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SUMMARY

We consider fitting multivariate models to response data based on analysis-of-variance
(ANOVA)-like decompositions of functions of several variables, f(¢,, . . ., t;)) = C +
L So(ty) + By pfus(ts, tg) + . . . . Atheory for fitting (some components of) these models
with polynomial smoothing splines exists when each ¢, is in a subset of the real line. In this
case the various estimated components turn out to be certain tensor sums and products of
polynomial splines. This approach may not be natural when one or more of the ‘variables’
are geographic, in particular where nature does not know north from east. In this case
splines of radial structure, such as thin plate splines, for the geographic component, are
more natural. In this paper we extend this theory of polynomial smoothing spline ANOVA
models to include variables which take values in Euclidean k-space, and fits which turn out
to include sums and products of both polynomial and thin plate smoothing splines. The
cases of most interest would be k=2 and k=3. The formulation, interpretation and
calculation of the models are discussed, and an application of the technique is illustrated.
This work can be used to build predictive ANOVA-like models which describe a response as
a function of spatial, temporal and other variables and to explore their interactions. The
models can be fitted by using the existing publicly available code RKPACK.

Keywords: MODEL SELECTION; REPRODUCING KERNEL; SPATIAL DATA ANALYSIS; SPLINE
ANALYSIS-OF-VARIANCE DECOMPOSITION; TENSOR PRODUCT SMOOTHING SPLINES;
THIN PLATE SMOOTHING SPLINES

1. INTRODUCTION
Suppose that we observe

yl=f{t(1)} + €is i=1, ..y n,

where t = (¢, .. ., 1)), ,€ 9™, a=1, ..., d, and the ¢ are independent and
identically distributed Gaussian noise with mean 0 and unknown variance 2. We
want to estimate f from the data. The smoothing spline method estimates f by using
the minimizer of

|-

; [i—f{tO}? + AJ(S) (1.1)

subject to fe_#, where the square error measures the goodness of fit, J(f) is a
quadratic roughness penalty, the smoothing parameter A controls the trade-off of the
two and _# is a reproducing kernel Hilbert space (RKHS) of tentative models. See
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Wahba (1990) for an exposition of facts concerning RKHS that we shall be using here.
Other references on RKHS are Aronszajn (1950) and Mate (1989).

In this paper we shall assume that fis in an RKHS of smooth real-valued functions
onI=90Q...R8 79, to be described. _# will actually be composed of tensor
sums and products of RK spaces. fwill initially be in a large Hilbert space ¢, in which
it has an analysis-of-variance (ANOVA)-like decomposition

f®)=C+ 2 fit) + Zﬁfas(twts) +oot St st (1.2)

Here the f, are main effects, the f,z are the two-factor interactions, etc. We want to
exploit the ANOVA structure to effect a compromise between lack of flexibility and
the curse of dimensionality by fitting only (some of) the lower order terms in equation
(1.2), via a penalized least squares criterion as in expression (1.1). A subspace _# of ¥
containing only the included terms will be our model space.

There is a growing literature on the special case with 7@ = [0, 1], a=1, . . ., d; see
Hastie and Tibshirani (1990) and Wahba (1990). Further references are listed at the
end of this section.

The f,, f.s, etc. are linear combinations of function space marginals of f. In the
case 7@ = [0, 1], these marginals can be obtained by integrating over each variable
with respect to the Lebesgue (uniform) measure on [0, 1]. This theory has proved to be
very useful for variables ¢z, whose natural range is an interval of the real line. Main-
effect-only models are built into NEW S (Chambers and Hastie, 1991), and additive
and interaction smoothing splines may be computed by using RKPACK (Gu, 1989).

In this paper we are interested in extending this theory and practice to where one or
more of the predictor variables are spatial, e.g. ¢, = (latitude, longitude) for
geographical data, or 7, = (latitude-longitude-altitude) for atmospheric data or 7, =
(latitude-longitude-depth) for oceanic data. In many examples, the response cannot
distinguish north from east, for example, and the tensor product structure of the
penalty and interactions terms (to be described) appearing in the existing additive and
interaction spline literature is not natural. Then it makes sense to treat these
geographic variables in a rotation invariant manner, imposing a thin plate (rotation
invariant) structure rather than a tensor product structure on functions of latitude and
longitude or latitude, longitude and depth, etc.

