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ESTIMATION OF THE COEFFICIENTS IN A 
MULTIDIMENSIONAL DISTRIBUTED LAG MODEL' 

BY GRACE WAHB3A 

Least squares type estimates of the coefficients b(T), T = 0, + 1, + 2,. .., in the general 
multidimensional distributed lag model 

Y(t) = f b(s)X(t -s) + e(t) (t =.-1,0, 1,...) 
s= =00 

are considered, where {X(t)} and {Y(t)} are observable random processes, ?(t) is an un- 
observable noise process. The asymptotic joint distribution of the estimates, conditional 
on the observed spectral density of the input X(t), is given, as well as the unconditional first 
and second moments, a readily computable confidence ellipsoid, and an approximate 
expression for the expected covariance in predicting Y(t) from a new realization of X(t), 
using the estimated coefficients. 

1. INTRODUCTION 

LET 

co 

(1.1) Y(t) = b(s)X(t - s) + ?(t) (t = 1, 0? 1, 2, . ..), 
S= - 00 

where X(s) (column vector) is a P-dimensional covariance stationary random 
process, b(T) is a Q x P matrix for each T, with 

Q P 00A 
b(T) = ) bjk(T), E E Y Ibjk(S)I < OCx 

. j=1 k=1 s=-oo ) 

and Y(t) and t(t) are Q-dimensional covariance stationary random processes with 
the series {?(t)} independent of the series {X(t)}. Sample functions of X(t) and Y(t) 
are observed for t = 1, 2, . .., T, and it is desired to estimate b(T) for some of the z. 
In this note we give the asymptotic joint distribution of certain least squares 
estimates b(T) of b(T), under the assumption that the time series are Gaussian. 
A readily computable confidence ellipsoid for the estimates is given, as well as 
an approximate expression for the expected covariance in predicting Y(t) from 
a new realization of X(t), using the estimated coefficients. The results allow a test 
of the hypothesis b(T) bo(T). Intermediate results can be used to provide a test 
of the hypothesis B(w) B0(wo), where B(o) = ZLo -x b(T) ei'w is the transfer 
characteristic in the frequency domain. 

Estimates of the type considered here were introduced by Hannan [3] for the 
case P = Q = 1. They are formed from estimates of the auto and cross spectral 
densities of the series X(t) and Y(t). In a recent paper Hannan [5] obtains a central 
limit theorem which gives the asymptotic covariance of the estimates for general 
P and Q. His method of proof is different from that presented here. He does not 

1 This research was supported by the National Science Foundation under grant No. GP-4265 
at Stanford University. 
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assume normality of the X(t) and Y(t) series, and considers a general class of 
windowed estimates for the auto and cross spectral densities where the windows 
satisfy some conditions. He assumes that the entries of b(T) are 0 for all (z) greater 
than some q. (See [5] for details.) In this note the effects of b(T) =# 0 for large z 
are exhibited, and furthermore the results hold for estimates of b(T) for large z 
provided the length of the record is also long. Let M be the bandwidth parameter 
of the windows used for estimation of spectral densities. Loosely speaking the 
window is of width 27t/M. Hannan requires for his results that M2/T -+ 0, 
T/M"t" -4 0, where T is the length of the record, and t is a nonnegative constant 
depending on the window type and the parameters of Y(t). We consider only 
a special type of estimate of the spectral quantities, that is, averages of appropriately 
spaced periodograms.2 In return, the asymptotic formulas hold provided only 
that (M log M)/T -O 0, 1/M -* 0. 

2. THE ESTIMATES 

Let the auto and cross covariance (matrix) functions be defined by 

RXx(T) = EX(t)X'(t + -j), 

(2.1) RXY(r) = EX(t)Y'(t + r), 

RYY(T) = EY(t)Y'(t + T). 

We assume that the joint spectral density matrix, 

(2.2) F(w) = 

` o Fxyco 
(FYX(co) Fyy(o)) 

of the X and Y processes exists and is strictly positive definite, where 

1 00 
iO 

FXX(o)) = E- e -ioRxx(T) 

1 00 
(O 

(2.3) FXY(o) = -i e-iRXY(T), 

1 00 
iO 

Fy'(ow) = ye Y() 

Letting 

(2.4) B(o) = E b(T) ew, 

it is well known that 

(2.5) B(co) = (FXX(o))- lFXY(),* 

2 The periodograms are averaged within a frequency band of width 27r/M. 
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and that 
df00M 7v 2isM 

(2.6) bI(s) _ E b(s + vM) = E B( M7) e-2ffvsIM (s = O, ?1, ?2,...). 

