =
JX

j=1

ª
j

åj
4fj50 (11)

We consider the orthogonal decomposition ¨ j = ¨
j

0 ¨
j

1 .
Here ¨

j

0 is � nite dimensional (the “parametric” part, usually
polynomials), and ¨

j

1 (the “smooth” part) is the orthocom-
plement of ¨

j

0 in ¨ j . The penalty functional will be related
only to the smooth part of the functional, ª

j

åj
4fj5 = ˜P

j

1fj
˜2

åj
,

where P
j

1 is the orthogonal projection operator in ¨ j onto
¨

j

1 . The penalized likelihood has the expression

¬å4y1 f1 �5 = ƒ
nX

i=1

l4f4xi51�4xi55 +
n

2

JX

j=1

˜P
j

1fj
˜2

åj
0 (12)

The following theorem shows the existence and uniqueness
of the solution to the variational problem (10). Letting ¨0 =
¨ 1

0 ¨ J
0 denote the null space of ¨ 1 ¨ J with

respect to the penalty function ªå, we have:

Theorem 1. If the minimizer of (12) exists in ¨0, then it
uniquely exists in ¨ 1 ¨ J 0

Proof. See Appendix A.

If ”�1 � = 11 : : : 1M span ¨0, then this corresponds to the
identi� ability of the ordinary parametric model, which is a
linear combination of the ”�. In the later examples, the ”� are
low-degree polynomials.

3.1 Smoothing Spline Analysis of
Variance Models for f j

Here we brie� y review some of the well-known prop-
erties of SS-ANOVA models. For any j (1 j J ), let
g = fj . Here g is assumed to be a function of D vari-
ables, g = g4x11 : : : 1 xD5 with xd

2 ¸ 4d5, d = 11 : : : D; thus
x = 4x11 : : : 1 xD5 2 ¸ = ¸ 415 † † ¸ 4D5. Given probability
measures dŒd on ¸ 4d5, de� ne the averaging operators ¥d on ¸
as

4¥d5g4x5 =
Z

¸ 4d5
g4x11 x21 0 0 0 1 xD5 dŒd4xd50 (13)

These averaging operators de� ne a unique (functional
ANOVA) decomposition of g as

g4x11 : : : 1 xD5 = Œ +
DX

d=1

gd4xd5 +
X

d1<d2

gd1d2
4xd1

1 xd2
5

+ + g11 : : : 1D4x11 : : : 1 xD51 (14)

where Œ = 4
Q

d ¥d5g, gd = 44I ƒ¥d5
Q

d1 6=d ¥d1
5g, gd1d2

= 44I ƒ
¥d1

54I ƒ¥d2
5
Q

d3 6=d1 1 d2
¥d3

5g, and so forth. The averaging oper-
ators and norms on ¨ j can be chosen so that the compo-
nents of this decomposition are projections of g onto orthogo-
nal subspaces of ¨ j (see Gu and Wahba 1993; Wahba 1990;
Wahba et al. 1995). In practice, the ANOVA decomposition
in (14) will be truncated at some point. Assuming that we have
already decided which subspaces (equivalently, components of
g) will be included in our model ­4 ¨ j5, and suppressing
the superscript j on the subspaces for the rest of this section,
we can regroup and write the model space as

­ = ¨0 4¨11 1 ¨11 q5 = ¨0 ¨10 (15)

Usually we will let ¨0 be a � nite-dimensional space con-
taining functions that will not be penalized. The norms on
the composite ¨11 l11 l q are the tensor product norms
induced by the norms on the component subspaces, and
˜g˜2

å = ˜P0g˜2 +
Pq

l=1 ‹l
˜Plg˜2, where Pl is the orthogonal

projector in ­ onto ¨11 l . Now we can use reproducing kernel
Hilbert space methods to explicitly impose roughness penal-
ties. For the penalty functional in (11), it can be further rewrit-
ten as

ª
j

åj
4fj5 =

qX

l=1

‹jl
˜P

j

l fj
˜20 (16)

It is well known (see, e.g., Kimeldorf and Wahba 1971;
Wahba 1990) that the minimizer of the variational prob-
lem (12) is in a particular � nite-dimensional subspace spanned
by a set of basis functions obtained from the reproducing ker-
nel associated with the model space. It is known that the min-
imizers fj of (12) have the form

fj4 5 = ”j4 5T dj + �j4 5T cj1 (17)

where cj and dj are vectors of coef� cients to be found. Here
8”j

�9
pj

�=1 is a set of pj basis functions spanning the null space
¨

j

0 . ”j4 5T = 4”
j

14 51 : : : 1”j
pj

4 55. �j4 5T = 4�ijk4 51 1 i

n1 1 k Kj5, where �ijk4 5 is the representer of the evalua-
tion functional at xijk in ¨

j

1 . It is not necessary to be familiar
with the concept of the representer of an evaluation functional
in a reproducing kernel Hilbert space to follow the rest of the
article, if one is willing to accept the result that our estimates
will be of the form (17) and that the penalty functionals are
quadratic forms in the cj as given following (19) below. (Inter-
ested readers can � nd de� nitions in Wahba 1990, pp. 1–2.)
Descriptions of the particular ”j

� and �ijk used in this article
are given in Section 5.
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The smoothing parameters åj = 4‹j11 : : : 1 ‹jq5 are incor-
porated into �j4 5T . Details have been given by Gu and
Wahb (1993), and Wahba (1990, chap. 10). and Wahba et al.
(1995). The penalty functionals are known quadratic forms
in the cj . We give examples later. Given the 8‹jl9 and the
result (17), the numerical problem is to obtain the minimizer
of (10).

3.2 The Fitting Algorithm

For computational reasons, only an approximate minimizer
of (12) will be obtained, using only a subset of the basis
functions 8�ijk4 51 1 i n1 1 k Kj9. Usually, when the
design points are close, their representers are also very close.
Hence when the dataset is large, it is very likely that many
of the basis functions are nearly linearly dependent. On the
other hand, if by some “prior” knowledge the structure of
the true fj is thought to be not very complicated, then it
may be well approximated by a small number of basis func-
tions. As a result, if we select a subset of the design points
having maximum separation, then their corresponding repre-
senters are expected to have less correlation. We choose a
� xed V and use the SAS procedure FASTCLUS to cluster the
nKj values of the design points 8xijk11 i n1 1 k Kj9
into V clusters. Within the vth cluster, v = 11 : : : 1V , we
randomly select one design point and call it xj1 v. The rep-
resenter of evaluation in ¨ j at xj1 v , called �j1 v , is used to
form the approximating subspace. An approximate solution is
of the form fj4 5 = ”j4 5T dj + �

j
V 4 5T cj

V , where ”j4 5T is as
before and �j

V 4 5T = 4�j1 v4 51 v = 11 : : : 1 V 5, and is computed
for (12) by a block one-step SOR–Newton-Ralphson algo-
rithm. (see Ortega and Rheinboldt 1970). When the number
of basis functions V increases, the approximate solution con-
verges to the exact solution. We have found that for moder-
ately large V , it is not important which point in each cluster is
chosen.

Recall that the � could depend on a set of parameters ‚.
The iterative algorithm for the approximate solution is given
in Table 1.

Table 1. Iterative Algorithm for Approximate Spline
V „ initial value
do

Cluster the data points into V groups
Randomly select one data point from each group
Generate the corresponding basis functions
fj „ initial values, j = 1121 : : : 1J
‚ „ initial values
do

do j = 1 to J
fj „ updated values in the approximating subspace

end
‚ „ Newton-Ralphson update for ‚

until (convergence)
V „ 2 V

until
˜fnew ƒfold ˜

˜fold ˜ < prec1 and
˜‚new ƒ‚old ˜

˜‚old ˜ < prec2

Here prec1 and prec2 are prespeci� ed thresholds, which we
set to 10ƒ7 and 10ƒ8 in the examples to follow. We suggest

that the initial value for V be at least 25. Combined with
the iterative method for choosing smoothing parameters pro-
posed in the next section, the foregoing algorithm usually
converges very rapidly. From our experience, for medical
data, 50–100 basis functions usually yield a very good
approximation.

Next, we discuss in detail how to use the block one-step
SOR algorithm to obtain an approximate solution for � xed V .
Numerically, we need to solve a large nonlinear system. To
speed up the computation, we break down the nonlinear sys-
tem to several “blocks.” When updating one “block” in the
nonlinear system, we � x all other “blocks” at the most recently
updated values. The natural breakdown in this application is
to update the fj’s and ‚ iteratively. To update the ‚, we use
the Newton-Raphson algorithm and iterate until convergence.
However, the updating step for fj is much more computation-
ally intensive. The block nonlinear SOR algorithm requires
that the Newton-Ralphson algorithm be run until convergence.
However, we use only a one-step updating formula, sacri� c-
ing the overall convergence rate a bit to reduce the compu-
tational complexity in each iteration. Let Sj be the nKj pj

matrix with entries ”j
�4xijk5. Returning to our � xed V and the

selected design points xj1 v , v = 11 : : : 1V and the associated
representers �j1 v4 5, we de� ne

Qj1 V =

0
BBBBBB@

�j1 14x1j15 �j1 24x1j15 �j1 V 4x1j15

�j1 14x1j25 �j1 24x1j25 �j1 V 4x1j25

000
000

0 0 0
000

�j1 14xnjKj
5 �j1 24xnjKj

5 �j1 V 4xnjKj
5

1
CCCCCCA

nKj V

and

Qj1 V =

0
BBBBBB@

�j1 14xj1 15 �j1 24xj1 15 �j1 V 4xj1 15

�j1 14xj1 25 �j1 24xj1 25 �j1 V 4xj1 25

000
000

0 0 0
000

�j1 14xj1 V 5 �j1 24xj1 V 5 �j1 V 4xj1 V 5

1
CCCCCCA

V V 0

(18)

Let cj
V = 4cj1 11 cj1 21 : : : 1 cj1 V 5T . Our goal is to compute the

approximate solution with the representation

fj4 5 = ”j4 5T dj + �
j
V 4 5T cj

V 1 (19)

which involves the use of Sj , Qj1 V and Qj1 V . It is easy to ver-
ify that the penalty for fj has the quadratic form ˜P1fj

˜2
åj

=

cj
V

T
Qj1 V cj

V . Therefore, to update fj , provided all other esti-
mated values are � xed at the solutions from the previous iter-
ation, and recalling that fijk = fj 4xijk5, the variational problem
is to minimize

Ij1V = ƒ
nX

i=1

KjX

k=1

fijkyijk
ƒ b4fi1� i5 +

n

2
cj

V

T
Qj1 V cj

V 0 (20)
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Denote bi = b4fi1 � i5. To update fj , we need the following,
where lj is de� ned in Lemma C.1

Œijk =
¡bi

¡fijk

= EYijk = efijk +
X

k3 6=k

efijk + fijk3
+ � ijk1 ijk3 + + e

P
j3 1 k3

fij3k3
+

P
j3 1 k3

P
j4 1 k4

� ij3k31 ij4 k4

1 +
X

j3 1 k3

efij3k3 + + e
P

j3 1 k3
fij3k3

+
P

j31 k3

P
j4 1 k4

� ij3k31 ij4k4

ƒ1

1

wijk1 ijk =
¡2bi

¡f 2
ijk

= varYijk = Œijk41 ƒ Œijk51

wijk1 1 ijk2
=

¡2bi

¡fijk1
¡fijk2

= cov4Yijk1
1 Yijk2

5 = E4Yijk1
Yijk2

5 ƒ EYijk1
EYijk2

=
¡bi

¡� ijk11 ijk2

ƒ Œijk1
Œijk2

= 4efijk1
+ fijk2

+ � ijk1 1 ijk2 + + e
P

j3 1 k3
fij3k3

+
P

j3 1 k3

P
j4 1 k4

� ij3k31 ij4 k4 5

1 +
X

j3 1 k3

efij3k3 + + e
P

j3 1 k3
fij3k3

+
P

j31 k3

P
j4 1 k4

� ij3k31 ij4k4

ƒ1

ƒ Œijk1
Œijk2

1

uijk =
ƒ¡lj4yij1 fij5

¡fijk

= ƒyijk + Œijk1

uj = 4u1j11 u1j21 : : : 1 u1jKj
1 u2j11 : : : 1 unjKj

5T 1

Wij =

0
BBBBBBB@

wij11 ij1 wij11 ij2 wij11 ijKj

wij21 ij1 wij21 ij2 wij21 ijKj

000
000

0 0 0
000

wijKj 1 ij1 wijKj 1 ij2 wijKj 1 ijKj

1
CCCCCCCA

Kj Kj

1

and

Wj = diag4W1j1W2j1 : : : 1 Wnj50

Therefore, the one-step updating formula is to solve

0
@QT

j1 V WjƒQj1 V + nQj1 V QT
j1 V WjƒSj

ST
j WjƒQj1 V ST

j WjƒSj

1
A

0
@cj

V
ƒ cj

V ƒ

dj ƒ dj
ƒ

1
A

=

0
@ƒQT

j1 V ujƒ ƒ nQj1 V cj
V ƒ

ƒST
j ujƒ

1
A 1 (21)

where the subscript minus indicates the quantities evaluated at
the latest update.

With some abuse of notation, we use uij to denote
4uij11 : : : 1 uijKj

5T , fij to denote 4fij11 : : : 1 fijKj
5T , an so on.

