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Abstract: We show how to obtain esthetically pleasing contour plots using New S and GCVPACK. 
With these codes, thin plate splines can easily be used to interpolate “exact” data, and to produce 
smoothly varying contour plots, with none of the jagged corners that plague many other interpola- 
tion methods. It is noted that GCVPACK can also be used to interpolate data on the sphere and 
in Euclidean three space. We observe that a larger class of global interpolation methods 
(including the thin plate spline) have a Bayesian interpretation, and GCVPACK can be used to 
compute them. 

Keywords: Bivariate interpolation; Smooth surfaces; Contouring methods; Thin plate splines; S; 
GCVPACK, Bayesian interpolation. 

1. Introduction 

Recently, two of us (F.R. and G.W.) have been involved in a Monte Carlo study, 
the outputs of which include computed values of a rather complicated response, 
as a function of two variables. We wished to obtain nice contour plots of these 
outputs so that our audience could visualize the behavior of this response. 
Ordinarily, one would evaluate the response on a sufficiently fine grid, for 
example, 80 x 80, and then, assuming that the underlying “true” response 
function is reasonably well behaved, any one of a number of readily available 
contouring programs which use simple linear interpolation between data points 
can make an attractive contour plot. We mention a grid of 80 X 80, because that 
typically provides sufficient resolution for an esthetically pleasing 8 i x 11 plot. 
We have found the New S routines con t ou r and i n t e r p (Becker, Chambers 
and Wilks, 1988, to be discussed further) to be quite easy to use and adequate in 
this situation. However, in our Monte Carlo study, it is quite expensive to 
calculate the response values. We computed our responses on a 13 x 21 grid of 
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(x, y) values, and attempted to use the contouring programs in S to plot them. 
We were not happy with the results. Contouring relatively sparse or irregular 
data is in fact a difficult problem and not all interpolation methods are equally 
good for producing a smooth appearance on the resulting contours. We were 
not, however, prepared to compute on a finer grid, due to the large computation 
costs involved. We felt, since our response functions were known a priori to be 
visually “smooth”, that there should be a method of producing smooth and 
esthetically pleasing contours. The first author (D.B.) suggested that we use the 
code GCVPACK (Bates et al., 1987) to interpolate the data to a finer grid via 
the use of a thin plate spline, and then use S to generate contour plots over this 
expanded data set. 

GCVPACK contains code designed for computing thin plate smoothing 
splines, with generalized cross validation for choosing the smoothing parameter. 
It was not designed with interpolation of “exact” data in mind. However, it was 
designed with certain defaults which serendipitously allow the program to work 
as a “near interpolator”, under conditions typically encountered when plotting 
data from “exact” computer experiments. That is, the interpolation can be 
controlled to be good to say, 5 or 6 figures, which is quite satisfactory for 
graphical work. We note that it is not necessarily desirable for a global 
interpolation scheme to be “exact” past the number of figures available, as the 
results can be sensitive to roundoff error, even if the computed data is good to 5 
or 6 figures. That may well be one of the reasons for the lack of general use of 
good global interpolation schemes, although they have the potential for generat- 
ing much nicer pictures in some cases than any local method. In our case, the 
design of GCVPACK allows the use of thin plate splines as a 5 or 6 figure 
interpolator of data sets of the size of a few hundred, while preventing this 
sensitivity to roundoff error. GCVPACK is available through net 1 i b as a stand 
alone program, and there is also an S interface to GCVPACK. net 1 i b may be 
accessed via netlib@research.att.com. Thus, it was not hard to carry 
out the proposed program. We were extremely pleased with the results. In this 
paper, we will describe those results, tell the reader some things about GCV- 
PACK that are relevant to using it for contouring “exact” data, and remark on 
what might be expected on other examples. Considering the fact that jagged 
looking plots of smooth functions computed “exactly” appear in the literature 
all the time, we believe that this method will turn out to be extremely useful. 