Since, with a finite record, one cannot estimate an infinite sequence of param- 
eters, we instead choose an M and estimate the "aliased" version bM(s) of b(s) 
for IsI < (M - 1)/2. If b(s) 0 for Isi > (M - 1)/2, then bM(s) b(s) for 
sI < (M - 1)/2. 

Let 

(2.7) F(o)) = VYx( (J)) for o= (v = 1, 2,. M), 

where the elements f (w) of P(co) are estimates of the indicated spectral quantities, 
to be identified below, estimated from records of length T. 

Estimates b(s) for bM(s) suggested by (2.6) are 

1 M I427rcv\ rvsM M-1 

(2.8) b(s) =-M v1 kMJ e 2sivsIM Isi < 2' 
where, for convenience, we assume M odd and 

(2.9) B()) = [FXX(o)1)]- FXY(w) 

The reason for calling these estimates least squares estimates is discussed in 
Section 6. 

3. THE ASYMPTOTIC JOINT DISTRIBUTION OF THE ESTIMATES 

We now assume 

PROPOSITION A: The random matrices F(27rv/M), v = 1,2,... , M, satisfy 
F(24(M - v)/M) = F*(27tv/M) where "*" is complex conjugate, and are otherwise 
independent, and each has the complex Wishart distribution3 Wc(F(27rv/M), P + Q, n), 
[2,6], with n degrees offreedom, where n T/2M, T, M and n are large. 

Proposition A was first suggested by Goodman in 1957 [1]. Define 

(3.l1a) E xx(2rrrev)X() M Mj- = (v/M)-((n- 1)/2) 2r( r=t 1( s=1 

T 
n 2M (v =1,2,. 

Similarly define FXY(27rv/M) and Fyy(27rv/M). Let P(w) of (2.7) be given by 

(3.1b) p(2M) - (x2 v) y(2v)) (v = 2,...,M). 

3The complex Wishart distribution is a direct complex analogue of the real Wishart distribution. 
See (3.5) and the remarks following it for the complex Wishart density. 
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That is, the entries of the sample spectral density matrices are formed from non- 
overlapping averages of n neighboring periodograms. 

The assumption of Proposition A is justified as follows. Using a theorem proved 
in Wahba [8] and quoted in the Appendix, it is shown in the Appendix that 
if P(wo), o = 27tv/M, v = 1, 2,. .. , M, are estimated as in (3.1), and if b(s), Ist 
s (M - 1)/2, are estimated as in (2.8), then there exists 

__ /Ixx (27rv' pY(27rv) 

pi )7i mn m 
(v= 1,2,.,M), 

ml 'FX(27tv) gyy(I27cv)/ 

a suitably constructed family of random matrices satisfying Proposition A, such 
that if 

(3.2) b(s) =- B l3jj M e- 2ivs/M st 
- 

2 

B(wo) = [FXX(w@)]- lFXY(w-) 

then 

E b,,V(s) - bpv(s)I [M log M I* sM- 0 E l a(( ,)() const [ + M] ?- as M co, 
o(bMtv(s)) cntL T +M] 

M log 0 1, P; v = 2, Q), T 

where b,V(s), b,V(s) are the yt, vth entries of b(s), b(s) respectively, and o(b,V(s)) is 
the standard deviation of bMv(s). This result, of course entails convergence in 
distribution. The proof assumes that F(w)) is strictly positive definite, all co, with 

00- - IRQc)j < 0 < oo, where R(T) stands for the X, qth entry of RXX(T), RYY(T) 
or RxY(T). 

THEOREM: Let Proposition A be satisfied and let b(s), Isl < (M - 1)/2 be given 
by (2.8). Then: 

(i) the conditional distribution of b(s), IsI < (M - 1)/2, given FXx(27iv/M), 
v = 1, 2,... , M, is multivariate normal with 

E[b,V(s)] = bm(s), and 
(3.3) cov(b-v(s), b (t)lPXX) =-M E fee( V"(2fXt i e(2?ij(s-(t))IM, 

n M2 _= MM MI 

(y,= 1,2,...,Q;v, 1,2,...,P), 
where 

b(T) = IbAJT)} 9 

Fee(,)) = Fyy(a)) - FYX(w))(FXX(o)))-lFxY(o)) = Ifee} 

{FXX(o,\-1) = r (O- ,,,, 
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(ii) The unconditional mean and covariance of b(s) is 

Eb i(s) = bm (s), 

cov(b,v(s), b4n(t)) =n - M2E _ _ f x6x (XMJ e-(27i(st))IM 

where 

(FXX(o4<))-l = {f v?l(w-)}. 