Here Qyij = fijƒ ƒWƒ1
ijƒuijƒ are called the pseudo-data. It is easy

to see that the solution of (21) gives the minimizer of

1
n

nX

i=1

4Qyij
ƒ fij5

T Wijƒ4Qyij
ƒ fij5 + cj T

Qj 1 V cj 0 (22)

The block one-step SOR–Newton-Ralphson procedure iter-
atively reformulates the problem to estimate fj from the
pseudo-data by weighted penalized least squares. The pseudo-
data are equivalent to the adjusted dependent vector of Yee and
Wild (1996). The pseudo-data can be shown to have the usual
(mean and covariance) data structure implicit in (22) if the fjƒ
are not far away from fj . A theorem is given in Appendix B.

We use this result later to construct approximate Bayesian
con� dence intervals for the fj .

The preceding discussion assumes no special structure in
the design points. The algorithm is speci� cally designed to
handle the unstructured case. However, when special struc-
ture is available, the foregoing algorithm can be simpli� ed.
One common case is the presence of person-speci� c covari-
ates only. Hence xijk = xij for all k = 11 : : : 1Kj . Similarly,
fijk = fj4xijk5 = fj4xij5 = fij . To update fj , the part of the
penalized likelihood that needs to be minimized has the sim-
pli� ed form

Ij1 V = ƒ
nX

i=1

KjX

k=1

yijk fij
ƒ bi +

n

2
cj T

Qj1 V cj 0 (23)

Now rede� ne

Qj1 V =

0
BBBBBB@

�j 1 14x1j5 �j1 24x1j5 �j1 V 4x1j5

�j1 14x2j5 �j1 24x2j5 �j1 V 4x2j5

000
000

0 0 0
000

�j1 14xnj5 �j1 24xnj5 �j1 V 4xnj5

1
CCCCCCA

n V

0 (24)

Denote yij =
PKj

k=1 yijk , Œij = E4
PKj

k=1 Yijk5, Wij = var4
PKj

k=1

Yijk5, uij = ƒ PKj

k=1 yijk + Œij , and uj = 4u1j1 u2j1 : : : 1 unj5
T .
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Except for the aforementioned changes, all of the previous
formulas and discussions remain true.

Finally, by the SOR–Newton theorem of Ortega and
Rheinboldt (1970) and corollary 3.1 of X. Lin (1998), the local
convergent property holds if we use block one-step SOR–
Newton-Raphson method to � nd the minimizer of a twice-
differentiable convex function. Thus there exists an open ball
of the minimizer, and when the starting point is in this open
ball, the algorithm will converge to the minimizer for � xed
smoothing parameters.

In response to a referee’s query, we note that the back� t-
ting algorithm popularized by Hastie and Tibshirani (1990) is
a form of block SOR algorithm. A block SOR algorithm was
also used by Wahba et al. (1995), who gave a detailed dis-
cussion of the relation between the block SOR they used and
the back� tting algorithm of Hastie and Tibshirani. However,
the way in which we have assigned blocks in this article is
different than either of these forms of block SOR.

4. ADAPTIVE CHOICE OF THE
SMOOTHING PARAMETERS

So far, all smoothing parameters are considered � xed.
Now we consider an automated data-driven method to choose
smoothing parameters. The risk function or “target” to be min-
imized is the comparative Kullback–Leibler (CKL) distance of
the estimate from the “truth.” Because the truth is not observ-
able, except in simulation studies, the CKL also is not observ-
able. Thus a computable proxy for the CKL whose minimizer
is a good estimate of the minimizer of the CKL is desired.
The GACV was proposed by Xiang and Wahba (1996) as
a method for choosing a smoothing parameter for penalized
likelihood estimates when the data are from an exponential
family with no nuisance parameters. Those authors showed
via Monte Carlo methods with Bernoulli data that its mini-
mizer provides a good estimate of the minimizer of the CKL
in relatively small samples. The derivation of the GACV score
begins with a leave-out-one argument. Direct calculation of the
GACV score becomes unstable in the large-sample case due
to the existence of the inverse of a generally ill-conditioned
matrix in the formula (see Xiang and Wahba 1996). Later,
Lin et al. (2000) and Wahba et al. (1999) demonstrated that
the GACV score can be computed and minimized over multi-
ple smoothing parameters with the use of a randomized trace
technique, (ranGACV), which provides a stable calculation. In
this article we extend the GACV, and then the ranGACV, to
the case of correlated Bernoulli observations. Instead of using
a leave-out-one-observation to start the derivation, we leave
out one person. Following the derivation, in the next section
we demonstrate via a small simulation study the properties of
the ranGACV for providing an estimate of the minimizer of
the CKL in the correlated Bernoulli case.

To choose the smoothing parameters for fj , we let all of the
other conditional logit functions f` 4` 6= j5 and the � be � xed
at the estimated values from the previous iteration. Let f

6ƒi7

ijk

denote the estimated conditional logit function fj evaluated at
xijk , with the ith subject left out for the estimation procedure.
The ordinary leave-out-one-subject cross validation function

for choosing åj , CV4åj5, is de� ned as

CV4åj5 =
1
n

nX
i=1

ƒ
KjX

k=1

yijkf
6ƒi7

ijk + b4fij 5

=
1
n

nX

i=1

ƒ
KjX

k=1

yijkfijk + b4fij5

+
KjX

k=1

yijk4fijk
ƒ f

6ƒi7

ijk 5 0 (25)

Because yijk and f
6ƒi7

ijk are independent, and because for large
sample sizes f

6ƒi7

ijk is expected to be close to fijk , CV is
expected to provide an approximately unbiased estimate for
the CKL distance, given � and f 4ƒj5 � xed. First, let us assume
that the exact solution of the variational problem can be com-
puted. Let yj = 4yijk1 1 i n1 1 k Kj5

T . In each updating
step for fj , the minimizer of

Iåj
4fj1 yj5 = ƒ

nX

i=1

ƒ
KjX

k=1

yijkfijk + b4fij5 +
n

2
ª j

åj
4fj5 (26)

is obtained. By using several � rst order Taylor expansions,
we derive an approximate cross validation (ACV) score. The
GACV is a generalization of the ACV score.

First, we de� ne the generalized average of submatrices
as a generalization of the trace of a matrix. For any matrix
A with submatrices Aii11 i n on the diagonal, Aii =
ai1 k1k2 K K

11 k11 k2 K, if K = 1, the generalized aver-
age of Aii is simply the trace of A divided by n, SA = tr4A5=n.
When K 2, let

„ =
1

nK

nX

i=1

KX

k=1

ai1 kk = tr4A51

ƒ =
1

n K4K ƒ 15

nX

i=1

X

k1 6=k2

ai1 k1k2
0

(27)

The generalized average of Aii’s is de� ned as

SA = 4„ ƒ ƒ5IK K + ƒ eeT =

0
BBBBBB@

„ ƒ ƒ

ƒ „ ƒ

000
000

0 0 0
000

ƒ ƒ „

1
CCCCCCA

K K

1 (28)

where e = 411 11 115T is the unit vector. When K 3, this
form is suitable whenever it is reasonable to assume that asso-
ciations between different pairs of repeated observations are
similar. Other generalization forms are possible. The proper-
ties of the K 3 case are a matter for future research.

Let Hj denote the inverse Hessian of (26) with respect to fj .
Hj is an nKj nKj matrix with Hj

ii1 i = 11 : : : 1 n as Kj Kj

submatrices on the diagonal. Let Gj
ii = I ƒ WijH

j
ii and let SHj

and SGj denote the generalized average of Hj
ii and Gj

ii. We now
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de� ne the GACV as

GACV4åj5 =
1
n

nX

i=1

ƒ
KjX

k=1

yijkfijk + b4fij5

+
1
n

nX

i=1

yij1 yijKj

SHj4SGj5ƒ1

0
B@

yij1
ƒ Œij1
000

yijKj
ƒ ŒijKj

1
CA 0 (29)

Details of the derivation of the GACV are given in Appendix C.
Direct computationof theGACV for largesamplesizes is slow

and tends to be unstable (see Xiang and Wahba 1996, Sec. 3.1).
This explicit calculation can be avoided by using a technique in
the spirit of the randomized trace method, provided that a solu-
tion (either exact or approximate) of the variationalproblem can
be obtained at a lower cost. We propose a one-step randomized
estimate of GACV that is fast and cheap to calculate.

Given a square matrix A with Aii 41 i n5 being the
K K submatrices on the diagonal, we discuss how to obtain
a randomized estimate of SA. First, n iid vectors of K iid ran-
dom variables distributed as N(0,1) are generated. Let …i =
4…i11 : : : 1 …K5T be the ith such vector and … = 4…T

1 1 : : : 1…T
n 5T .

Then „ = tr4A5=4nK5 can be estimated by 4…T A…5=4nK5.
On the other hand, if K > 1, then ƒ = 4

P
i

P
k11 k2

ai1 k1k2
ƒ

tr4A55=4nK4K ƒ 155. To estimate
P

i

P
k11 k2

ai1 k1k2
, let N…i =

41=
p

K5
PK

k=1 …ik and N… = 4 N…11 : : : 1 N…11 N…21 : : : 1 N…n5T . Here N… is
a column vector with K replicates of N…i for each 1 i n.
Note that E N…T A N… =

P
i

P
k11 k2

ai1 k1k2
. Thus we can estimate ƒ

by 4 N…T A N…ƒ…T A…5=4nK4K ƒ155 and obtain a randomized esti-
mate of SA.

In practice, the randomized estimate of GACV is calculated
by solving the nonlinear system on the perturbed data Yj + …

and Yj + N…. Let f
Yj

åj
denote the solution of (26) using the

original data and let f
Yj + …

åj
denote the solution using the

perturbed data. If we take f
Yj

åj
as the initial value to a Newton-

Ralphson calculation of f
Yj + …

åj
and run the iteration only once

by using all matrix decompositions that have already been
performed for calculating f

Yj

åj
in the last step, then we obtain

the one-step solution f
Yj + …11
åj

. Because 4¡Iåj
=¡fj54f
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Hence we have

f
Yj + …1 1
åj

ƒ f
Yj

åj
= Hj…0 (31)

Thus …T 4f
Yj + …1 1
åj

ƒ f
Yj

åj
5 = …T Hj… and N…T 4f

Yj + N…1 1
åj

ƒ f
Yj

åj
5 =

N…T Hj N…, and we can obtain a randomized estimate of SHj .
Similarly, …T Gj … = …T … ƒ …T Wj4f

Yj + …1 1
åj

ƒ f
Yj

åj
5, and N…T Gj N… =

N…T N… ƒ N…T Wj4f
Yj + N…1 1
åj

ƒ f
Yj

åj
5. We can thus calculate the random-

ized estimate of SGj . This approach avoids explicit calculation
of the inverse Hessian Hj , which is computationally expensive
and tends to be unstable if Hj is ill conditioned. A random-
ized estimate can always be obtained provided that a cheap
and stable “black box” exists for calculating the (approximate)
one-step solution for perturbed data. The resulting ranGACV
function is

ranGACV4åj5 =
1
n

nX

i=1

ƒ
KjX

j=1

yijkfijk + b4fij 5

+
1
n

nX
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0

1
CA 1 (32)

where ¹SHj and ¹SGj denote the randomized estimates. To reduce
the variance in the term after the “+ ” in (32), we may draw
R independent random vectors …4151 : : : 1…4R5 , and replace the
term after the “+ ” in (32) by

1
nR

RX

r=1

nX

i=1

4yij11 : : : 1 yijKj
5

¹SHj4r5 ¹SGj4r5

ƒ1

0
B@
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000

yijKj
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0

1
CA

(33)

to obtain an R-replicated ranGACV function. The GACV and
ranGACV functions are derived by assuming that the mini-
mizer of (20) is calculated at each block nonlinear SOR iter-
ation. To speed up the algorithm, however, only a one-step
update will be calculated. We remark that all favorable prop-
erties of GACV and ranGACV are preserved for the block
one-step SOR algorithm and approximate spline estimate. It is
very easy to carry out the computation, as no additional matrix
decomposition is required. We iteratively minimize ranGACV
in each step of the block one-step SOR iteration. This is done
repeatedly until some prespeci� ed convergence criteria is met,
or the number of iterations exceeds a prespeci� ed limit.

We remark that it is a straightforward generalization to
extend the the algorithm and the ranGACV to observations
that come from other exponential families with no nuisance
parameter. In fact, the original derivation of the GACV did
not use the fact that the data were Bernoulli. However, the
GACV has not yet been tested on data from other exponential
families.

5. MONTE CARLO SIMULATIONS

In this section we demonstrate results from some Monte
Carlo simulations to evaluate the performance of the proposed
method. The comparative Kullback–Leibler distance (CKL)
is used to measure the performance of the estimated values.
In our experience, the CKL distance provides a measure that
agrees very well with human intuition when eyeballing the � t-
ted surfaces.