It is the purpose of this paper to provide ANOVA spline models that are
appropriate when some of the variables are spatial, by extending the additive and
interaction spline literature by allowing .7 to be E¥®, k > 1, and employing thin
plate penalty functionals for function components depending on those variables.

This work represents a synthesis and generalization of results in several branches of
the statistical and approximation theoretic literature. Some general theory of additive
splines is to be found in Stone (1985), Buja ef al. (1989) and Hastie and Tibshirani
(1990). Related references to interaction splines include Barry (1986), Wahba (1986),
Chen et al. (1989), Friedman and Silverman (1989) and Wahba (1990). Thin plate
spline references include Duchon (1977), Meinguet (1979), Wahba and Wendelberger
(1980), Utreras (1988) and numerous interesting applications by Hutchinson and
collaborators to climatological data; see, for example, Hutchinson et al. (1984).
Work related to data-based choices of multiple smoothing parameters is found in Gu
et al. (1989), Gu (1989) and Gu and Wahba (1991a). Here we use the model
diagnostics developed by Gu (1992) to select .#. A brief preliminary sketch of the
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main idea here appears in Gu and Wahba (1991b). A one-dimensional special case of
the trick that we use to define RKs later goes back at least to deBoor and Lynch (1966).
We remark that the field of multivariate function estimation is growing rapidly and in
many directions; we just mention two other approaches involving continuous
functions, multivariate adaptive regression splines (Friedman, 1991) and the II-
method (Breiman, 1991).

The rest of the paper is organized as follows. In Section 2, we review the existing
results for 7 =0, 1] and note some properties of ANOVA in function spaces that
will be useful. In Section 3 we present the mathematical result which gives the
generalization to the use of thin plate penalties in the ANOVA decomposition. In
Section 4, we describe a sample model in detail and show how RKPACK may be used
to fit it. An analysis of an application which motivated this research is presented in
Section 5. Finally, Section 6 concludes the paper with discussion.

2. ANALYSIS OF VARIANCE IN REPRODUCING KERNEL SPACES: SPECIAL
CASE 7@ = [0, 1]

We now give some further background so that the reader can obtain a better idea
about what our models are. Returning momentarily to the general case, let du, be a
probability measure on 7@, let & be an RKHS of functions on 7@ with

L-m, £t )du, =0

and let {1} be the one-dimensional space of constant functions on 7@, Letting
¢ =TI {1} ® &™),

we can expand ¥ as

%={1}®ZM¢>®[ZM®®W>]®.... 2.1)
a B<a
Here {1} is the space of constant functionson 7V ® . . . ® 7@, f € & @isamain
effect, f,s € & ® & ® is atwo-factor interaction, and so forth. With some abuse of
notation, we are omitting factors of the form ® {1} wherever they occur in
expansion (2.1) multiplied with spaces of non-constant functions. Assuming that the
norms on each space [{1®} ® &@] are constructed so that {19} L &, then the
subspaces in square brackets in expansion (2.1) will all be orthogonal in the tensor
product norm in ¢ induced by the original inner products. Once we have selected our
model, i.e. decided which subspaces in the right-hand side of expansion (2.1) to
include, our model Hilbert space_# would then be the subspace of < consisting of the
direct sum of the selected subspaces. We remark that this description of ANOVA in
function spaces is quite general. This idea has also been discussed by del Pino (1991).
In the case @ = [0, 1] described in Wahba (1990), @ = Wy[0,1] © {1},
where

wro,11 © {1} = {f. £, f', . . ., f™ D absolutely continuous,

1
f™e40,1], jof(t) dt=0},
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du, has been taken there as uniform measure on [0, 1]. To impose spline penalty
functionals, which leave polynomials of degree less than m unpenalized, it is necessary
(for m > 2) to decompose the & further. We shall review how this is done, because
in generalizing to the 7@ = E*¥® case we shall be doing the same thing.