In Section 2 we describe our experience with GCVPACK and S, on our 
example. In Section 3 we discuss some of the features of GCVPACK which are 
relevant to smooth interpolation, so that the reader can better understand what 
might be expected in other examples. In Section 4 we describe the results of a 
major simulation study by Franke (1979) which compares a number of local and 
global interpolation methods, including thin plate splines. In Section 5 we note 
that global interpolation methods in a broad class, including thin plate splines, 
are Bayes estimates, and we indicate how S and GCVPACK may be used to 
obtain an interpolation scheme on the sphere, and in three dimensions. In the 
Appendix we briefly describe the Monte Carlo study that gave rise to our data. 
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2. Getting the contour plots 

In this section we will guide the reader through the steps we went through to get 
our “beautiful” plots. We will describe several pitfalls that we had on the way, 
as these are just the traps that the unsuspecting user may fall into if trying to 
repeat our results. 

In our computer experiment, described in the Appendix, we chose to evaluate 
the functions of interest on a 13 X 21 array of (x, y) coordinates. This grid is 
denser in the y direction because evaluation at different y’s for the same x is 
relatively cheap. But every time the x coordinate is changed, we had to 
recompute the singular value decomposition of a 900 x 600 matrix and that 
takes a long time, even on the Cray Y-MP at the San Diego Supercomputer 
Center we were using. 

We were doing the contouring locally on a DECstation 3100. Even though the 
evaluations on the Cray were accurate to about 7 or 8 significant figures, we 
initially transferred only three significant figures after the decimal point as 
shown in Table 1. 

Figure 1 gives the result of entering this set of three figure data into the S 
con t ou r routine. Contour uses linear interpolation between data points on a 
rectangular grid. The c o n t o u r routine got confused in finding the contours for 
this data. 

The next obvious step was to present contour with the 6 figure data; the 
result appears in Figure 2. Certainly useful, but still not very pretty. S has a 
routine i n t e r p which uses Akima’s (1978) method to interpolate regular or 

Table 1 
Input data, rounded to three figures 

x 

-6 -3 0 3 6 

Y 10 0.546 0.508 0.470 0.438 0.413 0.392 0.377 0.363 0.356 0.352 0.351 0.351 0.354 
0.518 0.478 0.444 0.417 0.39s 0.378 0.365 0.355 0.349 0.347 0.347 0.349 0.352 
0.489 0.453 0.424 0.400 0.381 0.367 0.356 0.348 0.345 0.343 0.344 0.347 0.351 
0.465 0.433 0.407 0.387 0.370 0.358 0.350 0.343 0.341 0.341 0.343 0.346 0.351 
0.446 0.418 0.395 0.376 0.362 0.352 0.345 0.340 0.339 0.339 0.342 0.346 0.351 

5 0.431 0.405 0.385 0.368 0.356 0.347 0.341 0.338 0.337 0.339 0.342 0.346 0.351 
0.419 0.396 0.377 0.362 0.351 0.344 0.339 0.336 0.336 0.338 0.342 0.346 0.352 
0.410 0.389 0.371 0.358 0.348 0.341 0.337 0.336 0.336 0.338 0.342 0.347 0.353 
0.403 0.383 0.367 0.355 0.346 0.340 0.336 0.335 0.336 0.339 0.342 0.347 0.353 
0.398 0.379 0.364 0.353 0.345 0.339 0.336 0.335 0.336 0.339 0.343 0.348 0.354 

0 0.395 0.377 0.363 0.352 0.344 0.339 0.336 0.336 0.337 0.340 0.344 0.349 0.355 
0.392 0.375 0.361 0.351 0.344 0.339 0.336 0.336 0.338 0.340 0.345 0.350 0.356 
0.391 0.374 0.361 0.351 0.344 0.339 0.337 0.337 0.338 0.341 0.345 0.351 0.356 
0.390 0.374 0.361 0.351 0.344 0.340 0.338 0.338 0.339 0.342 0.346 0.351 0.357 
0.390 0.374 0.361 0.352 0.345 0.340 0.338 0.338 0.340 0.343 0.347 0.352 0.358 