In all models presented here and in next section, we used
reproducing kernels associated with cubic splines as building
blocks for the tensor product space reproducing kernels that
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Figure 1. Histogram of O� for Three Different Sample Sizes. The dot-
ted lines represent the true value of � = .8. The means of estimated
values are .7926, .7937, and .7686.

generate the �’s. (This construction was given in Wahba 1990,
sec. 10.2, for general SS-ANOVA models.) We brie� y note
some details. Let u 2 601 17; the null space of the cubic spline
penalty functional (

R
4f "52) is spanned by the linear functions

”14u5 = 1 and ”24u5 = uƒ1=2. De� ne the reproducing kernel
r14u1 v5 = k24u5k24v5 ƒ k446u ƒ v75, where u1v 2 60117 and
k`4u5 = B`4u5=`W, with B`4 5 the `th Bernoulli polynomial. In
the case where fj is a function on 60117, the ”’s are the linear
functions above and �j1 �4u5 = r14xj1 �1 u5. When fj is a func-
tion on the unit square or higher dimensional unit cube, the
”’s are built up from tensor sums and products of ”1 and ”2,
and reproducing kernels to generate the �j1 � are built up from
tensor sums and products of r1 and r04u1v5 = ”24u5”24v5, as
given by Wahba (1990). Particular details for the model in (37)

Figure 2. True (Dashed Line) and Estimated (Solid Line) Conditional Probability Functions.

below were also given by Lin et al. (2000). In the experiments
and data analysis that follow, the ranGACV is used to choose
the smoothing parameters.

5.1 Repeated Measurements for the Same Endpoint

The � rst example concerns the single smoothing parame-
ter situation. We try to mimic the characteristic of possible
ophthalmology data. Each subject has one endpoint of inter-
est and paired observations. There is one observation-speci�c
covariate, Xik1 4k = 11 25. The Xi1’s are assumed to be uni-
formly distributed on the interval 40051 0955. Xi2 = Xi1 + …i ,
and the …i’s are uniformly distributed on 4ƒ0051 0055. The
true conditional logit function is assumed to be f4xik5 =

logit4P4Yik = 1—Y 4ƒk5

i = 01 xik55 = 26exp4ƒ304xik
ƒ 025525 +

sin4� x2
ik57 ƒ 2, and the conditional log odds ratio � =

logOR4Yi11 Yi2
—xi5 = 08. Three different sample sizes are used

in this simulation: n = 12512501500. For each sample size,
100 independent datasets are randomly generated according to
the true joint distribution.

Figure 1 shows histogram plots of the estimated O� for the
three different sample sizes. The dotted lines represent the true
value of 08. The � tted values appear to converge to the truth
while the sample size increases. The estimator of � appears to
be approximately unbiased and normally distributed from the
histogram.

Figure 2 plots the true conditional probability function and
the estimated curves for each sample size, P4Yik = 1—Y 4ƒk5

i =

01 xik5 = ef 4xik5=41+ ef 4xik55. For each sample size, the 100 � t-
ted values are ranked according to the CKL distances between
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Figure 3. True p x i = P Yi1 = 1 or Yi2 = 1—x i Used for the Simula-
tion Study.

the estimated joint distributions and the truth. The 5th, 25th,
50th, 75th and 95th best � ts are plotted for each sample
size. The true conditional logit function is a bimodal func-
tion. The trend is clear that when the sample size increases,
the estimated curves become increasingly accurate. However,
for a parametric model, there might be no prior knowledge
about the bimodal nature of the truth. Hence a linear or even
quadratic form will miss the true curve no matter how large
the sample size.

In the next experiment, we compare the proposed new “mul-
tivariate” method to the “univariate” � t. In ophthalmology
studies, one question of interest is to estimate the probabil-
ity of at least one eye developing a certain disease given
the values of the predictor variables for a person. Assume
that there is no eye-speci� c covariate. The Xi’s are uniformly
distributed on [0,1], and for each subject, there are paired
observations 4Yi11 Yi25. We want to estimate the probability

Figure 4. Histograms of Estimated O� ’ s for n = 100, n = 200, and n = 400. The dotted lines represent the true values of �. From left to right,
the means of estimated values are .0214, .3743, .7596, and 1.1624 for n = 400; .1028, .3161, .7058, and 1.1025 for n = 200; and .0619,
.3719, .7746, and 1.1775 for n = 100.

P4Yi1 = 1 or Yi2 = 1—xi5 = 42efi + e2fi+ �5=41 + 2efi + e2fi+ �5

from the observed data.
For this experiment, we assume that p4xi5 = P4Yi1 = 1 or

Yi2 = 1—xi5 = 08 sin4207x2
i 5 + 01. Figure 3 plots the true p4x5.

Four different values are used for � : 0, .4, .8, and 1.2; � = 0
corresponds to the case where Yi1 and Yi2 are independent.
However we pretend that this fact is unknown, and so esti-
mate � by the proposed algorithm. Straightforward calculation
yields the following formula to compute fi for given � and
P4Yi1 = 1 or Yi2 = 1—xi5:

fi = log
4p4xi5 ƒ 15 +

p
41 ƒ p4xi552 + e�p4xi541 ƒ p4xi55

e�41ƒ p4xi55
0

(34)

The experiment is conducted as follows. First, for the
“univariate” � t, the only information needed is LYi , which is
de� ned to be 0 when Yi1 = Yi2 = 0 and 1 otherwise. Here
P4 LYi = 1—xi5 = p4xi5. We generate 100 datasets according to
the true distribution and � t the data using the “univariate”
penalized logistic regression based only on the derived data
LYi’s. For the bivariate � t, we � rst calculate the true joint dis-
tribution of 4Yi11 Yi25 according to the previous formula. For
each value of � , 100 datasets are randomly generated and
the joint distribution is estimated by the proposed multivari-
ate method. Afterward, the probability P4Yi1 = 1 or Yi2 = 1—xi5

can be derived from the estimated joint distribution. For every
run, the CKL distance between the estimated Op4xi5 and p4xi5

is calculated.
The foregoing procedure is performed for three different

sample sizes: n = 1001 2001 400. Figure 4 shows histograms
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Figure 5. Boxplots of CKL for the Univariate Fit and the Multivariate Fits.

of the estimated O�’s for different sample sizes and true values
of � . Dotted lines represent the true values of �. From the
plots, the estimated values have an approximate bell-shaped
distribution and are approximately unbiased. As the sample
size increases, the estimated values become closer to the true
value.

Figure 5 compares the CKL distances between the � tted
probability and the true probability p4xi5 = P4Yi1 = 1 or Yi2 =
1—xi5 for the two methods. Obviously, for all true values of
�, the bivariate � t, which estimates the joint distribution of
4Yi11 Yi25, has a better ef� ciency than the univariate � t, which
estimates P4 LYi = 15 directly. This is not surprising, since the
“univariate” � t only needs to know LYi; hence some information
in 4Yi11 Yi25 is not used in the estimation procedure.

In this article we omit plots of ranGACV4‹5 and CKL4‹5

due to lack of space. Plots of these curves (and surfaces in
the case of multiple smoothing parameters) in the univariate
Bernoulli response case show visually that at the sample sizes

Figure 6. True p x i1 x i2 = P LYi = 1—x i1 x i2 and Estimated Surfaces.

considered here, the minimizer of ranGACV is an excellent
proxy for CKL. Examples have been given by Lin et al. (1998)
and Wahba et al. (1999). Simulations with the same results
in the multivariate Bernoulli response case were provided by
Gao (1999a).

The next experiment is similar to the previousone but for mul-
tiple smoothingparameters. Assume that the 4Xi11 Xi25’s are uni-
formly distributed on the unit square 40115 401 15. The true
conditionallogit functionis takento bef 4xi11 xi25 = 2 sin43xi1 ƒ
3xi1xi25 + cos42 ƒ 2xi25 ƒ 34xi1 ƒ 03552 ƒ 105, which involves
bothmain effects and interactionterms. The conditionallogodds
ratio � is taken to be a constant 1. Each time, 500 independent
pairs of observations 4Yi11 Yi25’s are simulated. The proposed
penalized multivariate logistic regression is used to estimate the
joint distribution.This is repeated 100 times.

We can derive p4xi11 xi25 = P4 LYi = 1—xi11 xi25 from the esti-
mated joint distribution. Figure 6 shows the true p4xi11 xi25

and the 5th, 25th, 50th, 75th, and 95th best estimated values
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ranked by the CKL distance. The proposed method gives very
good estimates most of the time.

To make the comparison, we also use the “univariate”
method to estimate p4xi11 xi25 directly for the same 100
datasets. Only the derived outcome variable LYi is used in the
estimation procedure. Assuming that we are only interested in
estimating P4 LYi = 1—xi11 xi25; � gure 7 shows the pairwise com-
parison of CKL distance. About 2=3 of the time, the bivariate
� t yields the better estimate.

5.2 Different Endpoints

In this example we assume that there are two correlated
endpoints of interest. For each subject, there are two binary
outcome variables: Yi1 for the � rst endpoint and Yi2 for the
second endpoint. The proposed method estimates the condi-
tional joint distribution of P4Yi11 Yi2—Xi5. This model is also
useful for predicting the outcome of one endpoint, given that
the outcome of another endpoint is known. For example, if a
person already has one disease, then what is the probability of
getting another disease?

The true association factor � = logOR4Yi11 Yi25 is taken to
be 1.5 in this simulation. The true conditional logit functions
for the two different endpoints are

f14xi5 = logit4P4Yi1 = 1—Yi2 = 01 xi55

= 10cos42xi5 + 7ex2
i ƒ 16 (35)

and

f24xi5 = logit4P4Yi2 = 1—Yi1 = 01 xi55

= 2 cos45xi + 1045 + x2
i 0 (36)

If f1 = f2, then this is reduced to the one-endpoint case in the
previous subsection.

Two sample sizes (n = 200 and n = 500) are used in this
simulation. For each sample size, 100 sets of independent data

univariate
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CKL comparison, n=500

Figure 7. Pairwise Comparison of CKL Distance for the Bivariate Fit
and the Univariate Fit.

Figure 8. Histograms of estimated O� for Two Different Sample Sizes.
The dotted lines represent the true values of � = 1.5. The means of
estiamted values are 1.487 and 1.489.

are generated according to the true joint distribution. The pre-
dictor variables Xi are assumed to have a uniform distribution
over 601 17. Only 50 basis functions are selected to generate
the approximating subspace for the approximate spline solu-
tions. To compute the randomized version of GACV, we use
R = 20 replicates to reduce the variance of the estimated val-
ues.

Figure 8 presents the histogram plots of the estimated O� for
two different sample sizes. The dotted lines are the true value
of � = 105. The estimated values converge to the truth while
sample size increases.

Figure 9 plots the true and estimated conditional probabil-
ity functions for both endpoints. For each sample size, the
100 � tted values are ranked according to the CKL distance
between the estimated joint distribution and the truth. The 5th,
25th, 50th, 75th, and 95th best � ts are plotted for both sam-
ple sizes. Figure 9(a) shows the conditional probability for the
� rst endpoint, P4Yi1 = 1—Yi2 = 01 xi5 = ef14xi5=41+ ef14xi55, and
Figure 9(b) shows the conditional probability for the second
endpoint, P4Yi2 = 1—Yi1 = 01 xi5 = ef24xi5=41+ ef24xi55.

6. APPLICATION TO THE BEAVER DAM EYE STUDY:
PIGMENTARY ABNORMALITIES IN WOMEN

The Beaver Dam Eye Study (BDES) is an ongoing
population-based cohort study of age-related eye diseases,
cataract and maculopathy. A description of the population and
details of the study at baseline were given by Klein, Klein,
and Linton (1992). Five-year follow-up data have been col-
lected and analyzed (see, e.g., Klein, Klein, Jensen, and Meuer
1997), and the 10-year follow-up of the cohort is in progress.

A private census of the population of Beaver Dam,
Wisconsin was performed from September 15, 1987, to May
4, 1988, to identify the eligible population, which is de� ned
as being age 43–84 years at the time of census. Afterward,
the population was examined over a 30-month period. Of the
5,925 eligible people, 4,926 (8301%) participated in the study.
Photographs of each eye were taken and graded; an examina-
tion and a standardized questionnaire were administered.

The association of pigmentary abnormalities with six other
attributes at the baseline was studied by Lin et al. (2000)
using the “univariate” penalized logistic regression. Only the
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Figure 9. True and Estimated Conditional Probabilities P Yi1 = 1—Yi2 = 0 Xi (a) and P Yi2 = 1—Yi1 = 0 Xi (b). Solid lines are the estimated
functions, dotted lines represent the true function.

n = 21585 women members of the cohort in the baseline with
no missing values were considered. Pigmentary abnormalities
are an early sign of age-related macular degeneration and are
de� ned by the presence of retinal depigmentation or increased
retinal pigmentation in association with retinal drusen. Pig-
mentary abnormalities were found in 11088% of the n = 21585
cohort studied. Here the question of interest is to estimate the
probability of at least one eye developing pigmentary abnor-
malities given the values of the predictor variables.

Based on previous work, age is known to be a very
strong risk factor for the presence of pigmentary abnormalities
and other age-related maculopathy in the Beaver Dam Eye
Study. The association between cardiovascular disease and
its risk factors and the incidence of age-related maculopathy
was examined by Klein, Klein, and Jensen (1997). Hormone
replacement therapy was associated with a weak protective
effect, and a history of heavy alcohol consumption and beer
drinking was associated with a deleterious effect for some
endpoints (see Klein, Klein, and Ritter 1994; Moss, Klein,
Klein, Jensen, and Meuer 1998; Ritter, Klein, Klein, Mares-

Perlman, and Jensen 1995). Lin et al. (2000) used multiple
linear logistic regression and contingency tables for the pre-
liminary analysis. First, one predictor variable was examined
at a time. Only those variables whose p-values are below
some threshold (.1) were kept for further analysis. A forward
selection procedure was then carried out for the linear logistic
regression. Afterward, several candidate nonparametric mod-
els were closely examined. If the � tted value of any term had
no signi� cant visual effect to the overall � t, then that term was
considered to have no practical importance. The six “predic-
tor” variables selected for the � nal nonparametric model are
listed in Table 2.

