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1. INTRODUCTION 

We consider properties of certain approximate solutions of Fredholm 
integral equations of the first kind. Consider the equation 

~0) = s, K(t, s> 4s) 4 t E T, (1.1) 

where S, T are closed, bounded intervals of the real line, K(t, s) is a given 
kernel on T x S with appropriate properties, and u(t) is known only for 
t E A = (t1 ) t, )..., t,J, where tl < t2 < *.. < t, , [tl , tn] = T. 

Letting u(t*) = ui , we take as an approximate solution the function 2 
which satisfies 

Uf = s K(ti , s) S(s) ds, i = 1, 2,..., n (1.2) 
s 

and minimizes a quadratic functional J(z) of the form 

J(z) = 11 R-1’2z & , (1.3) 

where R-II2 is a densely defined, unbounded linear operator on Z2(S) to be 
selected from a certain general class, and )I * IIz8 is the norm on 5E2(S). 

To define R-l12, let R(s, s’) be a continuous, symmetric positive definite 
kernel on S x S. Then, by the theorems of Mercer, Hilbert, and Schmidt 
[8, pp. 242-2461, the operator R, defined by 

@f)(s) = s, R(s, u>f(u) du, f E -W), 
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has an dP,(S)-complete orthonormal system of eigenfunctions (dY}EI and 
corresponding eigenvalues {a}:, with A, > 0 and z>, hV2 < co. R(s, s’) has 
the uniformly convergent Fourier expansion 

a! 

Let (-, a) be the inner product in P2(S). Forfe Y2(S), we have 

f = 2 fy4” 9 “6 = (f, A)> v = 1, 2,..., 
l-1 

and we may define the symmetric square root R-II2 of R-l by 

(1.8) 

for any f E g2(S) for which 

(1.9) 

in which case, 

f,f = II R?& . 

Let 

and let R, , for s fixed, be that function on S whose value at s’ is given by 

R,(s’) = R(s, s’). (1.10) 

The following facts about sR may be verified by elementary methods, 
with the aid of (1.5): 

(i) XR is a Hilbert space with inner product (*, -)R given by 

(f,g)R= i=$% 
v=l y 
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(ii) R,EXR,V.sEES; 
(iii) (R, , z)~ = z(s), z E S& , s ES. 

Note that, for z E X, , 

II ~l’~z I/z, = II z IIR , (1.11) 

where /I * (IR is the norm in Z” . 
Properties (ii) and (iii) show that & is a reproducing kernel Hilbert space, 

(RKHS) with reproducing kernel R(s, s’). See, for example, Aronszajn [2], 
Yosida [15], Parzen [6], and Kimeldorf and Wahba [5] for further discussion 
of RKHS’s and their uses. 

The linear functional which, for fixed s* ES maps z E .%” into z(s*) is 
continuous in & , as a consequence of (iii) and the Riesz representation 
theorem. Conversely, if X is any Hilbert space of functions for which the 
linear functionals, 

z - z(s*), (1.13) 

are continuous for every s* ES, it is known that there exists a unique sym- 
metric positive definite kernel R(s, s’) satisfying (ii) and (iii). To see this, note 
that, by the Riesz representation theorem, there exists e,* E X with the 
property 

(f,* 9 z> = z(s*). (1.14) 

Then, let 

(1.15) 

R(s, s’) of (1.15) is not required to be a continuous function of s and s’ on 
S x S. In this note, however, we always assume continuity. This assumption 
entails that & C Co(S), where Co(S) is the continuous functions on S, by the 
inequalities 

I 44 - 4s + 4 = I+, & - &+A I G II z IIR II Rs - Rs+c IIR 

= II z IL (R(s, s) - Ws, s + 4 + R(s + E, s + W2. 

As an example of an RKHS, let L, be an mth order linear differential 
operator with an m dimensional null space. Let G&s, u) be the Green’s 
function for the problem 

Lnf=g (1.16a) 

f”‘(O) = 0 , v = 0, 1, 2 ,..., m - 1, (1.16b) 

640/712-s 
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and let R(s, s’) be given by 

Then, 

R(s, s’) = J1: G,(s, u) G,(s’, u) du. 