-5 0.390 0.374 0.362 0.352 0.345 0.341 0.339 0.339 0.341 0.344 0.348 0.353 0.359 
0.390 0.375 0.362 0.353 0.346 0.342 0.340 0.340 0.341 0.344 0.348 0.353 0.359 
0.391 0.375 0.363 0.354 0.347 0.343 0.341 0.341 0.342 0.345 0.359 0.354 0.360 
0.392 0.376 0.364 0.354 0.348 0.344 0.341 0.341 0.343 0.346 0.350 0.355 0.360 
0.393 0.377 0.365 0.355 0.349 0.344 0.342 0.342 0.344 0.346 0.350 0.355 0.361 

-10 0.393 0.378 0.366 0.356 0.349 0.345 0.343 0.343 0.344 0.347 0.351 0.356 0.361 
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-6 -4 -2 0 2 4 6 

Fig. 1. Plot from con to LI r for three figure data. 

irregular data to a regular 40 X 40 grid. (C o n t o u r needs data on a regular grid.) 
We gave i n t e r p our 13 X 21 array (of 6 figure) data and put the resulting 
40 X 40 array of data points from i n t e r p through con t o u r. The resulting 
curves had visible corners similar to those in Figure 2, only more of them. We 
then changed the i n t e r p from its 40 X 40 default grid to 97 X 81, making the 
grid 8 times finer in x and 4 times finer in y than the original 13 x 21 array 
(keeping track of end points). The result appears in Figure 3. This picture is 
slightly more pleasing than picture we got from the 40 x 40 grid (not shown), 
and more pleasing than Figure 2, but not by much. We also read the 21 columns 
of data into i n t e r p in the opposite order than they had originally been entered 
to produce Figure 3; simultaneously the y values were reversed. In theory one 
would expect the same picture, but in practice Akima’s method is based on a 
triangulation of the data points: entering data in a different order in i n t e r p 
can produce a different triangulation and hence a different interpolant. This 
apparently happened here, because the resulting 97 X 81 interpolated data 
points actually satisfied max I(m, - m2)/m2 I = 0.0050 where m, is a data point 
from the 97 X 81 array from the first try (Figure 31, and m2 is the same data 

-6 -4 -2 0 2 4 6 

Fig. 2. Plot from contour for six figure data. 
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Fig.3.Plotusingcontouronthe interpoutputwith97x81 interpgrid. 

point from this second try with the reversed data order. The result appears in 
Figure 4. 

Next, we gave the three figure data to GCVPACK to fit a thin plate spline. 
The thin plate spline we are discussing here (more details in Section 3) has a 
representation in terms of II + 3 = (13 X 21) + 3 = 276 basis functions. The code 
computes the coefficients of these basis functions; then the thin plate spline can 
be evaluated to a high degree of accuracy at any (x, y) values. All the 
GCVPACK calculations were done on a Sun workstation in double precision: 
nothing less than this precision should be used. GCVPACK actually smooths the 
data and the degree of smoothing is determined by a smoothing parameter. In 
the examples here the smoothing parameter was set to its minimum GCVPACK 
default value, which is a computed function of the data design. (See Section 3 
for more details.1 GCVPACK returns the residual sum of squares of the 
difference between the thin plate spline at the 13 x 21 data points and the data. 
The result in this case was a root mean square deviation of 1.43 x 10p6, so that 
the first three figures in the values of the spline at the data points are 
apparently matching the three figure input exactly; in fact, the spline is appar- 

-6 -4 -2 0 2 4 6 

Fig. 4. Plot using contour on 97 X 81 i n t e r p output, order of input to i n t e r p reversed. 
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Table 2 
First column of fitted three figure data demonstrating the interpolation of zero in the fourth place 
after the decimal point 

0.546046 0.431021 0.398010 0.390005 0.391005 
0.518040 0.419019 0.395006 0.390004 0.392007 
0.489038 0.410016 0.392008 0.390004 0.393007 
0.465032 0.403012 0.391003 0.390007 0.393011 
0.446027 

ently matching at least one 0 after the given three figure input data. To see this 
graphically, Table 2 gives the values of the thin plate spline computed at the 
data points corresponding to the first column of the data in Table 1. The three 
figure data of Table 1 are being “interpolated” to 4 or 5 figures by fitting zeroes 
in the fourth and sometimes fifth place. We computed the values of this thin 
plate spline to over 6 figures on the same 97 X 81 grid as before, and gave these 
data to con t ou r. The result appears in Figure 5. What is happening here is 
that rounding the input data to three figures has introduced a non-negligible 
amount of “noise” in the otherwise smooth input data, and GCVPACK, which 
is designed to run in double precision, is interpolating one or two figures of this 
roundoff noise. 