For 7@=]0, 1], the polynomial spline penalty functional is

1
J(f) = So F2dy, 2.2)

Now decompose & into its unpenalized and penalized parts:
@D =D @ H© 2.3)

where &@ is spanned by the polynomials of degree less than m constrained to
integrate to 0 and &Z@ is the ‘smooth’ subspace. J( f) of equation (2.2) is the norm on
&, and behind this decomposition there is also a norm defined on &, and a set of
m — 1 conditions satisfied by the elements of <&@ so that the two subspaces on the
right-hand side of equation (2.3) are orthogonal. This norm and set of conditions is
not unique and a reasonable choice must be made if interaction terms are to be
included in the model. Now, substitute equation (2.3) into equation (2.1) and expand.
Thus, for example, [Z®@ ® & ®] becomes

[ ® ZP)= [ Q@ 2P| & % ® L] & [ £V &[4 ® L.
2.4

We can, if desired, choose which subspaces to include in the model after this
expansion. Then each of the four terms in square brackets on the right-hand side of
equation (2.4) is a candidate for leaving in or out, and so forth for the higher order
expansions. This allows somewhat more generality than selecting the model (1.2),
since terms that are polynomial in one variable and smooth in the the other (second
and third terms in equation (2.4)) would then be allowed even if the smooth-smooth
term (fourth term in equation (2.4)) is excluded. After that is done all the included
subspaces are collected, and the end result is a model space of the form

M= ® D, %"
B

where &7 is a finite dimensional space of polynomials which will not be penalized,
and the &® are orthogonal subspaces of the form &® or composite spaces of tensor
products of two or more spaces of the form & and & with at least one of these
spaces of the form &@. The norms on the composite & are the tensor product
norms induced by the norms on the component subspaces. The estimate f, of fis then
the minimizer in # = &° & Lz&® of

1< . _

- 20 [i=r @I + A 20 65 |1PAfII%, 2.5)
i=1 8

where P? is the orthogonal projector in _# onto &®. An explicit formula for f, in the
general case given a basis for &° and the RKs for each &? is given in Wahba (1990),
and wereproduceit here. Letting ¢,, »=1, . . ., M, span &°and Rz be the RK for &7,
fris given by
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M n
H)=21d,6,0+ D¢ [Z%Rg{t(l’),t}]- (2.6)
v=1 i=1 B
c=(c,...,C,) andd = (dy, . . ., dy) are solutions to the linear system

(Zoﬁzﬂm}\z)c +5d =y,
B

S'c=0, @7
where L and S are n X n and n X M matrices, defined by £ = (Rz{t(i), t(j)})and S =
(¢, {t(})}). S must be of full column rank.

Returning to the case 7@ = [0, 1], RKs for &, and & (with a particular choice
of norm on &) may be found in Wahba (1990), chapter 10. The RKs for the &%,
which are tensor products of spaces of the form & and &®, are then obtained by
applying, recursively if necessary, the fact that if & and &® are RKHSs defined on
W and 7@, with RKs R(s;,?;) and R,(s,,t,) respectively, then the RKHS
&'V Q & @has an RK R(s, ) = R(s1, t,) Ry(s2, 1), where s = (s1,8y) and ¢ = (¢,, 1,),
s, te T =VR 79,

The smoothing parameters A/6,, . . ., A/6, may be chosen by generalized cross-
validation (GCYV); see Craven and Wahba (1979) and Wahba (1990). Software for
estimating the smoothing parameters by GCV and calculating f), via equation (2.6)
given the relevant basis functions and RKs is given in the publicly available code
RKPACK (Gu, 1989). RKPACK is available by writing to netlib@ornl.gov with the
words ‘send index’; the robot mailserver will then respond with instructions. Thus,
additive and interaction smoothing splines in the @ = [0, 1] case may be fitted by the
general public by using RKPACK. In the next section we extend these results to the
tensor product thin plate case.

3. ANALYSIS OF VARIANCE WITH THIN PLATE SPLINES

We now proceed to the generalization to the thin plate case. Let 7@ = E¥®_ the
Euclidean k-space. The cases of most practical interest are k =2 or k = 3; however, any
k < 2m is theoretically possible (provided that there are enough data). The thin plate
penalty functional is J(f) = JX(f) given by

“hH= 3 ’”—'S: L S:, (#—)2%. Cdx. G.)