XR = {fif(“)(O) = 0, v = 0, l,..., m - 1, 
f(+l) absolutely continuous, L,f E &[O, l]] 

and the inner product in %R is given by 

(f, g)A = jol (Lnf)G4Lg)(4 du. 

(1.17) 

Examples of RKHS’s, where boundary conditions such as (1.16b) are not 
imposed, may be found in [5], see also [6; 141 for further examples. 

If A is a continuous linear functional on an RKHS with kernel R(s, s’), then 

ffz = (7, Z)R > 

where 7 is given by 

T(S) = (7, RJR = 4s. 

Thus, knowledge of the reproducing kernel R(s, s’) for &$ allows the 
explicit construction of the representer of any continuous linear functional. 

Returning to the discussion of (1. l), we suppose R has been selected, and 
that K has the property that the family of linear functionals {(It, t E T} defined 
by 

A,z = js K(t, s) z(s) ds, t E T, ZEH~ 

are all continuous in %a , and linearly independent. 
Then, (I .2) may be rewritten 

ui = (rlt, 2 9, > i = 1, 2 ,...) n, 

where Q, E & is defined by 

(1.19) 

with t = ti . 
rlt(s) = js Nt, 4 R(s, 4 du s E s, (1.20) 

The previous assumption of linear independence is plausible, since other- 
wise there would exist constants {c~}:=~ , with 
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and then 

for every z E ZR . 
Let V, be the (n-dimensional) subspace of XR spanned by (7,~~) t E A}, 

and let PVn be the orthogonal projection in ZR onto V, . If z is an arbitrary 
element in .YF’ satisfying (1_19), then 5 = P,,z satisfies (1.19) also and 
minimizes the norm 11 z IIR among all such solutions. The element Py z, being 
an element of V, , can be solved for explicitly from (1.19), and is giten by 

where Qn is the n x n matrix with i, ith entry given by 

(1.22a) 

Q(t, t’) = s, j/(t, s) R(s, s’) K(t’, s‘) ds ds’. (1.22b) 

Q, is nonsingular by the presumed linear independence of the {vt, t E A). 
Let N(K) be the null space of K in ZR (possibly the 0 element) and let 

V = J’“‘(K) (in HR). Then, by definition, 

0 = 
s 

K(t, s) z(s) ds, t E T, z E HR =s- z E A’-(K). (1.23) 
s 

Equation (1.23) may be written 

0 = (?t 3 Z)R , t E T, ZEXR * ZE VL. (1.24) 

Thus, (vt, t E 7’) span V. 
If R(s, s’) is continuous on S x S, then XR is separable. Suppose that 

Q(t, t’) = (TV, vte)R is continuous for (t, t’) E T x T, then {qt, t rational, 
t E T) is dense in the set {qt , t E T). Let PV be the projection operator in 2 
onto V, and let 

It d II = mfWi+l - tJ. (1.25) 

It then follows that 

,& II PYZ - pv,z IL? = 0, (1.26) 

for any fixed z EX~ . (Obviously we possess no information concerning 
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z - P,z E J(K).) It appears that no rate holding uniformly for z E ZR can 
be found for (1.26). In this note we investigate the convergence rates of 
II P,z - Pv,z IIR and l(Pvz)(s) - (Pvnz)(s)j for P,z in a certain dense subset 
ofC&. 

To study l(Pvz)(s) - (Pvnz)(s)~, it will be convenient to use the fact that 

lKf’vz)(s) - (Pv,z)(~)l = l(Pvz - P,z, Pv& - Pv,,&)R I 

< II pvz - p,Z /iA 11 f'vR, - Pv,R, /IR 

< 11 pvz - PVnZIIR /I R, - P,R,jl,. (1.27) 

The approximate solution (1.21) is not, in general, the most appealing 
for computational work, since Qn will become poorly conditioned as 
(ti+l - ti) - 0 if Q(t, t’) is smooth. We study properties of the approximation 
(1.21), however, because of its close relationship to the approximate solution 
given by the method of regularization (see Eq. 1.28), which has been discussed 
and also investigated numerically by a number of authors. See Phillips [7], 
Tihonov [ll, 121, Tihonov and Glasko [13], Ribiere [9], Strand and 
Westwater [lo], Wahba [14], and Hunt [3]. However, there seems to be a lack 
of general theoretical results concerning the rate of convergence of these 
approximate solutions. 