Finally, we gave the 6 figure 97 x 81 GCVPACK output to con t o u r, and the 
result is given in Figure 6, which gives the final contour plot of our data. This is 
the result we were looking for. Table 3 gives an overview of the six contour 
plots. We remark that no “cheating” is going on. Although a smoothing thin 
plate spline has been used, the rms difference between the 6 figure input data to 
GCVPACK, and the 6 figure output of GCVPACK at the data points was 
0.797 x 10e6. If we pretend that numbers rounded off to k places after the 
decimal have errors which are uniformly distributed between plus and minus 
i x 10-k then their standard deviation is about 0.3 X 10pk. One would then like 
the root mean square fit of the spline to the data to be a bit better than this 

-6 -4 -2 0 2 4 6 

Fig. 5. Plot using contour on 97 x 81 GCVPACK output, using three figure input data. 
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-6 -4 -2 0 2 4 6 

Fig. 6. Plot using contour on 97 x 81 GCVPACK output, using six figure input data and six figure 
GCVPACK output data. 

(Wahba, 1975). Thus the desired interpolation is not “exact”; instead it is 
matching the input data to between 5 and 7 figures, resembling the accuracy 
with which the input data has been provided. In the next section we will 
describe how this comes about. 

3. The thin plate smoothing spline 

Given data (xk, y,, zk) on a not necessarily regular grid, the thin plate spline 
with derivative parameter m is the solution to the following variational problem: 
Find f in a appropriate function space to minimize 

where J,(f) is the thin plate penalty functional 

(2) 

Table 3 
Overview of alternative procedures for contour plots from 13 x 21 data set 

Figure Decimal Preprocessing Size of temporary Evaluation of 
figures used procedure data matrix b contour plot 

1 3 - 13x21 
2 6 - 13x21 
3 6 S-interp 97x81 
4a 6 S-interp 97x81 
5 3 GCVPACK 97x81 
6 6 GCVPACK 97x81 

a order of axes reversed. 
b output from preprocessing, input for S-c 0 n t 0 u r. 

Unsatisfactory 
Better than Figure 1 
Better than Figure 2 
ArtifactofS-interp 
Responding to roundoff noise 
Desired result 
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For m = 2 this becomes 

In the discussion that follows, we describe only the m = 2 case. Provided the 
design points (x,, yk) = Pk, k = 1,. . . , n do not all fall on a straight line, there is 
a unique minimizer fh to (1) for every A > 0. Furthermore, fh has a representa- 
tion 

UP) = Z? P;&(P) + 2 %E(P, &J> 
v=l k=l 

where 

(4) 

p= (x, Y), p/‘ = (xk, Yk), 4,(P) = 1, 4,(P) =x> 4,(P) =Y (5) 

and 

E(P, Q) = II P - Q II * ln( II P - Q II). (6) 
Here 11 P - Q II is the Euclidean distance between P and Q. See Duchon (19771, 
Wahba and Wendelberger (1980). We will reproduce the equations for p = 

(Pr, P2, PJ, and 6=(6,,..., 6,). For details on their calculation, see Bates et 
al., (1987). Let T be the n x 3 matrix with (k, v,) entry $,<P,> and let 

(7) 

be the Q-R decomposition of T. The three columns of F, span the column 
space of T, and the y1 - 3 columns of F2 are perpendicular to the columns of T. 
G is 3 X 3. Let K be the y1 X n matrix with (k, I> entry E(P,, P,), and let 
F;KF2 = UDU’. Then (see Bates et al. (19871, Wahba (19901, and references 
cited therein) 

6 = F,U( D2 + cUplU’F;z (8) 

GP = F;(.z -K6). (9) 

