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GENERALIZED INVERSES IN REPRODUCING KERNEL SPACES"
AN APPROACH TO REGULARIZATION OF

LINEAR OPERATOR EQUATIONS*
M. Z. NASHEDS" AND GRACE WAHBA$

Abstract. In this paper a study of generalized inverses of linear operators in reproducing kernel
Hilbert spaces (RKHS) is initiated. Explicit expressions for generalized inverses and minimal-norm
solutions of linear operator equations in RKHS are obtained in several forms. The relation between
the regularization operator of the equation Af= g and the generalized inverse of the operator A in
RKHS is demonstrated. In particular, it is shown that they are the same if the range of the operator
is closed in an appropriate RKHS. Finally, properties of the regularized pseudosolutions in this setting
are studied.

It is shown that this approach provides a natural and effective setting for regularization problems
when the operator maps one RKHS into another.

1. Introduction. Let X and Y be Hilbert spaces and let A be a linear operator
on a domain (A) = X into Y. The operator A is said to have a generalized inverse
A on a domain (A*) Y if for each ye(A*), inf{llAx-yll’xX}

[[AA*y y[ and [A*y[[ is smaller than the norm of any other element u X
at which the preceding infimum is attained. It is well known and can be easily
shown that if A is a bounded operator, or if A is a densely defined closed operator,
then A exists on (A) (A)+/-, where (A) is the range of A. The domain
(A *) in this case is a dense subset of Y and A* is unbounded unless (A) is
closed in Y A compact operator with infinite-dimensional range is a prototype of
an operator for which (A) is not closed.

To impart continuity to A* when (A) is not closed in Y, one.might consider
subsets X’, Y’ of X, Y, respectively, equipped with topologies which are not equiva-
lent to those of X and Y, and such that the generalized inverse of A, when viewed
as an operator from Y’ to X’, exists and is bounded. The topologies of X’ and Y’
are required to be induced by inner products, and must be amenable to the original
setting of the operator equation Ax y, so that questions of least squares solv-
ability and related approximation schemes are still meaningful in a wide context.

One objective of this paper is to show, when X and Y are -spaces of square-
integrable real-valued functions, that the topology of reproducing kernel spaces is
an appropriate topology for the goal stated above, and thereby to initiate a
systematic study of generalized inverses of linear operators acting between two
reproducing kernel Hilbert spaces. This study has strong interface with the problem
of regularization of (ill-posed or poorly-conditioned) linear operator equations.
This brings us to another objective of this paper, which is to provide a new approach
to regularization in the context of RKHS.

At present there are several approaches to the investigation and regularization
of ill-posed problems. These are discussed briefly in our report [10], which forms
an earlier draft of this paper and contains an extensive bibliography on these
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approaches. In this paper we present another approach to regularization based
on the notion of least squares solution of minimal norm and on regularization
operators in RKHS. Our approach coincides in philosophy with some ofthe known
approaches cited in [5], [16], [lOq (in the sense that we change the notion of the
solution and consider the problem in new spaces), even though it differs sharply
in technical details. We exploit (in an optimal way) the geometry of RKHS and
obtain results which are the best possible in this context. The basic results of this
paper are stated in Theorems 3.1, 4.1, 4.2, 5.1, 5.2 and 6.1. Applications of this
approach to rates of convergence of approximate solutions will appear elsewhere
Vl], V23.

To our knowledge this is the first time that generalized inverses of linear
operators and reproducing kernels are used simultaneously in the same context.
It is befitting to mention here that the concepts of a generalized inverse (of a matrix)
and RKHS both go back to the work of E. H. Moore [7].

2. Generalized inverses, reproducing kernel spaces, and pseudosolutions, of
linear operator equations. Let X and Y be two Hilbert spaces over the real scalars
and let A be a linear operator on (A)c X into Y. Let (A), U(A) and A*
denote, respectively, the range, nullspace and adjoint of A. The orthogonal
compliment of a subspace S is denoted by S+/-; the closure of S is denoted by
and the orthogonal projector on a closed subspace ///is denoted by Pu.

We consider the linear operator equation

(2.1) Ax y.