The approximate solutions given by the methods discussed by the authors 
above are (except for discretization) equivalent to finding z E HR to minimize 

i (ui - hi 3 z)R)2 + h i/z Iii, (1.28) 

where X is a parameter to be chosen. The solution I to this problem is given by 

.i(s> = (~t,(~ht,(~>,..., rl&>>(Q, + W-l (~1 , uz >..., 4’. (1.29) 

In [7; 11; 121, jl z 11% is defined by some special case of the example of (1.18), 
with good numerical results presented for m = 2. There doesn’t seem to be 
any obvious guideline for the choice of R, other than the observation that 
one would like the .& norm of the unknown solution to be small. 

We will use the notations K, K*, and Q for the operators defined by 

W*f)(s) = s K(t, s)f@> dt, s E s, f'E -%m, (1.30) 
T 

<Qf><t> = s, Q<t, Of@') dt', t E T, J-E c&(T). 

Note that Q = KRK*. 
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The main Theorem of this paper follows. 

THEOREM. Let z E Xz have the property that 

PVz E RK*(.&( T)), (1.31) 

or, equivalently, 

u = Kz E KRK*(gz(T)) = Q&(T)), 

and suppose that Q(t, t’) satisfies 

(i) (al/W) Q(t, t’) exists and is continuous on T x Tfor t # t’, (1.32) 

1 = 0, 1, 2 ,...) 2m, (8/atz) Q(t, t’) exists and is continuous on T x T for 
1 = 0, 1, 2 ,..,, 2m - 2; 

(ii) lim,?,* (82m-1/at2m-1) Q(t, t’) andlim,,,, (azm-1/at2m-1) Q(t, t’) (1.33) 
exist and are bounded for all t’ E T. 

Then, 

/I PVZ - pV,z I/R = o(il d Ii”). (1.34) 

Using (1.20), it is seen that (1.31) is equivalent to 

Vvz)(s) = s, W(S) p(f) dt’, (1.35) 

for some p E -5X2(7’). It will be shown later (Lemma 2 et. seq.) that, if Q(t, t’) 
is continuous, then RK*(pz(T)) C V and is dense in V in the ZR norm. 

An obvious and useful corollary follows. 

COROLLARY. Let Z E & , # E RK*(-g(T)), then 

l<z~ #>R - <pVnz, #)R j = i<z - P,z, # - pV,$)R 1 

< 11 z IIR tI # - PI’,+ IIR = o(jj d II”). (1.36) 

As an example of the application of this Corollary, suppose it is desired 
to approximate (z, #)R for given #, knowing (u(ti)}~sl . The approximation 
may be taken as <PV,z, #jR , and the convergence rate of (1.36) for the 
approximation to (z, $)‘)R , then obtains irrespective of conditions on z. 

A useful special case is 

<Z, +>R = s, W(s) Z(S) ds, (1.37) 
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i/3(s) = s, R(s, s’) w(d) ds’ = (Rw)(s). (1.38) 

If only w E K*(&(T)), then # E MC*&(T)). 
Section 2 is devoted to the proof of the theorem and associated lemmas. 

In certain very special examples the rate of convergence of 11 R, - PvnR, IIR 
in (1.27) may also be found. Section 3 is given over to an example. The result 
there is equivalent to well known results in the convergence of derivatives of 
spline function approximations. It appears, however, that further results 
along this line depend rather delicately on detailed properties of K and R. 

2. PROOF OF THE MAIN THEOREM 

It will be convenient to define an auxiliary Hilbert space Zo . We let so 
be the reproducing kernel Hilbert space with reproducing kernel Q(t, t’), 
t, t’ E T defined by (1.22b), and inner product (-, -)o . Let Qt be that element 
of A& whose value at t’ is given by 

QtV) = Q<t, t’>, (2.1) 

and let Zr, be the subspace of X0 spanned by the elements 

{Qt,>L=, . 