Given data (x,, yk, zk), k = 1,. . . , II, GCVPACK chooses h, and returns p and 
6; the user evaluates (4) on as fine a grid as desired. If the data come (exactly) 
from a plane, then z is in the column span of T, hence F,‘z = 0, and it can be 
checked that f, is (in theory) this plane, whatever the value of h. As h + 0 then 

f” = lim, + of* is (in theory, in an appropriate space) the minimizer of J,(f) 
subject to the interpolation conditions fA(Pi) = zi, i = 1,. . . , n. If you try data 
taken from a plane with known p’s, or if you try A = 0, on your computer, you 
can see the numerical accuracy of your computations by comparing known and 
computed p’s or known and computed data. We also remark that fa = lim, ,,f, 
is the plane best fitting the data in a least squares sense. 

In the examples of size n = 13 x 21 presented here, the 270 = y1 - 3 eigenval- 
ues of this problem, that is, the entries of D*, ranged from df = 133.6741 to 
d & = 0.011756 for a condition number of 11.37 X 103, probably not big enough 
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to cause problems in double precision, even for nh = 0. For regularly spaced 
data the theoretical decay rate of these eigenvalues is O(n -2>; see Wahba 
(19791, Cox (1984). If the data are irregular and/or n is larger, the condition 
number will be bigger. Sibson and Stone (1991) have looked at preconditioning 
methods useful in the very ill conditioned case. 

In GCVPACK the (default) method of choosing the smoothing parameter is 
by minimizing the GCV function V(A) given by 

(10) 

where (w~,...,w,_~ >’ = w = Fi z. The minimizer of V(h) has certain well known 
properties for the model 

z,=f(P,)+e,, k=l,..., n, (11) 
when the ek are independent, identically distributed N(0, a2), see e.g. Craven 
and Wahba (1979), Li (1986). GCVPACK was designed for the case in which a2 
was assumed to correspond to independent “engineering sized” errors as 
opposed to possibly correlated, small roundoff errors. GCVPACK does a search 
over h between default limits of hmi, = 0.01 di_ Jy1 and A,, = lOOdf/n, where 
d2 n_3 and dt are respectively the smallest and largest eigenvalues in (8). 
Alternatively, the user may specify the upper and lower search limits, including 
the possibility of choosing A by setting them equal. These choices in the design 
of GCVPACK were made for the purpose of maintaining numerical stability 
within the context of a completely automatic search procedure. The experiments 
carried out during the development of GCVPACK suggested that f,,,, and f,,,, 
were, for most practical purposes, indistingu$hable from f0 and fm. 

In all o,f the examples presented here, A = A,i”; however, in so^me similar 
examples A turned out to be slightly larger. GCVPACK will return h as well as 
the residual sum of squares, so that if the user’s goal is “interpolation”, one can 
check to see if the root mean square residual corresponds to matching the input 
data to as many significant figures as appropriate. Note that our example shows 
that GCVPACK may interpolate zeroes beyond the number of figures provided 
in the data. If this happens and causes problems, then h should be made larger 
until the residual mean square corresponds to a roundoff error in the last 
significant figure in the input data. 

The thin plate spline with m = 3 will be exact on quadratic functions and will 
have a slightly different “bendiness” to the contours. See Boult (1987). We tried 
m = 3 but the difference between the resulting contours was just barely visible 
and the plot is not reproduced here. 

As a final question we wondered whether we had really needed as much data 
as we had computed. To answer this question we removed the data for every 
other x value, leaving a 7 X 21 grid of points. The contours for both the m = 2 
and m = 3 thin plate splines were again just barely visibly different from Figure 
6, and we do not reproduce them here. Thus, for the purposes of generating the 



338 D. Bates et al. / Contourplots with S and GCVl?ACK 

contour plot to essentially visual accuracy, we could, in this example, have done 
with about half as many data points. In the m = 2 case, the rms difference 
between the 7 X 21 six figure input data and the fitted spline was 0.110 x 10p5, 
while the rms difference between the spline and the 6 X 21 data that had been 
set aside was 0.491 X 10e2. The code can easily be used during the course of an 
experiment to see whether further data should be taken, since regular data are 
not necessary to fit the spline and the spline may be evaluated anywhere. The 
experimenter can do this by withholding one or a few special data points, or by 
obtaining new data points and comparing them to the values “forecasted” by the 
spline based on the previous data points, or comparing the two splines com- 
puted with and without the special or new data points. These comparisons may 
of course vary over the (x, y) plane. We remark that we had a particular 
interest in the minimizer of the function being studied and we conjecture that 
the minimizer of the fitted spline is a quite reasonable estimate of the minimizer 
of the unknown function in examples like this one. 