DEFINITION 2.1. An element u X is said to be a least squares solution of
(2.1) ifinf {llAx yll "x x} IlAu yll. If the set Sy of all least squares solutions
of (2.1) for a given y Y has an element v of minimal norm, then v is called a
pseudosolution of (2.1).

DEFINITION 2.2. The operator equation (2.1) is said to be well-posed (relative to
the spaces X and Y) if for each y Y, (2.1) has a unique pseudosolution which
depends continuously on y; otherwise the equation is said to be ill-posed.

Obviously (2.1) has a least squares solution for a given y Y if and only if
there exists an element w (A) which is closest to y. From this it follows im-
mediately that (2.1) has a least squares solution if and only if P--)y (A),
or equivalently y (A) (A). For such y, it is easy to see that the set Sy
has a unique element of minimal norm if and only if Py-fu V(A) for some
u Sy (in which case this is also true for each x S). Thus a pseudosolution of
(2.1) exists if and only if

(2.2) y A((A) VI U(A)+/-) (A)+/-.

In what follows we shall primarily be interested in the cases when A is a
closed linear operator on a dense domain (A) c X, or when A is a bounded
linear operator on X. In either of these cases, since V(A) is closed, condition
(2.2) reduces to the condition

(2.3) y e (A) ( (A)+/-.

The (linear) map which associated with each y satisfying (2.3) a unique
pseudosolution defines the generalized inverse of A, which is denoted by At.
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For each y e (A*), we thus have Sy A*y 4/(A). Note that in our setting,
A is a densely defined operator.

We summarize in the following proposition equivalent properties of the
generalized inverse (see Nashed [8]).

PROPOSITION 2.1. Each of the following sets of conditions characterizes the
generalized inverse A ofa bounded or a densely defined closed operator:

(a) AA*A A on (A), A*AA A on (A*), AA P I(Ar) and
A tA Pr(A)+/-I@(A), where the vertical bar denotes the restriction of the projector
to the indicated domain.

(b) A is the unique linear extension of {A[’(A)+/-} -1 to (A) (A)+/-

so that U(A ) N(A)+/-.
(c) For y (A) (R) N(A)+/-, A *y is the unique solution of minimal norm of the

"normal" equation A*Ax A’y, provided (A) c (A*).
(d) For y (A) @N(A)+/-, A *y is the unique solution of minimal norm of the

"projectional" equation Ax
PROPOSITION 2.2 Thefollowing statements are equivalent for A as above:
(a) The operator equation (2.1) is well-posed in (X, Y).
(b) A has a closed range in Y.
(c) A is a bounded operator on Y into X.
Proof (a) implies that (A) Y and thus from (2.3), N(A) (A). State-

ment (c) follows from (b) using Proposition 2.1(b) and the closed graph theorem.
That (c) implies (a) is obvious.

Convention 2.1. In this paper we encounter on several occasions a composition
of two operators, say A and B, where B is unbounded and densely defined but
AB is bounded. In all such cases we shall assume that AB has already been extended
as usual (i.e., by continuity) to the closure of the domain of B. An example is the
composition AA when N(A) is a nonclosed subspace. Then (A ) is dense, but
AA is bounded and can be extended to N(A) N(A)+/-, even though A cannot
(see also part (a) of Proposition 2.1).

When N(A) is not closed, the problem of finding least squares solutions of
(2.1) is ill-posed relative to the spaces X, Y. An ill-posed problem relative to (X, Y)
may be recast in some cases as a well-posed problem relative to new spaces
X’ c X and Y’ Y, with topologies on X’ and Y’ which are different respectively
from the topologies on X and Y. From the point of regularization, the topologies
on X’ and Y’ should not be too restrictive and must lend themselves to require-
ments which are satisfied by a wide class of admissible solutions of pseudosolutions.
This is precisely the point which we exploit in connection with the topologies on
reproducing kernel Hilbert spaces.

A Hilbert space of real-valued functions defined on a set S is said to be a
reproducing kernel Hilbert space (RKHS) if all the evaluation functionals f f(s)
for f e and se S are continuous. In this case there exists, by the Riesz repre-
sentation theorem, a unique element in g (call it Qs) such that

(2.4) (f, Qs} f(s), f e 2/g.