Let PT, be the projection operator in Xo onto %r, . 

LEMMA 1. Given z E LZ!$ let u be dejined by 

u(t) = (Tt 7 Z>R 7 t E T. 

Then u E SO and 

/I PVZ - pV,z i/R = 11 24 - pT,,u IlO. 

(2.2) 

Proof. Since 

<et, Qt,>, = QO, t’) = (qt, W)R , t, t’ E T (2.3) 

and {Qt , t E T} span X0 , there is an isometric isomorphism between aEp, 
and V generated by the correspondence “-“, 

Qt~-%o -QE K t E T. (2.4) 
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Obviously, 

under this isomorphism. Furthermore, since for z E sR , 

(qt , Z)R = (52, Pvz), = u(t) = (Qt 7 u>o 7 

we have 
Pyz - u, 

and 

pV,,z N PT,,% 

(2.5) 

(2.6) 

(2.7) 

and, hence, 

11 PVZ - p,z lb = 11 u - pT,u 110 * (2.8) 

This completes the proof of Lemma 1. 

LEMMA 2. Suppose z has a representation 

4s) = 1 W(S) PO’> dt’, (2.9) 
T 

for some p E LZz(T), where qt(s) is defined by (1.2O).l Then z E V and z - u 
under the correspondence “N” of (2.4), where 

u(t) = s Qt(t’) p(f’) dt’. (2.10) 
T 

Proof. It is sufficient to prove the result for p continuous, as follows. 
Suppose {pvj~l is a sequence of continuous functions converging (in the 
LX2 norm) to p E LZz. Then, u, , given by 

u,(t) = j- Q@> pdt’> dt’, 
T 

is in &$ , and corresponds to z, , given by 

z,(s) = j- w(s) pv(t’> dt’. 
T 

Then, u, converges pointwise uniformly and, hence, strongly in X0 to u. 
Similarly zV converges strongly in V to z and z - u. 

l That is, 2 = RK*p, p E -Y,(T). 
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Now, let p be continuous and let flL = {tll , tSl ,..., far), I = 1, 2 ,... be a 
sequence of partitions of T, such that, for every r, the Riemann sums for n, 
for the integral 

s Q(f, 0 p(f) df’ (2.11) 
T 

converge. 
Then z(,) , I = 1,2,... defined by 

z-1 
Z(z)(S) = c %,@I P(f&~+l,z - h), I = 1, 2,... (2.12) 

j=l 

is a Cauchy sequence of elements in V, which converge pointwise to z(s) of 
(2.9) and UC,) , 1 = 1,2 ,... defined by 

z-1 
udt) = <% > z(L))R = 7)t , c 'Itj&&+,,, - h) 

> 
I = 1, 2,... (2.13) 

j=l R 

is a Cauchy sequence of elements in Xo which converge pointwise to u(t) 
given by (2.10). But by (2.5) ufz) - zu) so we must have u - z with u and z 
defined by (2.9) and (2.10), thus, completeing the proof of Lemma 2. 

Incidentally, Lemmas 1 and 2 may be used to show that RK*(5$(T)) is 
dense in V (in the #R-norm). To see this, note that it is only necessary to 
show, that, for each t, E T, and every E > 0, there exists p’ E J$(T) such that 
xE = RK*p’ satisfies 

I/ '%a - XE IiR < E. (2.14) 

Now 

+I = (RK*pW) = I, qt@) ~‘(0 dt (2.15) 

and so, by Lemmas 1 and 2, 

II%* - X'/iR = 11 QP - Ycllo, 

where 

~'0) = jr QtW ~'(0 dt'. 
But 

II Qv - Y’ 11% = Qh > &J - 2 jr Q(t* 7 0 ~‘(0 df’ 

+ jr jr p’(t) Q(t, t’) p’(f) dt dt’, (2.18) 

(2.16) 

(2.17) 
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and it is obvious that if Q(t, t’) is continuous on T x T, then there exists a 
p’ E &(T) such that the right hand side of (2.18) is < G. 