4. Franke’s comparisons 

In 1979 shortly after the original thin plate spline theory became available 
Franke (1979, 1980) did an extensive numerical study comparing different 
methods of interpolating scattered, “exact” data on the plane, including inverse 
distance weighted methods, methods based on triangulation, finite element 
methods and a group of methods which consisted of thin plate splines and 
Hardy’s multiquadrics. This latter group (which can all be shown to be Bayes 
methods, more on that later) were the only methods which in Franke’s study 
received an “A” for visual appearance. Existence properties of Hardy’s multi- 
quadrics were not even known until the important work of Micchelli (1986). Our 
visual results agree with Franke’s in the case of the thin plate spline. From 
Franke’s pictures, there is little visually to distinguish between the thin plate 
spline and the multiquadrics, on the examples he tried. The thin plate splines 
will interpolate a plane by a plane (m = 21, and a quadratic by a quadratic 
(m = 3); however, the main advantage of using the thin plate spline for us at this 
time is the availability of GCVPACK and the ability to use it easily in conjunc- 
tion with S. 

5. Interpolation formulae as Bayes estimates, interpolation on the sphere and in 
Euclidean 3-space 

For this discussion it is not necessary that Pk be in Euclidean 2-space. Pk may 
be in Euclidean 3-space, or, just in an abstract metric space 7. Let 
&(P), . . . , +J P) be M < y1 linearly independent functions with the property 
that least squares regression on their span for the design P,, . . . , P,, is unique, 
that is, the IZ x M matrix T with i, v entry +<Pi,> is of rank M. Let K(P, P’) be 
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any positive definite function on Y X 7, that is, Cj,,Uja,K(~j, Pk) > 0 for any 
a =(a,,..., a,) not identically 0. These two ingredients will always lead to an 
interpolation formula which is exact on span $1,. . . , +M via the formula 

f(P) = E P”4,(P) + ? S/JR 4) (12) 
v=l k=l 

where, if we let T be the it x M matrix with iv entry 4,(Pi> and K be the n X IZ 

matrix with jk entry K(P,., P,), then p = (PI,. . ., PM) and 6 = (6,, . . . ,6,) are 
given by (8) and (3) with 3 replaced by M. See Kimeldorf and Wahba (1971), 
Micchelli (19861, Wahba (1990). 

Now consider the stochastic model 

Z(P) = 5 Q&(P) +2,(p), PEY, 
v=l 

(13) 

where 2, is a zero mean Gaussian stochastic process with EZ,(P)Z,( P’) = 
K(P, P’) and 8 N N(0, 51). It is well known (see Wahba, 1978) that 

lim E[Z(P)IZ(P,)=zk, k=l,...,n] =f,(P), 
5-m 

(14) 

so that this type of interpolation formula has a Bayesian interpetation. Note that 
if Z, is replaced by Z, + CFc1,p,4, for any p,, then f0 will be unchanged. It can 
thus be seen that it is not necessary to know K completely: _if i is any 
symmetric function with_ the property that Ckak(K(P, Pk) - K(P, Pk)) = 0 
whenever T’6 = 0 then K may be substituted for K and the result will be the 
same. For the existence of an interpolation formula of the form (12) it is only 
necessary that K be conditionally positive definite with respect to $,, . . . , c),,,,. 

This means that Cj,kt3ji3kK(Pj, Pk> is required to be positive only when T’6 = 0, 
equivalently when 6 is in the column span of F2. The variogram of kriging 
estimates have this property, see Matheron (1973). For an example of a 
non-negative definite function which is equivalent to E( P, P’) in this sense, see 
Wahba and Wendelberger (1980). See also Sacks et al. (1989). 