The reproducing kernel (RK) is defined by

(2.5) Q(s, s’)’= (Qs, Q;), s, s’ e s.
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Let denote the RKHS with reproducing kernel Q, and denote the inner product
and norm in 3/go by ( .,. )o. and II" 112, respectively. Note that Q(s, s’) (=Qs(s’)) is a
nonnegative definite symmetric kernel on S S, and that {Qs, s S} spans 2
since (Qs, f)Q 0, s S, implies f(s) 0. For properties of reproducing kernel
spaces, see Aronszajn [1], Shapiro [15, Chap. 6] and Parzen [13].

If S is a bounded interval (or if S is an unbounded interval but ’j" Q2(s, s’) ds ds’
< ), and Q(s, s’) is continuous on S S (the only case we shall consider here),
then it is easy to show that /gQ is a space of continuous functions. Note also that
52[S] is not an RKHS since the evaluation functionals are not continuous.

An RKHS We with RK Q determines a self-adjoint Hilbert-Schmidt operator
(also denoted by Q) on 92ES to 52[S] by

(2.6) (Qf) (s) fs Q(s, s’)f(s’) ds’, f 52[S].

Since Q(s, s’) is assumed to be continuous, then by the theorems of Mercer,
Hilbert and Schmidt [14, pp. 242-246], the operator Q has an 52[S]-complete

4 and corresponding eigenvaluesorthonormal system of eigenfunctions i}i=l
{2,}i1 with 2 >= 0 and = 2 < o (thus Q is a trace-class operator; see
2, Chap. XI.9 or 3, Chap. 2]) also Q(s, s’) has the uniformly convergent Fourier
expansions

i=1
and

(2.7) Qf , 2i(f dPi)2tsC/)i,
i=1

where (.,.)e2ts is the inner product in
It is well known (see, for example, [17]) that

)2e {f’f e 2’2[S], 2-l(f i), :[S] < (3(3 },
i=1

where the notational convention 0/0 0 is being adopted, and

The operator Q has a well-defined symmetric square root Q1/2 which is a Hilbert-
Schmidt operator ([14, pp. 242-246] or [3, Chap. 2])"

(2.8) Q1/2f Z (f,, (/)i)2ez[Sld/)i
i=1

Thus, since I/(Q) dl/(Q/2),

We Qa/(q2IS]) Q/2(2[S] @ dU(Q)).
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(Qx/2), has the representation

(2.9) (Q/2),f (/),(f, qS,)_tSlb
i=1

on @ Yge (2_ in 2[S]), where, for 0 a real number, O* O- 0 O; O* O,
0 O. Similarly Q has the representation

(2.10) Q if= Z 2i*( i)2[S]i
i=1

on its domain.
For any operator Q on 2[S] induced by an RK Q(s, s’), as in (2.6) we shall

adopt the notational conventions

(2.11) Q-1/2 .=(Q1/2), and Q-X "= Q*.
We have the relations

Ilfll< inf {llpllts, P ’z[S], f QX/Zp}, f
(fl’ f2)o (Q-1/2fl, Q-1/2f2)2[s], fl, f2

and, if f o and f2 0 with f2 QP for some p 2[S], then

(2.12) (fl, f2)o (f, P)zts.
3. Relationship between generaliz inverses RKHS and 2-spaces. We are

now ready to explore properties of the generalized inverse of a linear operator
between two RK spaces. In the remainder of this paper we let X [S] and
Y [T] denote the Hilbert spaces of square-integrable real-valued functions
on the closed, bounded intervals S and % respectively. Let A be a linear operator
from X into E Let denote point set inclusion only, and suppose that A has the
following properties"

(3.1) o (A)= X,

where is an RKHS with continuous RK on S x S"

(3.2) A(Wo) = W, = Y,

where and are RKHS with continuous RK’s on T x T" and

(3.3) W(A) in o is closed in

We emphasize in particular that the space is not necessarily closed in the
topology of.

Let A[x,r denote the generalized inverse of A, when A is considered as a map
from X into and let A denote the generalized inverse of A when A is con-
sidered as a map from o into . Now the topologies in (X, Y) are not the same
as the topologies in (o’ W)" Thus the generalized inverses A[x,r and A[o,
have distinct continuity properties in general. We shall now develop the relation
between A[O,R and certain (X, Y) and (L Y) generalized inverses. In the sequel,
the operators R" Y Y and R 1/2. y y are defined from the RK ofW analogous
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to Q and Q1/2.; see (2.7) and (2.8). We continue the notational convention of (2.11),
that is, R- R* Rr,r and R- /2 (R1/Z)r,r).