We now proceed to the prove the theorem. 

Proof of theorem. By Lemmas 1 and 2 it is sufficient to prove 

11 2.4 - pT,,u 110 = o(ll rl ii”>, (2.19) 

where 

u(t) = 1 Qt(t’) ,o(t’) dt’. 
T 

We actually show that 

Ilu - PT,,uIIo G @ml" (Cd& - 6) + GF2 [IT p2(t)df]1'2 IIA IP, (2.20a) 

(2.20b) Cl = (1 + 2m0,) 

C, = 2(1 + 2m0,) sup 1 a2m-1 

- Q(t, 531, 
f.5'~T (2m - l)! at2-l VW 

0, = [3(2m - I)]““-‘, (2.20d) 

and it is understood that if (azm-l/a[““-l) Q(& 5’) is undefined the maximum 
of the left and right absolute derivative is taken. 

If zi is any element in tic of the form 

u” = 1 Qt, I 4) p(t) 4 
i T 

(2.21) 

then, since u’ &$Tn , we have 

The proof proceeds by tiding a set of functions (ci(t)};,, so that II u - u’ 11: 
with z’i defined by (2.21) is bounded by the right hand side of (2.2Oa). 

Without loss of generality we assume that 

(2.23) 

No generality is lost, because we may delete elements from A without 
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reducing the right hand side of (2.22). From any set d with mesh norm 11 A 11 
we can always choose a subset A’ with property (2.23), and 

II A II G 3 II Ll II (2.24) 

by dividing the interval T into successive subintervals of length II d jl and 
selecting exactly one ti from every other subinterval. We assume this has been 
done and the set A’, which we will relabel d = {tr , t, ,..., t,}, has mesh norm 
bounded by 3 II A 11. 

Now, since u satisfying (2.10) satisfies 

(u, U>Q = s, i, p(t) Q(t, t’> ,4’> dt dt’, 

(u, Qt,>, = u(ti> = s, Q&> p(t) dt, 

it follows that 

(2.25) 

(2.26) 

= s, s, p(t)&‘) (Qt - i 4) Qt, , Q,s - i 4’) Q,& dt dt’. (2.27) 
i=l j=l 

Without loss of generality suppose IZ = N(2m - 1) + 1 for some integer N. 
To simplify the notation, let 

tk,i = tk(2m--l)+i 7 k = 0, 1, 2 ,..., N - 1, i = 1,2 ,..., 2m. 

(Note that tk,em = t,,,,,). Let Zk be the interval 

Ik = @k,l 7 tk+l.ll, k = 0, 1, 2 ,..., N - 1. 

For t E Zk , we will approximate Qt by that linear combination of 

tQt,,J:Z 3 

which corresponds to Lagrange (polynomial) interpolation of degree 2m - 1. 
More precisely, let 

Pk.&) = fj (t - tk..)/yJ Ok,i - tk.v), 
Vfi V#i 

= 0, 

k = 0, 1, 2 N - ,..., 1, 

i = 1, 2 2m. ,..., 

(2.28) 
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For t E 1, , t’ E II , set 

Qt - i 4) Qt< , Qt, - 
61 

179 

We want to use the Newton form of the remainder for Lagrange inter- 
polation, [4, p. 2481. For any f(t), t E Ik , 

f(t) - ?f Pk.&)f(tk.i) = 5 (t - tk.i)f[tk.l 9 fk.2 P**-P fk.2m Y d, (2.30) 
61 i-1 

wheref[t,,, , tk.2, . . . . tk,2m, t] is the 2mth order divided difference. 
Using (2.30) with f(t) = et,(t) - ~f~lp,,i(t’) Q,Jt), the right hand side 

(r.h.s.) of (2.29) is seen to be equal to 

r.h.s. (2.29) = E (t 
i=l 

- ~lPt.i(tf) Qt,,j[tk,l , tk,2 ,...) tk,2mp flj- c2.31) 

For any f, we know that if f has 2m continuous derivatives in Ik , then 

f[tke.l 3 tk,2 Y-.-Y tk.2m , tl = w 3 (2.32) 

for some 5 E Ik . If we only know that f fnm-l)(t) is continuous except for a 
&rite number of finite jumps, then we may write the 2mth order divided 
difference as a divided difference of two 2m - 1-st order divided differences, 

f bk.1 , fk.2 >***, tk,2m, d = ct L fk I) {f Itk.l 9 tk,2 Pa**, tk.2m-l 3 '1 
k,2m . 