7|+...+7k=m71!° . °'Yk! i" o« o axg"

The penalty J¥ is invariant under a rotation of the variables # = ¢, = (x;, . . ., X;)
and as a consequence the thin plate splines are rotation invariant. The thin plate
(radial) structure is natural when the variables are qualitatively the same, such as
latitude-longitude for geographic data. Frequently in atmospheric data an appro-
priate scaling of the vertical co-ordinate will allow the same claim to be made for
latitude-longitude-altitude.

The fitting of thin plate splines takes place in an abstract RKHS 2 (see Meinguet
(1979)) of functions for which JX( f) is well defined and finite, and which includes the
span of the M(m, k) = ('"*f’ 1) polynomials in k variables of total degree less than m
(the null space of JX). The span of these polynomials will play the role of
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[{19} ® & @] and, once an inner product on all of 2 is defined, the ortho-
complement of the span of these polynomials in 2 will play the role of &'@. JX(f)
will be the square norm of &®@. When there is only one ‘variable’, i.e. d=1 and
t=(x, . . ., Xx), then the thin plate spline, which is the minimizer of

7 2 D= U + AT, 6.2)

is independent of the norm on the null space of J% and can be computed with so-called
semikernel or variogram E, to be given below, which is independent of any such norm;
see Bates et al. (1987). However, to carry out the fitting of the ANOVA model with
thin plate components in interaction terms, we need to define a norm on
[{1®} & &] and conditions on the functions in & so that {1}, & and &
are mutually orthogonal, and we need to provide the RK for <. One such RK
appears in Wahba and Wendelberger (1980) and it is reprinted (without attribution) in
Wahba (1990), section 2.4, where the relation between the semikernel £ and the given
RK is described in detail. That RK is somewhat artificial for ANOVA use, and since
we are not aware of any other published RKs that are suitable for this, we shall now
obtain a broad class of RKs (including the aforementioned RK), from which we can
select a reasonable RK for use in the ANOVA models that we are proposing.

Let p= pu, be a probability measure on E* which assigns probability p; > 0 to the
points ujeE",j= 1, .. ., N, with the following property. If ¥, . . ., Y, are a set of

m+k—1)
k

polynomials which span the null space of J%, then the Gram matrix with (£, »)th entry

M= M(m,k) = (

N
et = Do) = | el du (33)
j=1 Ek

is of full rank M. As an example, for K = m =2, this requires that Nis at least 3 and not
all the u; fall on a straight line. For the remainder of this section we shall drop the
subscripts and superscripts «. If this rank condition is satisfied then equation (3.3)
defines an inner product of this space of polynomials. Then we can extract an
orthonormal basis, call it ¢, ¢4, . . ., Par—1, With @) =1, i.e.

<¢E3 ¢v>u = 6e,v’ (3'4)

where 8, , is the Kronecker delta. It follows from the properties of RKHSs that the RK
for &, = span{¢, . . ., ¢p_} With the norm defined by equation (3.3) is

M

-1
R.(s,0) = D, $,(5),(). 3.5
=1

14

To obtain the RKHS for &, define, for any fe 2, the projector P, by

M-1
®onO = 5, 6,0 [ 3.6
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P, will be the orthogonal projection operator in 2 onto {1} ® &, if we endow 2
with the square norm

|f1? = <Pof, Pof>, + JE(S); 3.7

& will be those elements in 2 satisfying P, f=0. Now, let E(s, #) be the semikernel
referred to earlier, which is

cklls—t)|*"*log|2m — k|| 2m — k a positive even integer,

ck|ls—z||>m-* otherwise 3-8)

EG@, 0 = {
where c), are constants given in Appendix A and |s—¢|| is the Euclidean distance
between s and ¢. Let Py, be P, applied to what follows considered as a function of s.