THEOREM 3.1. Under assumptions (3.1)-(3.3), let y (AQ,R)), i.e., y /g
(2_ in 1). Then

y (Qa/Z(R-a/ZAQX/Z)[x,r)R- x/z)(3.4)
and

(3.5) A[Q,mY Qx/2(R- X/2AQ x/2#,(x,r)R- 1/2y.

Proof The (maximal) domain of Ae,g) is t (2_ in g). Denote the
operator Q1/Z(R-X/ZAQX/Z)x,r)R-x/2 by L. We first show that @(Ae,R)) c @(L).
Let , R-1/2AQ1/2. The operator is defined over all of X since (Q1/2) x,
Qx/Z(x) Q, (A) /gO.’ A(Q)= c R and n (R-1/2). Also
(A-) ,(X) R-x/2(oeg) R-x/2() c Y Thus (x,r)) (A-) ()+/-
(3_ in Y), and

(Xx,y)) R-/2() @ (R-/2(og))1 (2_ in Y).

We now show

(3.6)

(3.7)

ye implies ye !(L),

y e (_t_ in g) implies y e @(L).

To prove (3.6), let y e .. Then R- X/Zy (-’t*x,n), so y (.*tx,rR- /z), which
implies ye (L) since N(J,x,.) is contained in X, the domain of Q/2. To prove (3.7),
let y e (2_ in gg). This means that y (R -x/) and (y,g)R 0 for all
g e ,. But for each g e, there exists a unique e Y U(R1/2) such that
g =/x/q. Thus (R-1/2y, R-X/z,x/2O)r 0 for all O e Y@ r(/x/z). Thus
R- /2y is orthogonal to R- x/2() in Y, so that R- 1/ey e (R- x/2(vf))+/-, 2_ in" Y,
y (,[x,r)R-1/2) and hence in (QX/2,[x,v)R-1/2).

Now we prove (3.5). For y (A(,)), let z =A[Q,y. Then z is the unique
element of minimal @norm in the set

(3.8) 5a {u: IlAu YIIR inf [lAx- YIIR}.

Let x QX/2p for p e X, and let R" X/2y. Let

W {w’ll/w 11 r inf P [1 r }.
pX

Then also

W- {w: IIR-a/2AQI/2w R-/2yll r inf IIR- X/2AQa/2p R-/2yllr
peX

(3.9) {w" AQI/2w- y[ R inf [[AQ1/2p Y[[R}"
peX

Let v be the element of minimal X-norm in I4(. Then v .x,Y)Y; =/[x,r)R- X/2y.
On the other hand, upon comparing (3.8) and (3.9) we have z= QX/2v

Q1/2XX,y)R- 1/2y. Thus z Q1/2(R- X/2AQX/2)[x,y)R-1/2y and
Ao.,my Q1/2(R- X/2AQX/2)x,rR-

which is the desired result.
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COROLLARY 3.1. IfA(Q) R, then AO.,R) is bounded.
Proof This follows from Proposition 2.2, or directly from (3.4)-(3.5).
It should be noted that an operator A may satisfy the assumption of Corollary

3.1 while failing to have a closed range in the space Y. This is, for example, the case
if A is a Hilbert-Schmidt linear integral operator (with nondegenerate kernel)
on X. It is this observation which makes RKHS useful in the context of regulariza-
tion and approximation of ill-posed linear operator equations. An application of
Theorem 3.1 is given in 5.

4. Explicit representations of minimal-norm solutions of linear operator
equations in reproducing kernel spaces. We assume that e is chosen so that

(4.1) the linear functionals {gt’t T} defined by

gt f (Af) (t) are continuous in

Then by the Riesz representation theorem, there exists {r/t, T} e such that

(4.2) (Af) (t) (r/t, f)e’ e T, f

By (2.4), r/t is explicitly given by

(4.3) r/t(s) (r/t, Q> (AQ) (t).