- f itk.2 3 tk.3 ,*-‘, tk,2nz 3 d>, (2.33) 
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and know that the term in brackets in (2.33) is bounded in absolute value by 
2 sup,,& 1[1/(2m - l)!]f’““-“@)I. 

By (2.23) and (2.28), 

I Pz.&>I G 0, , 0, = [3(2m - 1)]2”-‘. (2.34) 

Therefore, for t E Ik , t’ E Iz , k # J, we use (2.32) and have the following 
bound on the right hand side of (2.31): 

[ r.h.s. (2.29)j = 1 r.h.s. (2.31)/ 

G Ok,2?n - tk.1)2m Cl , teIk, t/e&, k # J (2.35) 

where C, is given by (2.2Ob). 
For t, t’ E I, , we use (2.33) and have the following bound: 

I r.h.s. (2.29)j = I r.h.s. (2.31)/ 

G (~*,2wa - tk,l)2m-1 c2 3 t, fEIk, (2.36) 

where C, is given by (2.20~) and where it is understood that if 
(a+w+1) eo, 5’) is undefined the maximum of the left and right 
absolute derivative is taken. Thus, using (2.27), (2.29), (2.31), (2.35), and 
(2.36), 

N-l 

II u - ti 11% < c, c (t,,, - tk.1)2m 
k, z=o 
k#Z 

I dOI I dOI dt dt’ 

N-l 

+ c2 c (fk,2, - tk,1)2m-1 
k=l IS Ik L I r&l I rW)l dt dt’. (2.37) 

Since 

I I PWI di < (tmn Ja - tk,d1'2 [j, p"(t) dt]ll: (2.38) 
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(2.37) becomes 

N-l 

IIU - a Ilao < Cl 1 (fk.2m - tkd2m+1'2 (tz.2, - 
k,l=O 

~Z*lY [s, P2wdf]1'z 

k#l 

“’ + c, Nfl (tk,2m - tk,~)~~ s,, P”(t) dt. 
k=O Ic 

d b”p(fk,2m - 
k 

fk.1)2ml /cl kNc; tfk,2m - tk,$” [s, p2(t) dt]“’ 

i#l 

x (4,2?n - tz,W2 [J;, p2U) d’] “’ + C2 2; jlk p”(t) dfl 

< s”p(tk,2m 
k 

- fk,l)2m X [C&a - h) + c2-j s, p”(t) dt 

G (2m)2" (3 IId II)"" (Cd& - h> + C2) jr p”(t) dt. (2.39) 

3. BEHAVIOR OF /I R, - PvnRsjjR 

We consider only a special example here. It will appear from the discussion 
that ,a general theorem is unavailable without further detailed assumptions 
concerning K(t, s). 

Let S = [0, 11, T = [0, I], and let 

(3.1) 
= 0 otherwise, 

I some integer. Then, since K is the Green’s function for the operator L, 
defined by 

Lu = u(Z), 

with boundary conditions z&‘)(O) = 0, v = 0, 1, 2,..., 2 - 1, we have 

z = u(Z) 3 (3.2) 

as the solution of (1.1). 
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N4 s’) = j, l (s - u,y (s’ - u>y du. (k-qjy- (k - I)! 