PROOF: Let 

Pee 27tV) = Yy (2nv) -Yx(27v)( pxx( 27lv))'-lpxY (27v) 

In what follows the argument 2irv/M is suppressed. Part (i) follows immediately 
from an expression given by Khatri [6] for the joint density of Fee, B, FXX, when 
F is complex Wishart with n degrees of freedom. 

It is 

(3.5) g(npee , nxx) = 1 InF I t 
etrFee(n1e) (3.5) &F , , nF 

FQ(n - P) IFeeln-P 

1 I nFxxlQ e- tr Fee1 (B- B)ntXx(B- B)*' x 
rPQ IFeelp- 

1 InF I -trFXX-l(nFxx) 

Fp(n) lFxxn e 

where Fr(n) = 2ir(r (n)F(n - 1)... (n - r + 1). 
It is observed from the form of (3.5) that Pee is distributed independently of B 

and Fxx. Furthermore, F I being a submatrix on the diagonal of a complex 
Wishart distributed matrix, is also complex Wishart distributed, W1(Fxx, P, n). 
The third factor in (3.5) is the density function WI(Fxx, P, n), the distribution 
of Fxx. Hence, the second factor in (3.5) is the conditional distribution of B, given 
Fxx. The conditional distribution of the entries B u = 1, 2,.. . , Q, v = 1, 2,.. ., P, 
of B, given Ftxx are seen from the second factor of (3.5) to have the complex 
multivariate normal distribution [see 2] with 

(3.6) E[BMVIFxx] = BAv; 

(3.7) cov(By, BIFfxx) e 
f 

Part (i) then follows from (2.6), (2.8), and the independence of the spectral 
estimates at distinct frequencies. Part (ii) follows from the fact that E(Fxx)-1 
= (n/(n - P))(Fxx)-1. (This fact is proved in [7]. Its real analogue seems to be 
common knowledge.) 
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4. CONFIDENCE ELLIPSOIDS 

A joint confidence ellipsoid for b(s), ist < (M - 1)/2 may be established assuming 
Proposition A, and the observation in the proof of the theorem. We indicate the 
details for the case P = 2, Q = 1. 

Let bj and b, be the M-dimensional vectors 

b = (bJ(- 2 )'.'bj(v),..., bj( 2 )) 

( ( 2 ) i i( 2 ) (j = 1, 2), bj= (bj(;- 1,.. ,bi(v),. .bJ( 1)2 

where bj(T) and bj(z) are the jth entries in the 1 x 2 matrices bM(T) and b(T). 
Let b and b be the 2M-dimensional vectors, 

b = (bl:b2), 

b= (b1:b2). 

Using (3.3), the 2M x 2M conditional covariance matrix of b, conditioned on 

PXX(27rv/M), is given by Z where 

iIWD" W* WD12W* 

nM WD21 W* WD22W* 

where W is the M x M unitary matrix with r, sth entry (1/ M)e27tirsIM Dv" is 
the M x M diagonal matrix with r, rth entry fee(27rr/M) vx"(27.r/M), v, = 1,2. 

Let 
(4.2) 31 = (w 1 ^W* WD12W*) 

WD21 W* WD22 1)W* 

where Dv,, is the diagonal matrix with r, rth entry f vx(27rr/M)/fee(27rr/M). We have 
the following lemma. 

LEMMA: 
M 

(4.3) (b-b)- (b - b)' 2 ts, 
s= 1 

where ts = tM - and are otherwise independent F random variables with 4 and 2n 
degrees of freedom. 

PROOF: A direct calculation shows that 

ee I 27r 

(4.4) 
(b-b)-:(b -b)' 

= E 

f(2) si 
-ee(22s)) 

x <n B - _ _ _ _ _ - _ _ 
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where 

B(22Ms) = B M B2M 

Bi( Mj') = E bj(v) e2nisv/M (j= 1, 2), 
V=-(M- 1)/2 

B 27rs\ LM 

- 
jv 12 / = 

v= -(M-12 

and 

S(2jv) = f Fxx 27v 

Since the conditional distribution of (B(27ts/M) - B(27ts/M)), conditioned on 
FXX(27.v/M), is complex normal with (complex) covariance {nS(27cv/M)} 1, the 
quantity in brackets in (4.4) is distributed as 1/2 times chi-square with 2P = 4 
degrees of freedom, independently off ee(27s/M)/f ee(27ts/M), which is distributed 
as 1/2n times chi-square with 2n degrees of freedorm 

5. PREDICTION ERROR USING ESTIMATED COEFFICIENTS 

Suppose the model represents some stationary physical process; one observes 
realizations X(t) and Y(t) and estimates b(s). Later one observes, say, a new realiza- 
tion X(t) of the same process and wishes to predict Y(t) based on X(t) and b(s). To 
avoid uninteresting complications, we assume that Ib(s)l = 0 for Isl > (M - 1)/2. 