(r/t(s) is readily obtained in a more explicit form from (4.3) if A is a differential
or integral operator.)

Let R(t, t’) be the nonnegative definite kernel on T T given by

(4.4) R(t, t’) (r/t, r/c)o,, t, t’ T.

Let )ffR be the RKHS with RK R given by (4.4). Let R be the element of

’R defined by Rt(t’)= R(t, t’), and let (., ")R be the inner product in ourR. Let
V be the closure of the span of {r/, t T} in o" Now {R,, t T} spans ,, and
by the properties of RKHS, we have

(4.5) (t, t’)o R(t, t’) (Rt, Rt,)g.

Thus there is an isometric isomorphism between the subspace V and W, generated
by the correspondence

(4.6) t e V R e WR

Then fVgWR if and only if (t,f)o=g(t)= (Rt,g)R, t i.e., if
and only if g(t)= (Af) (t), T. Thus A(Wo)= A(V)= . The nullspace of
A in Wo is f’f, Af R 0, Since

(t,f)=0, tT and fef
and f e V implies f o IIANIIv, it follows that the nullspace of A in o is
Vz (L in o)" Hence (4.1)entails that the nullspace of A "o in o is
always closed, irrespective of the topological properties of A’X

We list the following table of corresponding sets and elements, under the
correspondence of (4.6), where the entries on the left are in



GENERALIZED INVERSES IN RK SPACES 981

V,

(4.7)
qt Rt,

Here Pv is the projector from onto the (closed) subspace
T, and r/* AQ A(Pv Q), i.e.,

(4.8) q (t) (q,, PvQ)
We have the following theorem.

TI-IZOM 4.1. Let A and e satisfy (4.1), and let R be given by (4.5), where
is defined by (4.2). Let tl* AQ. Then,for g o,

(A[Q,R)g) (S) (q, g)R, S S.

Proof Let f be the element in of minimal vfe-norm which satisfies Af
g, that is, f A[e.,R,g. Then f V and g f. Also r/* Pv Q. Thus

f(s) <Q, f>o. (PvQs, f>o (r/*, g>R"

We next obtain another operator representation of
THEOREM 4.2. Suppose

(i) (A*) is dense in Y, where A* is the adjoint ofA considered as an operator
from X to Y’

(ii) A and o. satisfy (4.1)"
(iii) o and R A(VfO) possess continuous RK’s.

Then, jbr g ,
(A[o,mg) (s) (QA*(AQA*)[y,y)g) (s), s S.

Proof First we show that R AQA*. This follows by observing that, for
g e (A*), (4.2), (2.12), (4.7) and the isomorphism between V and give

(AQA*g)(t) (tit, QA*g)o (tit, A*g)x

(Aqt, g)r (Rt, g)r

frR(t, t’)g(t’) dt’, T.

Thus, AQA* coincides with the bounded operator R on (A*) and hence by exten-
sion on Y. We write (AQA*)[r,r)= R -1. Next, suppose g e R((A*)), and let
p R-g. Then, since g Rp, Theorem 4.1 and (2.12) give

(A/Q,R)g) (S) (r/s* g)R (r/s*, P)Y (AQ, ,O)y

(Q, A’p)x (QA*p)(s) (QA*(AQA*)[r,r)g) (s), s S.

It can be shown easily that if @(A*) is dense in Y, then R((A*)) is dense in ovg
R.

Thus (4.9) extends to all g R"
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DEFINITION 4.1. Let A:X Y. The pseudocondition number of A (relative to
the norms of X and Y) is

[[Ax[ly IlAy[[ xv(A;X, Y): sup sup

x(A) y(A*)

The equation Af g is said to be poorly conditioned in the spaces X, Y if the
number y(A ;X, Y) is much greater than one. Note that =< 7(A;X, Y); for ill-
posed problems, 7 is not finite.

Suppose o is an RKHS with o = (A), and A and 2 satisfy (4.1)with
A(Q) )eR, R given by (4.4). Then 7(A )eQ, R) 1. To see this, write x /ge
in the formx x + x2, where x2 V+/-. Then Ax Ax Yl and Ilyxl R Ilxx I1"
Thus

7(A;e, ovfR) sup
IlY, IIR, sup ][x 1.