Wahba (1981,1982) gives some relatively simple positive definite functions on 
the sphere. GCVPACK may be used with them to provide an interpolation of 
scattered data on the sphere. The partial spline model in GCVPACK may be 
used to obtain interpolation formulae which are “exact” on specified functions, 
see Wahba (1990), Bates et al., (1987). Alfeld (1989) provides a review of 
three-dimensional interpolation formulae. GCVPACK can also be used to 
interpolate three (and higher) dimensional data with thin plate splines. It is 
necessary that 2m be greater than the number of dimensions. The resulting thin 
plate spline will provide an “exact” interpolation on polynomials of total degree 
less than m. 

6. Summary and conclusions 

It has been shown how to use S and GCVPACK to obtain esthetically pleasing 
contour plots from very accurate data on a function known to be smooth, as 
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might arise from a computer experiment. GCVPACK represents (according to 
one referee) “heavy machinery”; however, since the code is free from net 1 i b, 

and, we believe, easy to use, the cost of using this machinery to go from Figure 2 
or Figure 3 to Figure 6 is essentially a modest amount of data entry time. This 
form of interpolation is proposed for surfaces that are known a priori to be very 
smooth, as our example was, and for which the corners generated using S alone 
represent a visual distraction. We have provided a cheap and easy way to 
remove this visual distraction. The code may also be used easily as an aid in 
deciding whether more data should be taken. 

Finally, we have discussed thin plate splines as Bayes estimates and described 
their relationship to a broader class of global interpolation procedures, and we 
have noted that GCVPACK an be used for interpolation on Euclidean d space 
and on the sphere. 

Appendix. The source of the data 

We were studying a new cross-validatory-risk estimate for simultaneously esti- 
mating a smoothing and a weighting parameter and wanted to get nice plots to 
demonstrate how well the method worked on a realistic example. The model 
was 

Y, =x,&f+ El, 

Y* =&f+ E*, 

(15) 
(16) 

where y, is of dimension yli, f is of dimension p and l i N N(0, @,‘I), where the 
a,‘s are unknown. We estimated f by penalized least squares, and we estimated 
both a smoothing parameter and a relative weight to be given to the two data 
sets, by a new method whose properties are being studied by Monte Carlo 
methods. Our simulation study was geared to a particular application and we 
were interested in obtaining realistic accuracy estimates to assess how well the 
method might work in practice. The application had to do with estimating the 
global 500 millibar height (the height at which the atmospheric pressure is 500 
millibars), given direct observational data from radiosondes (data source 11, and 
from a forecast (data source 2). The vector f contains the Fourier coefficients of 
the 500 millibar height with respect to an expansion in spherical harmonics used 
as basis functions. y1 and y, represent the two different sources of data. In 
order to mimic a realistic problem in numerical weather forecasting, the n’s and 
p had to be very large; we used IZ~ N 900 and n2 = p - 600. 

For a given r, (Y the estimate f,,, of f is the minimizer of 

(17) 

where J is a suitable penalty matrix. Letting Aij(r, a) be the matrices satisfying 

x1.& =AuY, +Ar2Y2, (18) 

X2fr.a =&Yl +A**Y*, (19) 
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our cross-validation-risk estimate is the minimizer over r and cx of 

1 
C(r, a) = ~ 

i 

II Y, -X,f,,, II * II Y, -X2&, II 2 

111 +n2 ((1/nl)tr(Z-A,,))2 + ((l/n2)tr(I-A22))2 * 1 (20) 
Each time C was computed with a new r, it was necessary to compute a 
600 x 900 singular value decomposition. 

It can be shown using the arguments in Craven and Wahba (1979) that the 
minimizer (;, 6) of C(. , .I is approximately a minimizer of 

R(r, a) = &[ llxIcf-.f~,,)l12+ llx,(f-fr,a)l12]. 
1 2 

(21) 

The data were values of R(x, y> for a selected example, where x = const log r2 

and y = const log(a/&). One of the goals of the original study was to compare 
the minimizers of R and C. Some corresponding plots of the “C” data elimi- 
nated here at the suggestion of a referee may be found in Bates et al. (1990). 
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