It follows that 

Q(t, t') = j' (&-y)[)! 
m-1 (t' - u)T-1 du 

(m - l)! ' 

with k + 1 = m. 
In this example, SR = {z: z(“)(O) = 0, v = 0, I, 2 ,..., k 

lutely continuous, zCk) E L,[O, l]}, 

(Zl,ZZ)R = 

- 1, zck-l) abso- 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

and So = {u: u(‘)(O) = 0, v = 0, 1, 2,..., m - 1, zJm-l) absolutely con- 
tinuous, ~6”) E L,[O, l]}, with 

(Ul 3 u2>0 = 5 ’ u;“‘(t) u’;“‘(t) dt. (3.7) 
0 

If, in general we view the operator K, defined by 

(W(t) = jr K(t, $1 z(s) 4 (3.8) 

as an operator from V to XQ , it is I :l invertible and 

u = Kz * K-l(P+) = P,z. (3.9) 

Returning to the example, the solution to the problem: Find iI E Se , 
satisfying2 

u(t,) = uq ) i = 1, 2,..., n (3.10) 

to minimize 

I/ u 11% = j1 [~‘“‘(t)]~ dt, 
0 

2 To avoid trivial difficulties, let r, > 0. 
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is given by 

WI = <Qt,(O,..., Qt,O>> Q;‘h , uz ,..., d’. (3.11) 

(u = PT,u, where u E Xc is any element satisfying (3.10).) 
The solution to this problem is well known to be the (unique) polynomial 

spline of interpolation to u(t), I E d, of degree 2m - 1 and continuity class 
C2m--2, and satisfying the boundary conditions for elements of X0 . Here, 

K-lu = u(Z) 
7 (3.12) 

and it is easily verified that 

vz/d~z)vrn4(~) = (Py,z)(s). (3.13) 

In this example, u having a representation of the form (2.10) implies that 

u”‘(O) = u(m+v)(l) = 0, v = 0, 1, 2 ,..., m - 1. 

Thus, Pv,z is the Ith derivative of a polynomial spline function of degree 
2m - 1 interpolating to a function u E C2”. Such approximants are well 
known to have convergence rates < O(l/ d l/21n-z-1/2), where k + I = m. 
See [I]. 

By (1.27) and the theorem, jl R, - PvnR, IIR = O(lj d ilk-1/2) would insure 
the above result, namely 

I 4s) - (P”,Z)(~)l d WI d Ilm+k-1’2). (3.15) 

A proof that II R, - PvnR, llR = 0(/l d ilk-1/2) for general K and R as in (3.3) 
might begin by writing 

II Rs - Pv,,Rs II; 

(3.16) 

=s [ l (s - u)f’ _ n 
o (k - I)! 

c di(s) s,’ K(ti , v) (;k-/;r do]’ du, 
i=l 

where, for hxed s, the {di(S)} are constants to be found. 
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To continue a proof, assume Kis such that K(ti , a) = 0 for u > ti . Then, 
for s E [ti , ti+,*] we have, for any m’, 

1 r.h.s. (3.16)I 

G s [ ti (s - u)y _ m’ 
0 (k - l)! z. 4+“(S) joti+” Wif” , v) yk--y;; dv12 du 

dv ] ’ du. 

(3.17) 

If K(t, v) = [(t - v)Fr/(l - l)!], then 

s 9 
K(tj , v) (;k-$ 

ml 

0 
, dv = (;A--‘),$ , (3.18) 

and the integrand in the first term on the right in (3.17) is the square of a 
polynomial of degree m - I in U. Set m’ = m - 1 and let q&) be the 
polynomial of degree m - 1 with 

qi.Ati+o) 1, 1, v=e = = - 0 he 
V, e 0, 1, 2 ,..., m 1. (3.19) 

Letting 

(3.20) 

the integrand in the first term on the right hand side of (3.17) is then identically 
zero, and, assuming (2.23), it is not hard to prove that the second term on the 
right hand side of (3.17) is bounded by Dm(ti+m-l - ti)2k-1, where D, 
is a constant. Thus, 11 R, - PvnR, jIR = O(lj d jjk-1/2). This approach to 
a proof clearly breaks down in general, however, unless the polynomial 
p(u) = (s - uy-1, u E [0, ti] is in the linear span of the m’ + 1 functions of u 
on LO, &I, 

I 
ti+v 

Wi+v , 4 (;k-Mu;r dv 9 24 E LO, &I, v = 0, 1, 2 ,..,, m’. (3.21) 0 
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