Theorem 1. The RK R, for <Z, when 2 has the square norm (3.7) is

Ry(s,8) = (1= Pyg)(I— Poy) E(s, ). (3.9)

A proof is given in Appendix A. The k=1 case is included as a special case when the
limits on the integral in equation (2.2) are replaced by (— oo, o). It appears that the
result extends to u any probability measure for which the Gram matrix of equation
(3.3) is of full rank and finite, but, except for the k=1 case, generally an
approximation with a finite number of mass points would be needed for
computations.

4. SAMPLE MODEL

We describe in detail the construction of a sample model for f(¢,, #,), where 7" =
E', therealline, and 7@ = E?, the Euclidean 2-space. It will be convenient to write ,
= (x;, X;). Taking m=2 for both variables, &V has as its basis the single linear
function ¢{", which satisfies [1¢{" du, = 0 and [z ¢{"?dy, = 1. We have

LW = {f:f,f’ absolutely continuous, f” €. %, j fdp, = 5 S du, = O} .
El El
On E?, &,® has the basis {¢{?, ${?}, which are linear functions in x, and x, satisfying
[ Pdi=| ePdu=0
E? E?
and [z PP dy, = 8, ,, where §, , is the Kronecker delta. Furthermore,
&® = [f,fe 2N <o | sai=| e - [, Fof du = 0} .

Turning now to the representation fe &° & L., &*, &° will be spanned by the six
elements

{1, 01V, 012, 082, {00, {0 {}. @.1

These six functions on E; ® E, become ¢,, . . ., ¢¢ in equation (2.6). There are
p=5&"s,

(O, O, O ® L0, LD ® 4D, O ® &P}, “2)
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With continued abuse of notation, we are omitting factors ® {1®} in expression (4.2).
Strictly, all these subspaces are spaces of functions defined on E' ® E2.

Now, let us look at the penalties. Considering f as a function defined on 7% ®
IO = E' @ E?, for &* = &W,

32 2
I1P5f|? = sEl {a_tlz SEZ S, 1) d#z} dt;.
Noting that the factor 1 main effect will be
=] o= | | s dude,
E? El E?

we are reassured that ||[P% “f]|? amounts to the E' spline penalty acting on the main
effect. Similarly, for &% = &,

w) 2(anr) * (58))
B2 = 3% 2 3%
”P f" SEZ { (axlz +2 axl axZ + 3x22 dXI dxz’

where (x;, x;) = t; and

fey = s | o0 dndn

is the factor 2 main effect. For % = & ® &, we have

I1PEf1I> = s [82 §E2¢1(2)(t2)f(1‘1, t,) dﬂ-z} zdtl + S {:—:12 SEZ () f(t1, 1) dﬂz}zdtl

E! at% E!l

and the penalty when &% = &V ® &@is similar. When &% = & ® &®, we have

o) +2(es) + () )
B£l2 =
g Lz SEZ {(atﬁaxf * 2\ 5aman) + \armxg) J i dxdh

which of course is different from J;(f).

After the model has been fitted, the various terms which remain in the model are
regrouped for display into the mean, the main effect for factor 1, the main effect for
factor 2 and the (1, 2) interaction. If no spaces have been deleted, then the respective
spaces are mean, {1}, main effect for factor 1, {¢{"} ® &, main effect for factor 2,
{6} & {o?} & @, and (1, 2) interaction,

(080} © (416} @ [0 ® HP] @ (40 ® 7] @ [40 ® L2,

In the example that follows we have chosen the u,, o =1, 2, as the marginal design
measures, i.e. if the data points are t(i) = (¢,(i), 5,({)),i =1,. . .,n,then N=nand p,
on 7@ assigns mass n~! to the points (¢,(1), . . ., Z,(n)). The u, can be chosen
independently of the design if there is reason for doing so. When 7"is the unit d-cube
then the Lebesgue measure in each variable is natural, but this does not generalize in a
natural way to the thin plate spline case where the data may be scattered in irregular
shapes. For k=2 or k =3, if it were desired to use a continuous density, most probably
a quadrature formula would have to be used to compute the required RKs, which
would essentially be equivalent to using an approximating measure with a finite
number of mass points.
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Given measures p, with a finite number of mass points and a convenient basis
Yo=1, ¥{%, . . ., ¥§)- for the null space of J%=J%), an orthonormal basis ¢,=1,
#{?, ..., ¢, in the sense of equation (3.4) can be obtained by the QR-
decomposition without pivoting. When the u, are the marginal design measures, the
formulae become relatively simple. For example, letting S, be the n x M matrix with
ivth entry ${{t, (i)} and E, be the n X n matrix with ijth entry E{z,(i), £,(j)}, then the
matrix Lg appearing in equations (2.7) which corresponds to &% =&@ is, by
substituting into theorem 1, given by (I-S,S./n)E,(I-S,S./n). Corresponding
matrices for the tensor product spaces are obtained by the componentwise
multiplication described in the discussion at the end of the paragraph following
equations (2.7).