The model � nally � tted is

f 4x5 = C + f14sys5+ f24chol5 + f124sys, chol5 + dageage

+ dbmibmi+ dhormI14horm5 + ddrinI24drin50 (37)

Here I1 and I2 are indicator variables. Originally, age and bmi
were � tted as smooth main effects, however, visual inspection
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Table 2. Predictor Variables for the Beaver Dam Pigmentary
Abnormalities Model

Variable Units Code

Current usage of hormone replacement therapy yes/no horm
History of heavy drinking yes/no drin
Body mass index kg/m2 bmi
Age years age
Systolic blood pressure mmHg sys
Serum cholesterol mg/dL chol

indicated that they are indistinguishable from linear terms, so
that they were set to be linear in the � nal model. Thus there
are � ve smoothing parameters in the model, one for each of
the main effects of sys and chol and another three for the
interaction term (linearsys † smoothchol, smoothsys † linearchol

and smoothsys † smoothchol). The results were reported by Lin
et al. (1998).

In this section we re-examine the association by using the
proposed penalized multivariate logistic regression. n = 21495
women with outcomes available for both eyes are included in
the analysis. For reference, the percentiles of the continuous
predictor variables are given in Table 3.

We apply the penalized multivariate logistic regression to
analyze these data. Here J = 1 and K1 = 2. All predictor vari-
ables take the same values for both eyes of the same person.
The association between fellow eyes is assumed to be a con-
stant, � = log6P4111—xi5P4010—xi5=P4110—xi5P4011—xi57. The
� nal model takes the same functional form as in (37), although
this time on the conditional logit scale. Only 50 basis func-
tions selected by the clustering method are used to � t the � nal
model. To estimate the ranGACV, the number of replicates R

is taken to be 20. On convergence, the estimated O� = 208269.
The naive estimate of odds ratio without adjustment for any
covariates is 26.06. The estimated odds ratio from the mul-
tivariate model decreases to OR = e208269 = 16089. Obviously,
the common predictor values for the same person only partly
explain the strong association between fellow eyes.

From the estimated joint probability, we can calculate
the probability of at least one eye developing the pigmen-
tary abnormalities; P4Yi1 or Yi2 = 1—Xi5 = 42efi + e2fi+ � 5=41+
2efi + e2fi+ �5. Figures 10 and 11 give the estimated proba-
bility of � nding pigmentary abnormalities in at least one eye
as a function of chol, for various values of sys, age and
bmi. In Figure 10, (horm, drin) = (no, no) and in Figure 11,
(horm, drin) = (yes, no). A suggestion of a nonlinear protec-
tive effect of cholesterol, particularly for those who were older
in the horm = no group, may be seen as a result of � tting
this model. A protective effect of hormone replacement ther-

Table 3. Percentiles of the Predictor Variables

Percentile

Minimum 12.5 25 37.5 50 62.5 75 87.5 Maximum

sys(mmHg) 71 108 116 122 129 136 145 157 221

chol(mg/dL) 102 191 210 225 237 252 26605 290 503
bmi(kg/m2) 15 2205 24025 2509 2704 2905 31055 3502 6804
age(years) 43 48 52 58 62 66 71 76 86

apy is still evident from this bivariate model. Figure 12 gives
cross-sectional plots of the estimated probabilities along with
the 90% Bayesian con� dence intervals as a function of chol
for both values of horm and four values of age, which are
taken to be the middle of the four age groups de� ned in the
Beaver Dam Eye Study. Details of the Bayesian “con� dence
intervals” are given in Appendix D.

The new analysis basically con� rms the result of Lin
et al. (2000). The trend of the effect for each predictor vari-
able remains the same. Compared to � gures 9–11 of Lin
et al. (2000), we notice some small difference between these
two models. From the simulation studies, we expect that the
new model is closer to the underlying truth. Moreover, we
notice that the outcomes for both eyes of the same person
are highly correlated (OR = e208269 = 16089), even after adjust-
ing for all of the predictor variables in this model. This
partly explains why the results from the two models look very
similar.

Another merit of this new approach is in estimating the
probability P4Yk = 1—Y 4ƒk5 = 11X5. Figure 13 shows this
conditional probability as a function of chol. This conditional
probability is medically meaningful to a patient who has been
diagnosed with a certain disease for one eye. It provides a
guideline as to how to reduce the risk of the same disease for
the other healthy eye. A referee pointed out that it will also
be interesting to estimate the probability of both eyes devel-
oping an abnormality, because one might want those patients
to have greater priority for receiving health care or prevention
measures. We can do so by calculating P4Y1 = Y2 = 1—X5 =
e2f + �=41 + 2ef + e2f + �5.

7. CONCLUSION

We have proposed using penalized multivariate logistic
regression with SS-ANOVA models to estimate the joint
distribution for multivariate Bernoulli data, given the values
of the predictor variables. The estimate is obtained by solv-
ing a variational problem involving the penalized likelihood.
Numerically, an approximate solution of the minimization
problem is obtained by using the block one-step SOR–
Newton-Ralphson algorithm. The GACV and ranGACV for
multivariate Bernoulli data have been derived, and ranGACV
has been used to adaptively select smoothing parameters in
every step of the block one-step SOR iteration. The association
terms are still kept in simple parametric form in this model.
They are estimated iteratively by maximum likelihood in each
block one-step SOR updating step. However, we can also gen-
eralize to estimate the association term nonparametrically. In
principle, once the likelihood is fully speci� ed, we can use
the one-step SOR algorithm to � t the model. By leaving out
one independent unit at a time, we can also use ranGACV to
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Figure 10. Estimated Probability of at Least One Eye Having Pigmentary Abnormalities as a Function of Cholesterol by Three Levels of age
and bmi. horm = no, drin = no.

choose smoothing parameters adaptively. By taking the depen-
dence structure into consideration, we can obtain a partly
� exible estimate of the joint probability conditioning on the
predictor variables. This approach is particularly useful when
the correct form of the function to be estimated is unknown.
We successfully applied this method to analyze a medical
dataset. Some interesting features of this data set are brought
to our attention by the semi parametric model, whereas
the more conventional parametric approach is unlikely to
reveal such a relationship without further prior knowledge of
the data set.

APPENDIX A: PROOF OF THEOREM 1

Before we prove this theorem, we � rst state two lemmas.

Lemma A.1. Let fijk denote fj4xijk5 and let � ij1k11 ij2k2
denote

�j1j2
4xij1k1

1xij2k2
5. ¬4y1 f1�5 in (8) is a strictly convex function of

fijk’s and � ij1k11ij2k2
’s.

Proof. We need to show that the Hessian is positive
de� nite. To simplify the notation, we relabel Yi = 4Yijk5 to be

4Yi11 : : : 1 YiM 5, where M =
PJ

j=1 Kj . We simplify the notation
for the f’s and � ’s similarly. From the property of exponential
families, we know that the Hessian with respect to the f’s and
� ’s is H = diag8H11H21 : : : 1 Hn9, where Hi is the covariance
matrix of QYi = 4Yi11 Yi21 : : : 1 YiM 1 Yi1Yi21 Yi1Yi31 : : : 1 Yi1Mƒ1YiM 5T .
Denoting ai = 4ai11 ai21 : : : 1 aiM 1 ai121 ai131 : : : 1 ai1M ƒ11M 5T , if
aT

i Hiai = var4aT
i

QYi5 = 0, then we have aT
i

QYi = constant. We show
that ai must be a zero vector. First, the constant here must be
0, because we can let all Yim’s be 0. To show aim = 0, we let
Yim = 1 and let the rest of vector QYi be 0’s. Afterward, to derive
aim1m2

= 0, we let the only nonzero elements of the QYi vector be
Yim1

= 11 Yim2
= 1, and Yim1

Yim2
= 1. This proof also extends to the

saturated model.

The following lemma is theorem 4.1 of Gu and Qiu (1993).

Lemma A.2. Suppose that ¬4g5 is a continuous and strictly con-
vex functional in a Hilbert space, ¨ = ¨0 ¨1, where ¨1 has a
square norm ª 4g5 and ¨0 is the null space of ª 4g5 of � nite dimen-
sion. If ¬4g5 has a minimizer in ¨0, then ¬4g5+ ª 4g5 has a unique
minimizer in ¨ .
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Figure 11. Estimated Probability of at Least One Eye Having Pigmentary Abnormalities as a Function of Cholesterol by Three Levels of age
and bmi. horm = yes, drin = no.

Proof of Theorem 1

De� ne

g4xi1 j11 k11 j21 k25

=

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

fj4xijk51 1 j = j1 = j2 J1

1 k = k1 = k2 Kj1 fj 2 ¨ j

�jj 4xijk1
1xijk2

5 1 j = j1 = j2 J1

1 k1 < k2 Kj

�j1j2
4xij1k1

1xij2 k2
5 1 j1 < j2 J1

1 k1 Kj1
1 1 k2 Kj2

0

Let ¨ = 8g4xi1 j11 k11 j21 k25 2 xijk 2 ¸ 1 1 j1 j2 J1 1 k1 Kj1
1

1 k2 Kj2
9. Then ¨ is a Hilbert space with square seminorm

ªå4g5 = ªå4f11 : : : 1 fJ 5, where ªå is de� ned in (11). Let ¬ 4g5 =

¬4y1 f1�5. By Lemma A.2, it suf� ces to show that ¬ 4g5 is continu-

ous and strictly convex in ¨ . Continuity is obvious. Strict convexity
follows from Lemma A.1.

APPENDIX B: PROPERTIES OF THE PSEUDODATA

Properties of the pseudo-data of (22), which we invoke in
Appendix D to get Bayesian “con� dence intervals,” are given by the
following.

Theorem B.1. For any � xed j, if —fijkƒ ƒfijk— = o415 uniformly
for i = 11 21 : : : 1 n and k = 11 : : : 1 Kj , —�ƒ ƒ � — = o415 uniformly,
Œj4x5 is uniformly bounded away from 0 and 1, � ’s are uni-
formly bounded away from ƒˆ and ˆ. Then

Qyij = fij + …ij + op4151

where …ij = 4…ij11 : : : 1 …ijKj
5T has mean 0 and covariance matrix Wƒ1

ij

and …1j1 : : : 1…nj are independent.

Proof. The proof is given as theorem 3.3 of Gao (1999b), gen-
eralizing a similar argument in the univariate case of Gu (1990), but
is omitted here for lack of space.
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Figure 12. Bayesian Con dence Intervals for the Probability of at
Least One Eye Having Pigmentary Abnormalities. bmi and sys are xed
at their Median drin = no.

APPENDIX C: DERIVATION OF GENERALIZED
APPROXIMATE CROSS VALIDATION

Before proceeding, we need to generalize the leave-out-one lemma
of Craven and Wahba (1979) � rst. This time, we need to leave out
one independent unit at a time, that is, one independent subject.

Lemma C.1 (Leave-Out-One-Subject Lemma). Let ƒlj4yij1 fij5 =
ƒP

k yijkfijk + b4fij5 be the part of the likelihood function related to
the jth endpoint. All other parts of the likelihood function are consid-
ered as � xed. Iåj

4fj 1Yj5 = ƒP
i lj4yij1 fij5 + 4n=25ªåj

4fj5. Suppose
that h4i1z1 5 is the minimizer of Iåj

4fj1Z5, where Z = 4yT
1j1 : : : 1

yT
iƒ11 j 1 zT 1 yT

i+ 11 j1 : : : 1yT
nj5

T ; then

h4i1Œ6ƒi74xij51 5 = f
6ƒi7

åj
4 51

where f
6ƒi7

åj
is the minimizer of

P
i1 6=i l4yi1 j1 fi1 1j5 + 4n=25ªåj

4fj 5 and

Œ6ƒi74xij5 = 4Œ6ƒi74xij151 : : : 1 Œ6ƒi74xijKj
55T is the vector of means

corresponding to f
6ƒi7
åj

4 5.

Proof. We have

ƒlj4Œ
6ƒi74xij 51f

6ƒi7
åj

4xij55 ƒlj4Œ
6ƒi74xij51fj4xij550 (C.1)

This follows because setting 86ƒ¡lj4Œ
6ƒi74xij51 ’57=¡’k9 =

ƒŒ6ƒi74xijk5 + 86¡b4’57=¡’k9 = 0 and using the fact
86¡2b4’57=¡’T ¡’9 > 0, the foregoing equation implies that
ƒlj4Œ

6ƒi74xij51’5 achieves its unique minimum for 86¡b4’57=¡’k9 =

Œ6ƒi74xijk5; hence ’k = f
6ƒi7

åj
4xijk5. Therefore, for any fj ,

Iåj
4fj 1Z5 = ƒlj4Œ

6ƒi74xij51 fij 5ƒ
X

i1 6=i

lj4yi1j1 fi1j5 +
n

2
ªåj

4fj5

ƒlj4Œ
6ƒi74xij51f

6ƒi7
åj

4xij55

ƒ
X

i1 6=i

lj4yi1 j1 fi1 j5 +
n

2
ªåj

4fj5

ƒlj4Œ
6ƒi74xij51f

6ƒi7
åj

4xij55

ƒ
X

i1 6=i

lj4yi1 j1 f
6ƒi7

åj
4xi1j55+

n

2
ªåj

4f
6ƒi7

åj
5

The � rst inequality is due to (C.1); the second one is due to the fact
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With abuse of notation, let fj denote 4fijk11 i n11
k Kj5

T . Because 4fåj
1 Yj5 and 4f 6ƒi7

åj
1Y6ƒi7

j 5 are two local
minimizers of Iåj

4f 1 Z5, ¡Iåj
=¡fj is equal to 0 on those

two points. Thus, 4¡Iåj
=¡fj54fåj

1 Yj5 = 0, and 4¡Iåj
=¡fj5

4f 6ƒi7

åj
1 Y6ƒi7

j 5 = 00 It is also easy to verify that 4¡2Iåj
=¡fj¡fT

j 5 =

Wj4fj5 + nèåj
1 4¡2Iåj

=¡Yj ¡fT
j 5 = ƒI, where Wj4fj5 = diag4W1j1

W2j 1 : : : 1Wnj 5 is as de� ned earlier and èåj
is the positive semidef-

inite matrix satisfying ªåj
4fj 5 = fT

j èåj
fj .