Let the prediction Y(t) of Y'(t) be given by 

Y(t)= , b(s)X(t - s) 
Isj,(M- 1)/2 

where 

Y(t) = , b(s)X(t - s) + 8(t) 
Isl <, (M -1)/2 

and X(t) and Y(t) are new realizations of the {X(t), Y(t)} processes. 
We have the following corollary. 

COROLLARY: 

(5.1) E(Ylae . ( 1 + EZ(t)t(t), 

for M large. 
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PROOF: 

E(Y(t) -Y'(t))(Y-(t) - Y(t))' 

(.E = E [b(r) - b(r)]X(t - r)-?(t) } 

(5.2) (Ml f- 1)/2) 

{ [b(s) - b(s)]X(t - s) - e(t) 
Isl <(M-1)/2 

Z , Eb(r) - b(r)]RXx(r - s)[b(s) - b(s)]' 
Irl, Is I _< (M -1)/2 

+ Eg(t)t (t), 

by the presumed independence of b, X and Z. 
Now, the u, tth element of the matrix sum in the last line of (5.2) is given, using 

(3.4), by 
I M ee {27jjX p jU|2njX 

(5 3) n-P E f\ M}E f xx M 
x Y E Rv,,(r - s) e-(2ij(r-s))IM 

M rj,jsj S< (M -1)/2 

But, for M large, 

(5.4) 
1 E Rv(r - s) e-(2ij(r-s))/M M jrj,js < (M- 1)/2 

(M -1)/2 ITrI 2___ 

I=-(M-1) Z t fi Rv(T)e 21ii/M 2tfXX 

(5.5) Z, l -fx M 

(5.6) {27g 
m ee 27ti E t) t 

giving the result. 

6. DISCUSSION 

The efficiency of estimates of this type is discussed by Hannan [4, 5]. 
If we consider the observed values of the process X(t) as fixed constants, then 

the estimates here are approximately the ordinary least squares estimates. We 
illustrate this remark with P = Q = 1. Fix M < T, M odd, and consider the model 

(6.1) Y(t) = E b(s)X(t - s) + ?(t). 
Isl(M -1)/2 

If we know X(t) for 1 - ((M - 1)/2) < t < T + ((M - 1)/2) and observe Y(t) for 
1 <s t < T, we may rewrite (6.1) as 

(6.2) Y= b + s 
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where Y = ((Y(1), Y(2),. . . Y(T))', b = (b(-(M - 1)/2),. b(O), b, *., b((M -1)/2)' 
e= (E(1),.. ., (T))' and E is the T x M matrix with X(j - k + ((M - 1)/2) + 1)in 

the j, kth place, j = 1, 2,. .., T, k = 1,2,. .., M. Hence bLS, the least squares 
estimate of b, is 

(6.3) bLS- ('H 7) 1' Y. 

Now let bSE = (bSE(- (M - 1)/2),... ,bsE(0),..., bSE((M - 1)/2)' be the esti- 
mate of b defined by (2.8). Letting W be the M x M unitary matrix defined in (4.1), 
Dxy be the M x M diagonal matrix with r, rth element fXY(27tr/M), and DXX be 
the M x M diagonal matrix with r, rth element fXx(27tr/M), it is easily checked that 
bSE(r - s) is the r, sth element of the matrix WDMxxDxyW* = (WDxxW*)l 
WDxyW*, and hence bSE is the (((M - 1)/2) + 1)st column of this matrix. 