5. EXAMPLE

In this section, we analyse some environmental data which motivated our
conception of tensor product thin plate splines. The data that we shall be analysing are
derived by Douglas and Delampady (1990) from the Eastern Lake Survey of 1984
implemented by the Environmental Protection Agency of the USA. The derived data
set contains geographic information, water acidity measurements and main ion
concentrations of 1798 lakes in three regions, north-east, upper midwest and south-
east, in eastern USA. Of interest is the dependence of the water acidity on the
geographic locations and other information concerning the lakes. Preliminary
analysis and consultation with a water chemist suggested that a model for the surface
pH in terms of the geographic location and the calcium concentration is appropriate.
As illustrations of the methodology, we only present analysis for lakes in the south-
east, which can be further divided into two disconnected subregions—Blue Ridge with
112 lakes and Florida with 159 lakes.

We used the sample model of Section 4 with the u, as the marginal design measures.
t; was taken as the logarithm of the calcium concentration (milligrams per litre).
t,=(x;, x,) were obtained by converting the longitude and the latitude of the lake
location to the east-west and north-south distances from a local centre. Since the
calcium concentration and (latitude, longitude) each have their own smoothing
parameters we do not have to worry about the relative scale of these variables, since
individual scales are absorbed into the smoothing parameters, which are estimated
from the data.

The calculations of the models were performed by using the generic algorithms of
Gu and Wahba (1991a) which compute f, from equation (2.6) and estimate the A/9,,
. . ., A/0, by GCV. These algorithms are implemented in RKPACK (Gu, 1989), with
" as in expression (4.1) and the five &®s as in expression (4.2). The RKs R; are built
up from equations (3.5) and (3.9).

Evaluating a computed model at the design points, we derive a retrospective linear
modely = f, + £, + £, + f,, + &, and adjusting for the constant effect by projecting
each component onto {1}* we obtain z = f, + f, + f;, + e. To measure the
concurvity in the fit, we use the collinearity indices of Stewart (1987), «; = ||f;||[|1£{*||
where f{*) is the ith row of the Moore-Penrose inverse of (f;, f,, f, ;), which can be
computed from cos(f;, f;). The fs are supposed to predict the ‘response’ z so a nearly
orthogonal angle between an f; and z indicates a noise term. Signal terms should be
reasonably orthogonal to the residuals; hence a large cosine between an f; and e makes
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TABLE 1
Diagnostics for the Florida model

f, f, fi2 e z
K 1.07 1.13 1.11
cos(z, ) 0.861 0.045 0.076 0.457 1
cos(e, ) 0.007 0.106 0.129 1 0.457
Il 14.53 2.62 2.23 6.53 15.77
tR%=0.793.
TABLE 2
Diagnostics for the Blue Ridge model t
fl f2 fl’z e z
K 1.08 1.07 1.03
cos(z, ) 0.648 0.574 0.358 0.617 1
cos(e, ) 0.000 0.124 0.249 1 0.617
I 2.45 1.44 1.14 2.07 4.10
tR%2=0.632.