Using a � rst order Taylor expansion, we have the equation
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where 4fj 1Yj 5 is a point somewhere between 4fåj
1Yj5 and

4f 6ƒi7

åj
1 Y6ƒi7

j 5. Equivalently, this is 4fåj
ƒ f 6ƒi7

åj
5 = 4Wj4fj 5 +

nèåj
5ƒ14Yj

ƒY6ƒi7
j 5. Approximate Wj 4fj 5 by Wj4fåj

5 and note that
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Figure 13. Estimated Probability of One Eye Developing Pigmentary Abnormalities Conditioning on the Other Eye Already Having This Disease
as a Function of Cholesterol by Three Levels of age and bmi; horm = no, drin = no.
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Denote Hj = 6Wj 4fåj
5 + nèåj

7ƒ1 , which is the inverse Hessian of
Iåj

4fj1Yj 5 with respect to fj evaluated at fåj
. Hj has the structure
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where Hj
ii is the Kj Kj submatrix on the diagonal. Hence we have
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Starting with the ordinary leave-out-one cross validation function
CV4åj5, we use the foregoing relation and several � rst order Taylor
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expansions in our derivation:
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Next, we need to show that the following relation is true. The � rst
approximation is due to a Taylor expansion for a function with
vector responses:
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Hence we have the following approximate relation, which we use to
de� ne the ACV function:
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Now de� ne Gj
ii = 4I ƒWijH

j
ii5. In a step reminiscent of that used to

get from leave-out-one cross validation to GCV in the Gaussian case,
we will obtain a generalized form of the ACV. There the diagonal
elements of certain matrix were replaced by 1=n times its trace. Here,
for any matrices Aii11 i n, Aii = ai1 k1k2 K K

11 k11 k2 K,
we de� ne the generalized average of Aii’s in (28). Because SA has a
very special structure, it is very easy to obtain the closed form of its
inverse,
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Hence we de� ne the GACV for a multivariate Bernoulli distribu-
tion as
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We remark that the above formula is reduced to (2.9) of Xiang and
Wahba (1996) when J = 1 and Kj = 1. In practice, we will iteratively
choose smoothing parameters in each block nonlinear SOR iteration
to minimize GACV.

When only person-speci�c covariates exist, following the notation
de� ned at the end of Section 3, we can rewrite the foregoing formula
to a simpler form, which has a similar form to the original GACV of
Xiang and Wahba (1996)

GACV4åj 5 =
1
n

nX

i=1

ƒyijfij + b4fij5

+
tr4Hj5=n

Pn
i=1 yij 4yij
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j HjW1=2

j 5
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However, by the new de� nition, yij =
PKj

k=1 yijk, and Wj is an esti-
mated covariance matrix for 4y1j1 : : : 1 ynj5

T .

APPENDIX D: BAYESIAN INFERENCE

To construct the approximate Bayesian “con� dence interval” for
fj , we let all other estimated values f` 4` 6= j5 and � � xed at their
estimated values. Theorem B.1 shows that the pseudo-data de� ned in
Section 3 have approximately the usual data structure. We use this
observation to construct the approximate Bayesian con� dence inter-
val. The following argument is a straightforward extension of work
of Lin et al. (1998) to multivariate observations. An approach simi-
lar to that taken by Silverman (1985) is adapted for the approximate
solution to the variational problem. In the case where all basis func-
tions are used to solve the variational problem, the Bayesian con� -
dence intervals are known from theoretical and simulation results to



146 Journal of the American Statistical Association, March 2001

have the across-the-function property; this means that the expected
number of the true points that will be covered by a 95% con� dence
interval is approximately 095n (see Wahba, et al. 1995, Sec. 4). The
arguments there apply to each fj here, if all other f` 4` 6= j5 and � ’s
are considered � xed. To the extent that the solutions computed from
an appropriate subset of the representers are a good approximation
to the exact solution, Bayesian con� dence intervals computed via the
same representers will be a good approximation to the exact con� -
dence intervals. Simulation results of Lin et al. (1998) demonstrate
that the Bayesian con� dence intervals so computed have this across-
the-function property.

First, we consider the Bayesian formulation of the variational
problem associated with correlated Gaussian observations. For � xed
smoothing parameter(s), we will identify the variational problem
with a Bayesian problem. Assume that there is only one end-
point. j = 1. On domain ¸ , yik = f14xik5 + …ik, i = 11 : : : 1 n, k =
11 : : : 1 K, where 4…i11 : : : 1 …iK5, i = 11 : : : 1 n are iid distributed
as N401 Wƒ1

i1 5, with Wi1 a known positive-de�nite matrix, W1 =
diag4W111W211 : : : 1Wn15. The approximate solution of f14 5 is a
combination of the selected basis functions

f14 5 = ”14 5T d1 + �1
V 4 5T c1

V 1 (D.1)

where ”14 5T and �1
V 4 5T are as in (19) on setting j = 1. Recall the

de� nition of Qj1V and Qj1V in (18). By assuming an improper prior
distribution on the coef� cient d1 and assuming a normal distribution
for c1

V , we let their log-density function take the form
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V 1d15

c
= ƒn‹

2
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V

T
Q11V c1

V 1 (D.2)

where the notation “
c
=” means “equals up to a constant.” Following

some standard Bayesian manipulation, the posterior log-likelihood
has the form
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Hence by minimizing the posterior negative log-likelihoodof 4c1
V 1d15

with this prior, we obtain exactly the same solution as solving the
variational problem in the approximating subspace.

From (D.3), 4c1
V 1d15 in fact has a proper posterior distribution as a

multivariate normal with mean 4Oc1
V 1 Od15 and covariance matrix Mƒ1,

where
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Hence the posterior distribution of f14 5 = ”14 5T d1 + �1
V 4 5T c1

V is as
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cov4f14x51f14x05—Y1‹5=4”14x5T �1
V 4x5T 5Mƒ1

0
@”14x05

�1
V 4x05

1
A0 (D.7)

For multivariate Bernoulli data, the block one-step SOR–Newton-
Ralphson algorithm iteratively reformulates the optimization problem
as a penalized weighted least squares problem (22). By dealing with
the pseudo-data, the approximate posterior variance of fj4 5 is at
hand. The con� dence intervals in Figure 12 are computed based on
the foregoing argument, whereas � is considered as � xed.

One of our future research areas is to construct con� dence interval
for � . It may be reasonable to extend this Bayesian argument to
calculate the posterior variance of � . More empirical evidence or
theoritical justi� cation is needed for taking this approach.

[Received July 1999. Revised March 2000.]
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Comment
T. W. Yee and C. J. Wild

Over the last two decades, much attention has been directed
toward the analysis of correlated data and the � eld of non-
parametric regression. The article is an important contribution
to the cross-fertilization of these two areas.

1. EXTENSIONS

Our main comment is that we believe the class of models
presented in the article can be extended in several important
directions beyond log-linear models for correlated binary data.
Wahba et al. (1995) gave a general framework for applying
SS-ANOVA to models in exponential families. Their method-
ology handled a univariate response, and it was shown that,
with � xed smoothing parameters, back� tting was an alter-
native method of solution. The present article extends SS-

T. W. Yee is Lecturer and C. J. Wild is Professor, Department of Statistics,
University of Auckland, New Zealand.

ANOVA to vector responses but only within a log-linear
binary data setting. We believe that the SS-ANOVA idea can
be further extended to a multivariate exponential family, or
at least something similar to the vector generalized additive
model (VGAM) class; see Section 2.

There are advantages in embedding the SS-ANOVA mod-
els in a larger class for which similar models fall out easily
as special cases; for example, log-linear models for correlated
Poisson counts and other methods for correlated binary data
discussed by Liang et al. (1992). A large framework facilitates
the construction of modular software and gives the data ana-
lyst a � exible but coherent modeling environment in which to
work with a large array of models. Generalized linear mod-
els (GLMs) are a prime example. Most of our suggestions for

© 2001 Journal of the American Statistical Association
Journal of the American Statistical Association

March 2001, Vol. 96, No. 453, Theory and Methods

http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/1369-7412^28^2954L.3
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/1369-7412^28^2954L.3
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0161-6420^28^29104L.1804[aid=1312943]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0161-6420^28^29104L.7[aid=1312944]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0161-6420^28^2999L.933[aid=1312945]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0090-5364^28^2928L.734[aid=1312946]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-341X^28^2952L.1121[aid=1312947]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0161-6420^28^29105L.789[aid=1312948]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0002-9394^28^29120L.190[aid=1312949]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0162-1459^28^2993L.341
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-341X^28^2952L.588[aid=1302176]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0162-1459^28^2990L.1432
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/1017-0405^28^296L.675[aid=860897]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-3444^28^2977L.642
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0161-6420^28^29104L.1804[aid=1312943]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0161-6420^28^2999L.933[aid=1312945]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0090-5364^28^2928L.734[aid=1312946]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-341X^28^2952L.1121[aid=1312947]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0162-1459^28^2990L.1432
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/1017-0405^28^296L.675[aid=860897]


148 Journal of the American Statistical Association, March 2001

generalizations concern using the authors’ SS-ANOVA ideas
to extend the VGAM class. We conclude this section with a
few suggestions that are not of that form.

One variant of SS-ANOVA is suggested by recent work of
T. W. Yee with T. Hastie. Consider the decomposition

‚0 +
RX

r=1

fr cT
r x +

X
r<s

frs cT
r x1 cT

s x + 0 (1)

Here R is much smaller than the number of predictors D,
and the cT

r x are like latent variables. These help overcome
the curse of dimensionality inherent in SS-ANOVA models
when D is large and there are interaction terms of degree 2
or higher. Even when D is only moderately large but there
are many interaction terms fk`, some reduction in the number
of parameters via (1) may be advantageous. We note that the
main effects of (1) are those of projection pursuit regression
and have been applied to models in the exponential family by
Rosen and Hastie (1993).

In recent years, some members of the local regression
school of smoothing have started using splines. There may
be bene� ts from members of the spline school also consid-
ering other smoothing methods—in particular, local regres-
sion methods (Fan and Gijbels 1996), which are also widely
applied. Moreover, much � exibility is gained when local scor-
ing and smoothing are separated in the estimation process
(cf. Sec. 2). Consideration might also be given to local likeli-
hood estimation (Loader 1999). This is certainly feasible with
only a single covariate, and the software described in Section 3
can be used to help compute such estimates.

2. VECTOR GENERALIZED LINEAR MODELS AND
VECTOR GENERALIZED ADDITIVE MODELS

VGAMs are a suf� ciently large class of models to accom-
modate many data types encountered in practice. There are
many points of contact between the theory of the article and
that of VGAMs. We originally de� ned the VGAM class as
any model for which the conditional distribution of y (which
may be multivariate) given x is of the form

f4y—x3 ‡5 = h4y1 ‡11 : : : 1 ‡M 51 (2)

where h4 5 is some known function and

‡j4x5 = ‚4j50 +
DX

k=1

f4j5kx4k5 (3)

are additive predictors. For example, if Y t�, then we may
want to model the (positive) degrees of freedom � in terms of
covariates using ‡4x5 = log�4x5. When the component func-
tions f4j5k are constrained to be linear, the result is a vector
generalized linear model (VGLM), with ‡j = ‚T

j x, say. These
are a superset of the GLM class.

If the contribution to the log-likelihood of the ith “indi-
vidual” or cluster `i is strictly concave in each ‡j , then one
can apply Newton-Raphson or Fisher scoring to maximize the
log-likelihood ` =

P
`i . For the VGAM class, this results in

iteratively reweighted least squares (IRLS). In particular, the
adjusted dependent vectors

zi = ‡i + Wƒ1
i 4¡`i=¡‡5 (4)

are regressed on the xi at each iteration. (In fact, the likelihood
need not even be speci� ed; e.g., generalized estimating equa-
tion modeling, Wild and Yee 1996). A huge advantage of esti-
mating VGAMs by separating the local scoring and smoothing
procedures, (e.g., by back� tting) is that one can easily make
extensions. Some examples follow.

Example 1: Reduced-Rank Vector Generalized Linear Mod-
els. Yee and Hastie (2000) proposed the class of reduced-
rank VGLMs (RR-VGLMs) where the matrix 4‚11 : : : 1‚M 5

is approximated by a lower-rank matrix via the product of two
low-rank matrices (A and C, say). RR-VGAMs can be esti-
mated by minimizing over ‡0, A, and C the quantity

nX

i=1

8zi
ƒ ‡0

ƒ ACT xi9
T Wi8zi

ƒ ‡0
ƒ ACT xi9

at each local scoring algorithm. Certain independently pro-
posed statistical models have been identi� ed as belonging to
the RR-VGLM subclass.