Now let I be the T x M matrix with Y(j - k + ((M - 1)/2) + 1) in the j, kth 
position, where Y(s) = Y(s + T) for s < 1, Y(s) = Y(s - T) for s > T and let be 
the matrix gotten from S by replacing X(s) by X(s + T) whenever s < 1 and by 
X(s - T) whenever s > T. Then, approximately bLS is the (((M - 1)/2) + 1)st 
column of the matrix 
(6.4) (A')'1'p 

The r, sth element of E'IF is an estimate, say AXY(r - s) of RXY(r - s). (The entries of 
T' depend only on r - s.) Again approximately 

(6.5) ^' P WDxyW* 
where Dxy is the diagonal matrix with fXY(27tr/M) in the r, rth position, where 
fxY(o) is defined as 

(6.6) JxY(w) = 1 RxM AX)(e 
- 

eiwo. 
T=-(M-1) 

This follows by observing that the r, sth element of the right hand side of (6.5) is 
given by kXY((T) + RXY(z + M) + RXY(z - M), defining .kXY(z) = 0 for ITI >, M. 
Thus if RXY(T) is small for T large, the matrices in (6.5) agree for "most" of their 
elements. Similarly (H'H)' W139i W*, where DXX is defined analogously to 
'5xy.* The terms JXY(w9) and fXX(w) are estimates of fXY(o)(fxY(w) = fx LY(o)), and 
f Xx(o)). Hence, to the extent that the end terms above are negligible and f XY(27tr/M) 

fXY(27tr/M) JXx(27tr/M) fXx(27r/M), we have bLS bSE. 

University of Wisconsin 

APPENDIX 

The following theorem is proved in Wahba [8]. 

THEOREM: Let X(t) and Y(t) be jointly stationary zero mean Gaussian time series possessing a spectral 
density matrix F(o) strictly positive definite, all ), with a LrI IR(<)I < 0 < oX for each R(T), R(T) being 
the 4, r, nth entry of RXX(T) or RXY(T) or R`Y(T). Let the spectral density matrices F(2xV/M), v = 1, 2,. 
M, based on a record of length T, be estimated by non-overlapping averages of n neighboring periodograms, 
as given in (3.1), with n T/M. Define, for each T, M, 

_27rv 1 (n - 0/2 27rv j F ( -- E F2M + 27T (v = 1,2,...,M). 

Then, for each T, M, n T/2M, a family F(27xv/M), v = 1, 2,... M, of complex Wishart matrices, 
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F(27tv/M) - WV(F(27v/M), P + Q, n) independent except that F(2xv(M - v)/M) -F*(2irv/M), can be 
constructed on the sample space of (X(t), Y(t), t = 1,2,. T) such that 

M Ij27xv 427rv\12xv\ 427rvi\ nM log M 
(A.1) E 

E 

Trace F - F ))lF ) 
CF)) - 

Y+ C 2log 

where cl and C2 are constants depending on 0 and the largest and smallest eigenvalues of F(co), but not n, M 
or T. 

We remark that F(27rv/M) is an averaged version of F(o) of (2.2) where the averaging takes place over 
the same frequencies for which the periodogram is averaged. Note that, since our conditions on R(T) 
imply that the entries of F(wo) have bounded derivatives, F(2mv/M) -* F(2nv/M) as n/T - 1/2M -O 0. 

Since the variance of the entries of F(2nv/M) are proportional to 1/n, letting n = T/M, we have, as 
1/M -+ 0, M log M/T -O 0, that the M random matrices of (3.2) converge jointly in mean square to 
independent complex Wishart matrices. We remark that the nature of the estimates, (3.1), i.e., averages 
of appropriately spared periodograms, enters into the proof of the above theorem in the following way: 
each entry in F(2nv/M) is a quadratic form in the observations, and, except for a constant multiple, the 
quadratic forms for distinct v form a family of orthogonal projections. It appears that this fact is required 
to obtain results this sharp. Heuristically speaking this corresponds to windowed estimates with non- 
overlapping "square" windows. 

For ease of notation, and without loss of generality, let P = Q = 1; hence b(s), and b(s), and 
PXX(27xv/M), Fxx(27v/M) etc., are one dimensional, where b(s), s(s), are defined as functions of F(wo) and 
F(w) by (2.8) and (3.2). 

Now b(s) -sb(s) =&E (2.(2'v) -v(2v)) e2%ivs/T 

and it is straight forward to show that 

(A.2) lb(s) - b(s)I - ? gv y B 2m - 'FAB 
(2 M 1A,B=X,Y MM I 

where gv is a function of the entries of P(27rv/M) and F(27v/M) such that Eg2 < constant. Since the 
variance a2(b(s)) of b(s) z const./nM by (3.4), we have 

Ejb(s) - b(s)j ~M JEp( m 2V\ 2'~ 
b(s-b(s)) const. - E [Eg ,]B, E { A F ( )-- (B 

2 

const. -Fn E E EF (- PAB( FB () 

which, by (A. 1) cot I A,B=X,Y M ) 

M log M Mn2 2 
< const. (Ml |+ 

MlogM + <1 const. T + M 
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