[No. 2,

a term suspect. cos(z, e) and R? = ||z — e||?/||z||? are informative ad hoc measures for
the signal-to-noise ratio in the data. A very small norm of an f; relative to that of z also
indicates a negligible term. More discussion of these diagnostics can be found in Gu

(1992).
For the Florida model, the diagnostics are summarized in Table 1. The diagnostics

indicate that the interaction and the geography main effect are absent. Fitting a
standard cubic smoothing spline in ¢, gives the final model plotted in Fig. 1, where a
scatterplot of the data is superimposed. We concluded that the water acidity of the
lakes surveyed in Florida did not illustrate any spatial pattern other than uniformity.

pH

calcium (log10 mg/L)

Fig. 1. Final Florida model
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Fig. 2. Calcium main effect for the Blue Ridge model

For the Blue Ridge model the diagnostics are summarized in Table 2. All three
components seem non-negligible. The calcium main effect is piotted in Fig. 2. The
geography main effect is plotted in Fig. 3. We plotted contours only where there are
data. We have done this free hand, but we are developing a method which should give
an objective measure of how far one can reasonably extend the model beyond the
data. The crest of the southern Blue Ridge mountains runs roughly from south-west to
north-east with the highest peak slightly to the left of the centre of Fig. 3. Since
geography could be just a proxy of elevation, we also tried to fit a model on calcium
and elevation. The diagnostics of such a fit are summarized in Table 3. Again we
would preserve all three terms but the diagnostics suggested that elevation could not
approximately replace geography in modelling pH. We finally plotted the residuals
from the calcium-geography model versus the residuals from the calcium-elevation
model in Fig. 4, to illustrate the spread of the residuals and to double-check that the
calcium-geography model was indeed a refinement of the calcium-elevation model.

latitude
36 37

35

34

33

-longitude

Fig. 3. Geography main effect for the Blue Ridge model
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TABLE 3
Diagnostics for the calcium-elevation model
f, f, £, e z
K 1.40 1.17 1.22
cos(z, ) 0.714 0.371 0.375 0.713 1
cos(e, ) 0.038 0.000 0.075 1 0.713
I 2.50 0.59 0.26 2.81 4.10

{R2=0.493.

6. DISCUSSION

The models that we have constructed in this paper provide convenient non-
parametric tools for combining spatial patterns with other structures of the data.
Our examples illustrate how to combine geography with another continuous factor of
unknown form. To incorporate an additive term of known form, the partial spline
structure (Wahba, 1986) can be adopted. For example, if we wish to include, say, a
watershed factor, we simply include a term x3 in the Blue Ridge pH model where
x= + 1 depending on whether the lake is located on the inland side or the ocean side of
the ridge (i.e. x is an indicator function for two watersheds). In dealing with three
geographic variables, e.g. longitude, latitude and ocean depth, we might still want a
thin plate main location effect, with depth rescaled by changing the units for depth by
a multiplier. In principle, this multiplier can also be chosen by GCV; see Hutchinson
et al. (1984). Similar remarks may apply to time. Replacing mean-square goodness of
fit by mean negative log-likelihood, the same structure can be used to fit odds ratios
for binary data and to fit intensities for Poisson data, etc.; see for example, Gu (1990).
Other extensions include models with inequality constraints, models based on
aggregated data, etc.: see Wahba (1990).

1.0 1.5

resid_geog
0.5
)

-0.5
1

-0.5 0.0 0.5 1.0 1.5

resid_elev

Fig. 4. Residuals for the Blue Ridge models
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Compared with model construction, model selection is much less well understood.
We have chosen to use the model selection procedures based on a retrospective linear
model given in Gu (1990a). Although the theory does not exist for determining when a
cos(z, f;) term is small in the context of nonparametric regression, clearly these
diagnostics are informative and could be calibrated intuitively. We are investigating
another approach to model selection in the same spirit, based on the Bayesian
‘confidence intervals’ discussed by Wahba (1983) and Nychka (1988). In principle, the
GCYV function V (see Wahba (1990) for the definition) could be used for model
building. In fact, if the estimate of a # corresponding to a subspace is 0, then that
subspace is automatically removed. However, the GCV is a predictive criterion, and
there appears to be a moderately large chance that the estimated 6, is not 0 even when
the true f has || P?f]| =0 (Wahba, 1990). Thus small components generated by noise
may be retained. We could, in principle, develop a hypothesis-testing approach for
deciding when OP is significantly non-zero, by looking at the statistic v = V(.. .;
o)/ V(. . .; Adg"). Similarly, a likelihood ratio statistic m = M(. . .; ®)/M(. . .;
A0z') (see Wahba (1990) for the definition) could be used if the Bayesian model
associated with smoothing splines is true. Major practical problems remain, however,
in generating distributions for these tests, by Monte Carlo or other methods.
Asymptotic x2-distributions generally will not be useful because the null model is on
the boundary of the parameter space of the 0s. Tests of the null hypothesis that the
true model is in &Z° are discussed in Cox et a/. (1988) and Wahba (1990). Distributions
under this (simple) null hypothesis are relatively straightforward to obtain by Monte
Carlo methods.
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APPENDIX A: PROOF OF THEOREM 1