Example 2: Vector Local Regression. Welsh and Yee
(2000) proposed local regression estimators for vector
responses and derived some of their asymptotic properties.
The practical outcome of this is that it could allow one to use
LOESS-type code as a smoothing option for � tting VGAMs.

Example 3: Vector Generalized Analysis of Multivariate
Models. Prompted by the article, we now see that it would
be useful to extend the VGAM class to allow ANOVA-type
terms. That is, for j = 11 : : : 1M ,

‡j4x5 = ‚4j50 +
X

k

f4j5k4xk5 +
X

k<`

f4j5k`4xk1 x`5 + 0 (5)

This could be likened to functional MANOVA applied
to regression models outside the exponential family. We
could call this class vector generalized MANOVA models
(VGMMs). Estimation of VGMMs would simply involve � t-
ting a MANOVA model to the zi against xi with weights

Wi = ƒ ¡2`i

¡‡¡‡T

[or E4Wi5] at each local scoring iteration. For M = 1, the
interaction terms could be estimated by thin-plate splines
(Wahba 1990), and because of the separation between local
scoring and back� tting, other multivariate smoothers such as
the bivariate local linear regression estimator (Fan and Gijbels
1996, sec. 7.8; Ruppert and Wand 1994) could be used. For
M > 1, vector versions of these could be proposed. One advan-
tage of splines over other smoothers, however, is the justi� -
cation by penalized likelihood. Indeed, VGAMs using vector
splines can be justi� ed by this means (Yee and Wild 1994);
the derivation is a natural extension to section 6.5.2 of Hastie
and Tibshirani (1990). VGAMs estimated in this way result
in an exact, rather than approximate, solution to a penalized
likelihood problem.
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It can be noted that the vector linear model (VLM) is the
central model behind VGLMs and VGAMs. The crux of the
algorithm is to minimize the quantity.

nX

i=1

zi
ƒ

DX

k=1

Bk‚kxik

T

Wi zi
ƒ

DX

k=1

Bk‚kxik 1

where the Bk are known constraint matrices of full column
rank. With no constraints 4Bk = IM 5, that is equivalent to � t-
ting the model

zi =

0
B@

xT
i ‚1
000

xT
i ‚M

1
CA+ ˜i1 ˜i 401 Wƒ1

i 51 i = 11 : : : 1 n0

When D = 1, the nonparametric extension has the properties
described in Appendix B of the article.

The authors are to be commended for tackling the prob-
lem of automatic selection of smoothing parameters. Having
good automatic data-based selection of smoothing parameters
available is clearly superior to needing to rely on � xed val-
ues (although automatic selections cannot always be trusted,
even in much simpler problems). In our work we have consid-
ered only the � xed case (by assigning some effective degrees
of freedom to each component function). The reason for this
is that the problem of smoothing parameter selection is very
dif� cult for general multivariate responses and predictors. We
would dearly love the authors to apply their theory and some
of their analytical � repower to VGAMs! Fixed smoothing
parameters are often adequate for exploratory data analysis
where we typically want to try out a large number of can-
didate models. In such situations, it is important that each
set of estimates be obtained promptly, so we must sacri� ce
some quality of estimation for speed. When optimally choos-
ing about seven smoothing parameters, Wahba et al. (1995)
found that n = 800 was about the size limit of datasets that
could be handled when � tting certain SS-ANOVA models on
a fast workstation (and taking up to 8 hours).

One advantage of VGAMs is the availability of residuals
for diagnostics. For example, the working residuals

rW
i = W ƒ1

i 4¡`i¡=‡5

and the Pearson residuals

rP
i = W 1=2

i rW
i = W

ƒ1=2
i 4¡`i=¡‡5

are always de� ned for the VGAM class.

2.1 Constraints on the Functions

In the � rst experiment of Section 5.1 of the article, the
same smoothing function is used for both k = 112; that is,
fk4xik5 f 4xik5. Here xik could be the ocular pressure of the
kth eye of the ith person, for example. Before we wrote this
comment, our description of VGAMs had not allowed the
same smooth to be applied in different ‡js to variables xik

that varied within an individual. Variables that were constant
within an individual could be constrained to have the same

effect for different ‡j’s in a straightforward way using lin-
ear constraints (Yee and Wild 1996). It is easy to handle the
extension in the parametric case; we now do so for the non-
parametric case.

2.2 Solving the f(xik ) Smoothing Problem

Suppose that we wish to � t

yik = f4xik5 + ˜ik1 ˜i 401W ƒ1
i 5 independently1 (6)

with splines, i = 11 : : : 1 n1 k = 11 : : : 1M . We can do so by
minimizing

nX

i=1

0
B@yi

ƒ

0
B@

f 4xi15
000

f 4xiM 5

1
CA

1
CA

T

W i

0
B@yi

ƒ

0
B@

f 4xi15
000

f 4xiM 5

1
CA

1
CA

+ ‹
Z b

a

8f 004x592dx (7)

for some a and b, where ‹ is a nonnegative smoothing param-
eter. Write

f 4x5 =
n + 2X

j=1

ˆjBj4x51

where n + 6 is the number of knots, ˆj are B-spline coef-
� cients, and Bj4x5 are B-spline basis functions. De� ning the
nM 4n + 25 matrix B = 4BT

1 1 : : : 1BT
n 5T and the 4n + 25

4n + 25 penalty matrix ì by

4Bi5kj = Bj4xik5

and

4ìjk5 =
Z b

a

B00
j 4x5B00

k 4x5dx1

we can rewrite the objective function (7) as

4yƒ B ˆ5T W 4y ƒ B ˆ5 + ‹ˆT ìˆ1 (8)

where y = 4yT
1 1 : : : 1yT

n 5T and W = diag4W 11 : : : 1W n5. The
penalty matrix ì is symmetric and has a half-bandwidth of 4.

Setting the derivative of (8) with respect to ˆ to 0 gives the
solution

BT WB + ‹ì Ô = BT Wy0 (9)

The matrix BT WB + ì is symmetric but is not generally
banded for this problem. One can solve (9) by Cholesky
decomposition in O4n 35 operations.

The smoothing problem (6) can also be solved by local
regression methods—(see Welsh and Yee 2000). Neither solu-
tion has yet been implemented in software.

3. SOFTWARE

Software implementing methods as complex as those in the
article are dif� cult and time-consuming to write. We hope that



150 Journal of the American Statistical Association, March 2001

the authors will soon be able to make their software avail-
able to interested users. T. W. Yee has almost completed writ-
ing an S-PLUS/R library for � tting VGAMs, called VGAM.
Currently available freely at http://www.stat.auckland.ac.nz/

yee.VGAM already � ts a very wide range of models, includ-
ing some of those described in the article. The primary func-
tion vgam() can be thought of as a generalization of the gam()
function for generalized additive models. Family functions
called loglinb2() and loglinb3() have been written for bivari-
ate/trivariate binary responses. We restrict our discussion here
to loglinb2().

We have

logP4Y1 = y11 Y2 = y2—x5

= u04x5 + u14x5y1 + u24x5y2 + u124x5y1y2

as the log-linear model. We can � t this as a VGAM by speci-
fying 0

@
u14x5
u24x5
u124x5

1
A = ‡4x5 =

0
@

‡14x5
‡24x5
‡34x5

1
A 1

where the ‡j are additive predictors (3).
As an example, if ymatrix is a n 2 matrix of 1’s and 0’s then

fit < ƒvgam(ymatrix~s(x, df=c(4,2)),

loglinb2(exchangeable=T))

would � t

logP4Y1 = y11 Y2 = y2—x5

= u04x5 + u14x5y1 + u24x5y2 + u124x5y1y21

subject to u1 = u2, using vector (smoothing) splines. VGAM
implements a newly developed algorithm using B-splines as
the basis functions. Here u1 and u12 are assigned 4 and
2 degrees of freedom (1= linear � t). A number of meth-
ods functions support objects of class “vgam”; for example
fitted(fit) returns the n 4 matrix of joint probabilities,
and resid(fit, ``working’’) returns the working residuals.

In the article, the authors � t (37) to the BDES data as their
� nal model. It would be interesting to replace the term f12

(sys, chol) by f12(sys * chol) (i.e., a nonparametric function
of their product) and � t the model with VGAM.

3.1 Computational Details

Suppose generally that the data are 4yi11 : : : 1 yiS 1 xi51 i =
11 : : : 1 n1 where each yj is a binary response. For their log-
linear model, the authors force ujkl 0 and similarly for other
higher-order associations. We follow suit. Such assumptions
are often necessary because unless the data contain all � tted
combinations, the estimates become unbounded. Furthermore,
higher-order associations become increasingly more dif� cult
to interpret.

Consequently, we � t the log-linear model

logP4Y1 = y11 : : : 1 YS = yS
—x5

= u04x5 +
SX

j=1

uj4x5yj +
X

j<k

ujk4x5yjyk0

The normalizing parameter u0 satis� es

eƒu0 =1+
SX

j=1

euj +
X

j<k

euj + uk+ ujk +
X

j<k<`

euj + uk+ u`+ ujk + uj`+ uk`+

+ exp
SX

j=1

uj +
X

j<k

ujk 0

One has ‡ = 4‡11 : : : 1 ‡M 5T = 4u11 : : : 1 uS 1 u121 : : : 1

uSƒ11 S5T , where M = S4S + 15=2. (An identity link for
each of the u’s is chosen because the parameter space
is unconstrained). Then ¡`i=¡‡ = ¡u0i=¡‡ + 4yi11 : : : 1 yiS 1

yi1yi21 : : : 1 yi1 Sƒ1yiS5T .
In the following formulas, a1 b1 c, and d are distinct indices

of 811 : : : 1 S9. It may be veri� ed that
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http://www.stat.auckland.ac.nz/%7Eyee
http://www.stat.auckland.ac.nz/%7Eyee
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where

¡Ab

¡ua

= eua+ ub+ uab

+
SX

j=11 j 6=a1 j 6=b

euj + ua+ ub+ uab+ uaj + ubj

+ + exp
SX

j=1

uj +
X

j<k

ujk 1

¡Abc

¡ua

= eua+ ub+ uc + uab+ uac+ ubc

+ + exp
SX

j=1

uj +
X

j<k

ujk 1

¡Aac

¡uab

= eua+ ub+ uc + uab+ uac+ ubc

+ + exp
SX

j=1

uj +
X

j<k

ujk 1

and

¡Acd

¡uab

= eua+ ub+ uc + ud + uab+ uac + uad+ ubc + ubd + ucd

+ + exp
SX

j=1

uj +
X

j<k

ujk 0

Thus Newton-Raphson coincides with Fisher scoring. When
estimating VGAMs, modi� ed back� tting (Hastie and Tibshi-
rani 1990) is used. Cholesky decomposition is used to invert

the Wi and the QR method is used to solve for the linear parts
of the component functions.

For S = 2, the information matrix simpli� es to

Wi = e2u0

0

@
41+ eu2 54eu1 + eu1+ u2+ u12 5

eu1+ u2+ u12 ƒ eu1 + u2

41+ eu2 5eu1 + u2 + u12

eu1 + u2 + u12 ƒeu1 + u2 41+ eu2 5eu1+ u2+ u12

41+ eu1 54eu2 + eu1 + u2 + u12 5 41+ eu1 5eu1+ u2+ u12

41+ eu1 5eu1 + u2 + u12 41+ eu1 + eu2 5eu1 + u2 + u12

1
A

Although the iterative proportional � tting procedure (IPFP;
Bishop et al. 1975) is the usual algorithm for log-linear mod-
els, our limited experience has indicated that IRLS works well.
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Comment
Sally Wood

This article presents an innovative and practical solution to
the problem of modeling and nonparametrically estimating the
conditional probability of two correlated binary outcomes. The
work is an excellent blend of innovative methodology and a
great application, and I congratulate the authors on making
such a signi� cant contribution to the literature.

In this discussion I present an alternative Bayesian approach
to modeling the probability of correlated Bernoulli outcomes,
and I compare this approach to that presented in the article.
My approach is based on work by Albert and Chib (1993),
who introduced latent variables to turn the correlated binary
regression problem into a correlated Gaussian regression prob-
lem. Speci� cally, de� ne the latent variables wi = 4wi11 wi25 as

w1i = g14xi5 + ei1

and
w2i = g24xi5 + ei21

where ei = 4e1i1 e2i5 N401è5 and

è =
1 �
� 1

Sally Wood is a visiting Assistant Professor, Department of Statistics,
Northwestern University, 2006 Sheridan Road, Evanston, IL 60208.

To specify the prior on gj , write gj as

gj 4x5 = �0 + �1x + fj4x5 (1)

and place the smoothing spline prior from Wahba (1978) on
the function f1 and f2. To complete the prior speci� cation on
the functions gj , � at priors are assumed for � j = 4�j01� j15

0

and ’2
j . The prior on the correlation coef� cient � is p4�5

U 6ƒ1117.
To estimate the bivariate probabilities P4y1i = 11 y2i = 1—X5,

place the following constraints on the latent variables:

w1i > 0 if y1i = 1

< 0 if y1i = 0

and
w2i > 0 if y2i = 1

< 0 if y2i = 00
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Figure 1. Histogram of the Estimated Value, O� for the 100 Realiza-
tions When P y1i = 1 bvX = ê f1 x i and f1 x i = 2 exp 30 x1i

25 2sin � x2
1i 2.