To show that R(s, ?) is the RK for a given space, we need to show that R(¢, )isin the space,
for each fixed ¢, and that (R (s, ), R(¢, )) = R(s, f). The theorem will follow from a result of
Meinguet (1979), which we give after a few definitions. Given m and k, a set of N+ 1 points in
R* s said to be unisolvent, if least squares regression on ¢y, . . ., $,._,, the null space of J%, is
unique. A set of (unisolvent) points u,, u,, . . ., 4, and associated weights Ay, A, . . ., Ay is
called a generalized divided difference if

N
Do, (w) =0, »=0,1,..., M-1.
k=0
Let
_ m! Ia"f g
.0, = 2 mS"'Sax{”...ax,;’* axr...ax,zkdx""dx’" (A1)

Yit+...tyvk=m
We have the following theorem.

Theorem 2. (Meinguet, 1979). Let {h,, u,} be a generalized divided difference, and let
E (s, t) be defined as in equations (3.8). Let E,( ) = E(¢, ). Then E}ZohjEuj € Z and
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( ZHEO, D MEL), = 2D hhE, ).
j=0 k=0 ik

We can now prove theorem 1. We have

M-1 N
Rt )=E()~ 2,6, D06, E, () + w(),

v=0 k=0

where 7 ( ) is a polynomial of total degree less than m. Rewrite this as

N
E ~ D h®OE,()+ (),

k=1

where

M-1
h () = Z o, (O &, (1y).
»=0
Now, we show that (1, —A,(?), . . ., —hy(®); t, u,, . . ., uy)is a generalized divided difference
for every ¢. To do this we have to show that

6,(8) — 2 () 8,() = 0, p=0,... ,M-1. (A.2)

k=1

Substituting the definition of 4, into the left-hand side of equation (A.2) gives

m-—1
6,0 — 2 6:(1<e;,0,), (A.3)

£=0

which equals O for each » by the orthonormality of the {¢,} under ( , ),. It then follows from
Meinguet’s theorem that (R(#, ), R(s, )), = R(s, ?). Since P, is idempotent it follows that
Py, R(t,s) = Oforallz,soR(t, )isin &= &, and we have finished the proof.

For completeness, we give the constants

(_ 1)k/2+m+1
= 221k 2 — 1) (m — k/2)!’

A T'(k/2—m)
Cm = m, k odd.

If they are omitted in the calculations they will be absorbed by the smoothing parameters.

We remark that the construction here involving polynomials of total degree less than m on
R* will work if E is replaced by any function F which is m conditionally positive definite; see
Micchelli (1986). F'is m conditionally positive definite if T, , h;h, F (s, f) > O whenever {A,; u, }
is a generalized divided difference with respect to the polynomials of total degree less than m.
This condition is exactly what we need to show that (I — Py,)(I — Py) F (s, ?) is a non-negative
definite function, i.e. an RK. We could also replace E(s, t) by F(s, ©) = exp{—0(||t-s])*},
which has been used by Sacks et al. (1989) and others, or any other positive definite function,
with any m for which S, is of full column rank. The polynomials can be replaced by other
functions under certain conditions; see Kimeldorf and Wahba (1971), Wahba (1978) and
Ramsay and Dalzell (1991). See Wahba (1990), chapter 3, for a discussion on limiting the class
of models that one would want to consider.

Cn

k even,
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