This speci� cation leads to the following probabilities:

P4y1i = 1—X5 = P4w1i > 0—X5

= ê8f14xi591

P4y2i = 1—X5 = P4w2i > 0—X5

= ê8f24xi591

and
P4y2i = 11 y1i = 1—X5 = P4w1i > 01w2i > 0—X51 (2)

where ê is the standard normal cdf. One drawback of this
model is that the joint probability P4y1i1 y2i5 does not have
a closed-form expression. However, obtaining these probabil-
ities is straightforward either by numerical integration or by
simulation. In this model, � is a measure of the dependence
between y1i and y2i . If � = 0, then y1i and y2i are independent;
if � = 1 and we know y1i , then we also know y2i . The cor-
relation coef� cient � is analogous to the authors’ measure of
pairwise association which is the log-odds ratio, however, it is
not directly comparable to this parameter. For example, in the
logistic regression model, the log odds ratio is constant over
the domain for x, whereas in the model given by (2), the log
odds ratio varies over x.

As before, the problem is now to estimate f14x5 and f24x5

nonparametrically. This can be done by using the method out-
lined by Wood and Kohn (1998), with a few minor modi-
� cations. In that article, the functions f14x5 and f24x5 were
estimated by their posterior means using Monte Carlo simu-
lation to integrate out the smoothing parameters, ’2

1 and ’2
2 .

This involves obtaining draws of ’2
1 and ’2

2 from their poste-
rior distributions. The method outlined here uses the same idea
with the additional step of drawing the correlation coef� cient
� from its posterior distribution. This is done by performing
the following transformation. De� ne fj = 4fj4x151 : : : 1 fj4xn55

for j = 11 2; w = 4w11w25, where wj = 4wj11 : : : 1wjn5; y =
4y11 y25, where yj = 4yj11 : : : 1 yj15; and zi = 411 xi5. Let
è = var4ei5 have the Cholesky decomposition LDL0, where

L =
1 0
� 1

Figure 2. True and Estimated Probability ê f1 x1i for the 5th(a), 50th(b), and 95th(c) Best Fits, Where f1 x i = 2 exp 3 x1i 25 2

si n � x2
1i 2..
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Figure 3. Histogram of the Estimated Value, O�, for the 100 Real-
izations Where f1 x i =10cos 2x i 7ex2

i 16 and f2 x i =2cos 5x i

1 4 x2
i .

and

D =
1 0
0 1ƒ �2 1

and let

wi = Lƒ1wi1

fi = Lƒ1fi1

� = Lƒ1� 1

and
ei = Lƒ1ei0

Draws from the posterior distribution of the parameters of
interest are obtained using the following sampling scheme:

GIBBS SAMPLER

0. Initialize f11 f2 and �11� 2 as f 607

1 = 01 f 607

2 = 0 and �
607

1 =
0, �

607

2 = 0 and draw �607 from U6ƒ1117.

Figure 4. The 5th, 50th, and 95th Best Fits for True and Estimated Probabilities ê f1 x i [(a), (b), and (c)] and ê f2 x i [(d), (e), and (f)],
Where f1 x i = 10 cos 2x i 7ex2

i 16 and f2 x i = 2 cos 5x i 1 4 x2
i .
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Figure 5. True and Estimated Probabilities P y1 = 1 y2 = 1—x (a), P y1 = 1 y2 = 0—x (b), and P y1 = 0 y2 = 1—x (c).

1. Draw w1 from p4w1
—w21 f11 f21� 21� 11 y11y21�5 = p4w1

—
w21 f1� 11 �11y11 f21 �5 and p4w1—f11� 11 �21 w21 y11 f21�5 =Qn

i=1 p4w1i
—w2i1 f24xi51 f14xi51� 11 �21 y1i1 �5. Generate w1i

from a normal distribution with mean f14xi5 + zi� 1 + �4y2i
ƒ

f24xi5 ƒ zi� 25 and variance 1ƒ �2. If

y1i = 11 then constrain w1i to be positive; if

y1i = 01 then constrain w1i to be negative0

Similarly, generate w2i from a normal distribution with mean
f24xi5 + zi� 2 + �4y1i

ƒ f14xi5 ƒ zi�15 and variance 1 ƒ �2. If

y2i = 11 then constrain w2i to be positive; if

y2i = 01 then constrain w2i to be negative0

Calculate wi = Lƒ1wi , where wi = 4w1i1 w2i5
0.

2. Generate �11� 21 f2 , and f1 as a block from p4f1 1 f2 ,
� 21 � 1

—w 1 ’2
1 1 ’ 2

2 1�5 = p4f1 1� 1
—w11 ’ 2

1 5p4f2 1� 2
—w21 ’ 2

2 1�5 by
generating � j from p4� j

—wj 1 ’ 2
j 1 �5 and then generating

fj from p4fj
—wj 1 ’21� j 1 �5, conditional on the generated

value of � j , for j = 112. Calculate fi = Lfi , where fi =
4f14xi51 f24xi55

0.

3. Generate ’2
1 and ’ 2

2 from p4’2
2 1 ’2

1
—f1 1 f2 5 = p4’2

2
—f2 5

p4’2
1
—f1 5. The conditional density p4’2

j
—fj 5 / p4fj

—’ 2
j 5p4’2

j 5
and is inverse gamma.

4. Generate �2 in the following manner. Let � = 1 ƒ �2,
then p4�—w11w21� 11� 21 f1 1 f2 5 = p4�—w21 f2 1� 25 / p4w2

—�,
f2 1� 25p4�5 and is the inverse gamma 4u1 v5 with parameters
u = 4n ƒ 15=2 and v = 05

Pn
i=14w2i

ƒ f2i
ƒ �2zi 52 and con-

strained to be less than 1. Then �2 = 1ƒ�, and the sign of � is
given by the sign of Qw0

11 Qw0
2, where Qwj = wj

ƒ fj
ƒ z� j . Alter-

natively, � can be drawn directly using a Metropolis–Hastings
step.

This procedure was tested using the � rst simulated exam-
ple in the article where there is only one observation-speci�c
covariate, Xki 4k = 1125, and X1i is uniformly distributed on
the interval [0,1] and X2i = X1i + …i3 …i U 6ƒ0051 0057. The
regression function used to generate the observations in this
example is

fj4xji5 = 26exp ƒ304xji
ƒ 02552 + sin4� x2

ji57ƒ 20

These fj’s 4j = 1125 were used for f1 and f2 in (2). One
hundred realizations, each containing 250 pairs of correlated
Bernoulli observations, were generated from the model given



Aerts and Molenbergh: Comment 155

by (2), with � set to .6. Following Wood and Kohn, the criteria
used to measure performance is the ISKL distance. Figure 1 is
a histogram of the estimated correlation coef� cient � for the
100 realizations. The � gure shows that the estimates of O� are
very close to the true value of .6. To test whether this tech-
nique is recovering the regression functions, Figure 2 plots the
5th, 50th, and 95th best � ts for the probability P4y1i = 1—X5.
Note that given the probabilities P4y1

—X51P4y2
—X5, and �, it

is straightforward to obtain P4y1—X1 y25. These compare favor-
ably with the � ts produced by the authors in their Figure 2.
The plots suggest that the estimates obtained via the Bayesian
method are less variable than those obtained by the authors.
One possible explanation for this is that in the article, GACV
is used to select the smoothing parameters, and estimates of
the regression function given this smoothing parameter are cal-
culated. When the choice of the smoothing parameter is good,
the procedure produces excellent curve estimates; however,
when a poor smoothing parameter is chosen, the curve esti-
mate is correspondingly poor. The Bayesian technique avoids
choosing a speci� c smoothing parameter by averaging the
curve over a number of smoothing parameters drawn from
their posterior distributions. Hence there is less variability in
the curve estimates.

A second set of simulations were run when there were dif-
ferent endpoints of interest. Again, the functions used for gen-

erating the data were those in the used in the article. These
functions are

f14xi5 = 10 cos42xi5 + 7ex2
i ƒ 16

and
f24xi5 = 2 cos45xi + 1045 + x2

i

The true correlation co-ef� cient, � is set to be 0.8 in this
simulation. Figure 3 is a histogram of the estimates O�. As in
the single endpoint case, the data are tightly centered around
the true value of .8. Figure 4 plots the true and estimated
probabilities ê8f14x59 and ê8f24x59 for the 5th, 50th, and
95th best estimates. These estimates compare favorably to
the results in the authors Figure 9. Figure 5 shows the true
and estimated joint probabilities probabilities P4y1i = 11 y2i =
1—X5, P4y1i = 11 y2i = 0—X5, and P4y1i = 01 y2i = 1—X5 for the
5th best � t. This � gure shows that, given the marginal distri-
butions P4y15 and P4y25 and the correlation coef� cient �, it is
straightforward to calculate the joint and hence the conditional
distributions of y1 and y2.

A more rigorous test of the robustness of both techniques
would be to generate data from a model different from that
used for estimation and then compare the performance of the
two models.

Again, I thank the authors for their contribution and wel-
come their thoughts on the present Bayesian approach.

Comment
Marc Aerts and Geert Molenberghs

The authors make a serious effort to present a comprehen-
sive modeling strategy for multivariate binary observations.
All details, both technical and computational, are worked out
in detail. They are to be congratulated for this.

Much work has been done in the area of repeated and/or
multivariate binary observations. The authors acknowledge
only part of this work. For example, an important review was
provided by Pendergast et al. (1996).

Cox (1972) provided a multivariate log-linear type model
that has formed the basis for many modeling strategies, includ-
ing the one proposed by the auhtors. Similar models were pro-
posed by Rosner (1984) and Liang and Zeger (1989). Because
it falls within the class of (multivariate) exponential fam-
ily models, it enjoys all of that class’s desirable mathemat-
ical and statistical properties. However, it has some serious
drawbacks (Liang et al. 1992). The parameters have a condi-
tional interpretation, and the models are not upward compati-
ble. This means that they cannot adequately handle sequences
of unequal length. One must be careful with a 0/1 coding
in the event that sequences are of unequal length (Cox and
Wermuth 1996), and calculation of the normalizing constant

Marc Aerts and Geert Molenberghs are Professors of Statistics, Center for
Statistics, Limburgs Universitair Centrum, B-3590 Diepenbeck, Belgium.

can be formidable for long sequences. Further, the research
questions at hand often beg a marginal answer. Precisely such
a log-linear representation has been chosen by the authors as
the basis for their modeling strategy, but we believe that a
fully marginal model or a random-effects representation may
be of greater value.

Important early models of the marginal type are the
beta-binomial model (Kleinman 1973; Skellman 1948), the
Bahadur model (Bahadur 1961; Cox 1972), and the pro-
bit model (Ashford and Sowden 1970). The beta-binomial
model has had some success in various applications, whereas
the Bahadur model, because of a very restrictive parame-
ter space, has seen few applications (Declerck, Aerts, and
Molenberghs 1998). The probit model is very popular in
econometric applications but has also seen some sucess in
biometry in various forms (Lesaffre and Molenberghs 1991;
Ochi and Prentice 1984). Recently, more work has been done
in this same area. A few attempts have been made to pro-
duce marginal models that combine logistic regressions for
the margins with odds ratios to describe the associations
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and several variations thereof (Glonek and McCullagh 1995;
Lang and Agresti 1994; Molenberghs and Lesaffre 1994).
(A review and uni� cation of several model was given
by Molenberghs and Lesaffre 1999.) When full likelihood
methods are deemed cumbersome, GEE-based alterna-
tives, or pseudolikelihood models (Geys, Molenberghs, and
Ryan 1999), can be considered. Random-effects approaches
have been studied by Stiratelli, Laird, and Ware (1984), Zeger,
Liang, and Albert (1988), Breslow and Clayton (1993), and
Wol� nger and O’Connell (1993). A � exible random-effects
model was given by Hedeker and Gibbons (1994, 1996).
Heagerty (1999) constructed a model that combines the advan-
tages of a marginal speci� cation and the � exibility of random
effects. A thorough account of many methods was given by
Fahrmeir and Tutz (1994).

Having selected a model for the (clustered) binary response
data and an appropriate estimation method, it is important to
allow � exible functional forms to describe the dependence of
parameters like the

(conditional) probability parameter as a function of predic-
tor variables like age. Different smoothing techniques can be
used for these purposes. The authors mention some related
work based on smoothing splines. An interesting alternative
that received much of attention is local polynomial estimation
(Fan and Gijbels 1996). Aerts and Claeskens (1997) studied
local polynomial estimators in multiparameter likelihood mod-
els, illustrated on multivariate binary response data. In further
work, Claeskens and Aerts (2000a, b) examined using a boot-
strap method to construct con� dence bands and some back-
� tting algorithms for additive models. Carroll, Ruppert, and
Welsh (1998) proposed local versions of GEEs. A comparison
starting from the multivariate log-linear type model between
both smoothing methods using the Beaver Dam Eye Study
would be very interesting. Of course, both methods must deal
with delicate issues, such as adaptive choice of the smoothing
parameter and the curse of dimensionality. Whatever method
chosen, the access to � exible models revealing interesting non-
linear relationships must be gained by computational com-
plexity. In many cases, analyzing complex multivariate data
necessitates making some minimal assumptions to simplify
and make the method feasible. Nonparametric methods are
only partly able to � ll the gap between restrictive and in prin-
ciple incorrect parametric models and the “truth.” As an illus-
tration, consider the author’s ophthalmology application. They
simplify the general model and its associated likelihood (8) by
assuming a constant pairwise association �. In clusters larger
than 2, it is also often assumed that all higher-order associ-
ation are 0. It is hard to predict the effect of misspecifying
such particular aspects. Forcing the association to be constant
might affect the estimation of the other parameters and result
in misleading smooth curves. Related to that, Aerts, Claeskens,
and Hart (1999) indicated, for a similar kind of application—
macular edema for younger onset diabetic persons (see Klein
et al. 1984)—the necessity of modeling the intraperson cor-
relation as a nonconstant function of systolic blood pressure
(at least in a model only containing blood pressure as pre-
dictor variable). They developed a formal lack-of-� t test in
a general likelihood-based framework using orthogonal series
estimators and modi� cations of the Akaike information crite-
rion. As the authors mention in their conclusion, their method

can also be generalized to get a nonparametric estimate for
the association term, which also could be used as a diagnostic
tool for checking constant association. Finally, next to other
smoothing methods (e.g., penalized splines, series estimators),
another useful approach are so-called fractional polynomials
(Royston and Altman 1994; Sauerbrei and Royston 1999).

The authors state that an adequate � t is necessary to “under-
stand the cause of certain outcomes.” This is somewhat mis-
leading because even though a badly � tting model will not
enhance such understanding, causality requires much deeper
re� ection than merely a good � t. Indeed, causation goes well
beyond correlation.

Equations (35) and (36) clearly show the counterintuitive
nature of a conditional speci� cation. Indeed, it would be much
more natural to just specify the marginal logits for each eyes
separately.
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Comment
Joe Whittaker

First, I congratulate the authors for a stimulating article.
I wish to illustrate the structure of the independence graph
associated with certain discrete approximations to the SS-
ANOVA models considered here. The underlying theory of
graphical models was considered by Lauritzen (1996), and
we use similar ideas for representation as did Spiegelhalter
(1998). Hoped-for bene� ts include increased insight where the
direct visualization may suggest common patterns in rather
disparate models, which in turn may suggest borrowing algo-
rithms from one research area and applying them to another.

Rather than tackle the authors’ general models here, I give a
possible graph that relates speci� cally to the model suggested
by the authors for the Beaver Eye Dam study. They consider
the distribution of two binary variables Y = 4Y11 Y25, indicat-
ing pigment abnormalities in the left and right eyes, condi-
tionally on the values of six covariates X = 4X11 X21 : : : 1X65.
The model for a generic individual i is speci� ed by

logp y1i1 y2i
—xi = f4xi56y1i + y2i7+ �y1iy2i + bi1 (1)

where the main effect f is a smooth function of the covariates
and the pairwise interaction parameter � is constant, although
potentially also a function of the covariates, and bi is a nor-
malizing constant depending on the values of f4xi5 and �.

The argument for identical main effects is symmetry
between the eyes.

The generic independence graph of (1) for the random vari-
ables is the chain graph

Joe Whittaker is Senior Lecturer, Department of Mathematics and Statis-
tics, Lancaster University, Lancaster, LA14YF, U.K. (E-mail: joe.whittaker@
lancaster.ac.uk).

in which the edge between the two response variables is undi-
rected. Time series models might have a mixture of directed
and undirected edges in this part of the model.

The parameters and the sampled individuals may be repre-
sented within the same graph. By supposing that the param-
eter � has a prior distribution [proper, but diffuse; e.g.,

� N(01 ‹ƒ1
� ) where ‹� is small] leads to the graph

in which the rectangular dashed box indexed by i denotes the
replication of the diagram for each sample individual and,
consequently, the independence of the random variables Yi

conditioned on the parameter �. The separate elements of Yi

have
been suppressed for clarity. The graph indicates that Xi and �

are independent when Yi is unobserved.
The covariates affect Y only through f , which can be made

explicit by using a logical link

© 2001 Journal of the American Statistical Association
Journal of the American Statistical Association

March 2001, Vol. 96, No. 453, Theory and Methods

http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/1369-7412^28^2910L.257
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/1369-7412^28^2910L.257
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0964-1998^28^29162L.71[aid=1312967]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0964-1998^28^29162L.71[aid=1312967]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0277-6715^28^2910L.1391[aid=1312962]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0162-1459^28^2984L.447
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0162-1459^28^2989L.633[aid=1312964]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0277-6715^28^2918L.2237[aid=1312965]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-3444^28^2971L.531[aid=365937]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0306-7734^28^2964L.89
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-341X^28^2940L.1025[aid=1312966]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0035-9254^28^2943L.429[aid=78667]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-341X^28^2940L.961[aid=20397]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0094-9655^28^2948L.233[aid=366272]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-341X^28^2944L.1049[aid=73612]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0277-6715^28^2910L.1391[aid=1312962]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0162-1459^28^2984L.447
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0162-1459^28^2989L.633[aid=1312964]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-341X^28^2940L.961[aid=20397]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0094-9655^28^2948L.233[aid=366272]
http://www.asa.catchword.org/rpsv/cgi-bin/linker?ext=a&reqidx=/0006-341X^28^2944L.1049[aid=73612]


158 Journal of the American Statistical Association, March 2001

The independence graph requires a full distribution for the
unknown parameters, as well as for the observables, so we
interpret the penalty term in the penalized likelihood as a
Bayesian prior. Representing the model when f is unknown
by a � nite number of random variables necessitates a measure
of approximation.

Consider a continous covariate x, say. At � rst pass, one
might divide the range into R + 1 intervals with center points
xr with r = 01 11 : : : 1 R. If R is suf� ciently large, then the
continuity of f implies that fr = f 4xr 5 and fr+ 1 = f 4xr+ 15

are close. A stochastic model for this is that the increments
are independent Gaussian random variables so that 8fr 9 is a
realization of a random walk in discrete time. The term in the
prior is proportional to

exp ƒ 1

2
‹f

Rƒ1X

r=0

4fr+ 1
ƒ fr 5

2 ƒ 1

2
‹0f

2
0 0

The graph to represent this now includes the Markov chain

where R = 3 for clarity and gi is the value of the function that
delivers fr if Xi is nearest xr and the node in the graph gives
a deterministic outcome.

The sample paths of the random walk are not differentiable.
As the standard penalty for cubic splines is based on second
derivates, the natural discrete time approximation is the inte-
grated random walk

fr+ 1 ƒ fr = vr

and

vr+ 1 ƒ vr N 01‹ƒ1
v 1

which has independent second forward differences. The graph
of the Markov chain is replaced by the graph

This is an instance of a graph of a hidden Markov model
(see, e.g., MacDonald and Zucchini 1997). The graph suggests
that intermediate state-space models, such as the smoothed
integrated random walk, may also be of interest, and also high-
lights that the algorithmic procedures associated with state-
space models, such as Kalman � ltering or recursive � xed inter-
val smoothing, can be applied when the covariates are delib-
erately ordered.

The Markov chain graph of the one-dimensional random
walk is Markov equivalent to the undirected Gibbs chain
where each of the arrows are replaced by undirected edges.
Presumably the graph of the two-dimensional smoother,
f 4x11 x25, that corresponds to this is the Markov random � eld,
illustrated here by
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Rejoinder
Fangyu Gao, Grace Wahba, Ronald Klein, and Barbara Klein

We heartily thank all of the discussants for their interesting
comments.

1. YEE AND WILD: EXTENSIONS
AND COMPUTATION

We believe that the current model can be extended in
numerous ways. We thank Yee and Wild for providing some
excellent examples of possible extensions for the modeling of

vectors of smooth functions. These extensions and variations
will form a rich family of models. As Yee and Wild mention,
one advantage of the SS-ANOVA setup is to provide a uni-
� ed theoretical framework. Under this framework, we pose a
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variational problem and solve it. By separating the � tting pro-
cedure into natural “blocks,” these models enjoy the property
of easy extension.

Nonparametric function estimation always needs more com-
puting power. The good news is that advances in computer
speed and memory made it possible to perform tasks once
thought impossible. On the other hand, the birth of the inter-
net and advances in database technology have provided an
explosion of data waiting to be analyzed. We imagine two
research areas that might be interesting for statisticians in
the future. The � rst is parallel computing algorithms. Instead
of waiting for the � rst step to be completed before starting
the second step, several tasks can be executed at the same
time on different CPUs. We believe that the block SOR algo-
rithm or back� tting (which could be viewed as a special case
of block SOR) can be modi� ed to serve as a general build-
ing block for this purpose. The second area is on-line real
time model updating. When new data come in sequentially,
a fast and ef� cient updating algorithm could be valuable.
There will be a lot of interesting problems for nonparamet-
ric modeling. In more recent work here we have been able to
use the Condor system run by the University of Wisconsin-
Madison Computer Sciences Department, in which multiple
jobs are directed to any of the literally hundreds of machines
in the Condor system that have unused cycles, thus allowing
model evaluation for many values of the smoothing parameters
simultaneously.

We mention that in a real application, what type of model to
use may depend strongly on the application itself. As for the
Beaver Dam Eye Study, we tried to avoid using any derived
variables from the beginning, unless they are widely accepted,
such as body mass index. However, the product of systolic
blood pressure and cholesterol level lacks an accepted medical
interpretation. But we do believe that model forms like Yee
and Wild’s (1) are useful and provide an important addition to
the literature.

2. WOOD: BAYESIAN INTERPRETATIONS
AND MORE

One property of smoothing spline models is that they can
be identi� ed with Bayesian and other regularization models.
This helps us understand the models from other perspectives,
and opens the door to more possibilities. A now-classical
application is to construct Bayesian “con� dence intervals”
for smoothing spline models. Also, the connection between
smoothing spline models and recently popular machine learn-
ing algorithms such as support vector machines (SVMs) and
Gaussian process learning (GPI) has been noted (see, e.g.,
Seeger 2000, Wahba, Lui, and Zhang 2000; the website
http://www.kernel-machines.org).

We are glad to see Wood’s stimulating comments. Tanner
and Wong (1987) introduced data augmentation in a Bayesian
context. Chib and Greenberg (1998) provided a Bayesian anal-
ysis for a multivariate probit model. Wood and Kohn (1998)
used a Bayesian approach and a Gibbs sampler for � tting
smoothing splines for binary data. Given a � xed smoothing
parameter, Wood’s approach is equivalent to solving the varia-
tional problem by using a Gibbs sampler. However, in Wood’s
work, she also puts a � at prior on the smoothing parameters, as

opposed to the approach in our article, where we used GACV
to “select” a speci� c smoothing parameter. We remark that the
plots in Wood’s comments are not directly comparable to plots
in our work due to the different model setting, but neverthe-
less they are interesting. We also make an interesting obser-
vation here. Given that the latent normal random variables are
not observed and the “� exible” means of the normal distribu-
tions are unknown, Wood’s estimate of the correlation � has
a very small variance. To examine this more closely, we did a
simple simulation study by generating 250 pairs of correlated
normal random variables with mean 0, variance 1, and � = 06,
estimating � by maximum likelihood and repeating this 100
times. Figure 1 gives a histogram for the 100 repetitions of
the estimated �’s. It is almost the same as Wood’s Figure 1.
We need to understand how Wood’s � at prior affects the � nal
estimate.

3. WHITTAKER: CONNECTION WITH
GRAPHICAL MODELS

We are pleased that Joe Whittaker has provided comments.
One of us (GW) became aware some time ago of the inter-
esting relation between the terms in a (smoothing spline-type)
ANOVA decomposition in the log-likelihood for exponential
families, and graphical models. Indeed, this relationship (and
Whittaker 1990) were mentioned by Gu (1993). In some sense,
the model selection problem (i.e. which terms in the ANOVA
decomposition to keep in the model) are equivalent to the
choice of a graphical model and important to the study of
conditional dependencies. We think that there are a number of
interesting problems to be solved here in the nonparametric
context, whose solution would also contribute to the literature
on graphical models.

4. AERTS AND MOLENBERGHS: STRATEGIES FOR
MODELING MULTIVARIATE RESPONSES

We acknowledge that numerous approaches exist to model
multivariate response variables, with most of the literature
involving parametric models. In our article we were not
attempting to give a comprehensive review of the literature.
Indeed, with so many existing techniques, determining which
one to use will depend on the application. It is hard to see
that one technique will universally outperform other methods
under all circumstances.

We thank Aerts and Molenberghs for listing more references
about modeling correlated responses. Although we believe that
a well-� tted and interpretable model will be helpful in under-
standing the correlation between independent and dependent
variables, we did not mention that this is “suf� cient” to under-
stand causality.

As far as the “base” model to use, we chose a log-linear
model in this article. Our concern is focused mainly on “gen-
uine” multivariate Bernoulli outcomes, which have the same
number of repetitions for every independent cluster. This setup
provides all the desirable properties of the exponential fam-
ily model. It is clear that this setup can serve as a basis
for many different generalizations. One extension is to model
marginal probabilities. This can be achieved by reparameter-
ization within the penalized likelihood framework, given that

http://www.kernel-machines.org
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we can write down the likelihood function. As previously
noted, the smoothing spline setup here has connections with
several other areas of research.

Certain compromises must be made to model higher-order
associations among multivariate categorical responses. In our
article, for simplicity, we assumed all higher-order associa-
tions to be 0, although in principle we can � t them from data.
The GEE model was developed when the full likelihood func-
tion is too complicated. Because the mean vector and covari-
ance matrix fully specify a multivariate normal distribution,
latent variable models like the multivariate probit model are
also useful. Lin and Zhang (1999) and Ke and Wang (2000)
developed nonlinear mixed effects models by using smoothing
splines. We always need to balance among � exibility, simplic-
ity, interpretability, and ef� ciency. For a real application, the
situation is more likely to be, quoting from George Box, that
“no model is correct, but some are more useful than others.”
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