.-,o Ix 1 ,.,,o IlYIIR
On the other hand, the number 7(A ;X, Y) may be large. Thus the casting of the
operator equation Af g in the reproducing kernel spaces , R always
leads to a well-conditioned (indeed, optimally-conditioned) problem.

5. Regularization of pseudosolutions in reproducing kernel spaces. In this
section we study properties of regularized pseudosolutions (in RKHS) f of the
operator equation Af g, where g is not necessarily in the range of the operator
A. By a regularized pseudosolution we mean a solution to the variational problem:
Find f in ovge to minimize

(5.1) dPo(f) IIg Af 12
where o is an RKHS in the domain of A, Ilolle denotes the norm in an RKHS
ge with RK P, fe c Y, qS0(f) is assigned the value + if g Af q e, and
/l > 0. We suppose A and vgQ satisfy (4.1), hence A(oVgo) OVgR, where )F, possesses
an RK. As before, A may be unbounded, invertible, or compact considered as an
operator from X(= &a2[S]) to Y(= 2[T]). It is assumed that g possesses a (not
necessarily unique) representation g go + , for some go A(o) and ovge.
may be thought of as a "disturbance."

For 2 > 0, let e be the RKHS with RK P(t, t’), where P(t, t’) is the RK
on T x T associated with p. We have e ze and

(5.2) I’" 1, 211" 2
2P"

Let R(2) R + 2P, and let R) be the RKHS with RK R(2) R(2;t, t’). Accord-
ing to Aronszajn [1, p. 352], Rtz) is the Hilbert space of functions of the form

(5.3) g go + ,
where go and e. Following Aronszajn [1], we note that this decompo-
sition is not unique unless ougg and e have no element in common except the zero
element. The norm in g) is given by

2 3/tp, go(5.4) [g R(2)2 min (llgo I1 / p go g / g},
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where, however, the go and attaining the minimum in (5.4) are easily shown to be
unique by the strict convexity of the norm.

Consider now the problem of finding fz Q to minimize co(f in (5.1),
for g YgRtZ)" Then g Afz must be in Yfp and it is obvious that fz V, the orthog-
onal complement of the nullspace of A in ocfo. For any f V, Ilfll2 IIAfIIR
by the isometric isomorphism between V and YfR, and (5.1) may be written in the
equivalent form: Find f V to minimize

2 2Afl + Ig- Afll.
Comparing (5.4) and (5.5) with the aid of (5.2), we see that go and : attaining the
minimum on the right-hand side of (5.4) are related to the solution fz, ofthe mini-
mization problem (5.5), by

go Af and g Af.
In the following theorem, we give a representation of the solution fz.

THEOREM 5.1.Suppose (A*) is dense in Y, o. c (A) and A and o. satisfy
(4.1). Suppose 2/fo., OCfR(=A((2))and /fp Y all have continuous RK’s. 7hen,
for g 2/FRtZ), the unique minimizing element fz 2/go. of the functional dpg(f) is given
by

(5.6) <q*, g>g(x) fx(s) (QA*(AQA* + 2P)/r,r)g (s), s e.S,

where tl* AQS.

Proof First, our assumptions give that AQA* + 2P(=R + 2P) is a well-
defined positive definite operator on Y. We demonstrate, for

g (AQA* + 2P)(@(A*)),
that

(5.7) fx QA*(AQA* + 2P)[r.r)g.
Now, g Afz P(AQA* + 2P)[y.r)g fp, so that this demonstration will be
effected if we show that

for any 6 e uf2, with 16 e - 0.
But

2dpo(fz + 6)= [[2P(AQA* + 2P)t,v)g[[- 22((AQA* + 2P)[r,r)g, Ab)r +
2+ IIQA*(AQA* + 2P)[r,yN 0 + 22(A*(AQA*+ 2P)[r,y)g, b)x

2

We next show that, for g e (AQA* + 2P) ((A*)), that

<q*, g>mx) (QA*(AQA* + 2P)/r,r)g (s).
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Let (AQA*+ 2P)*g--p(A*). Then using (2.12) with Q replaced by R(2)
gives

(rl*, g)R(a) (rl*, p)y (AQs, p)y (Qs, A’p)x
(QA*p)(s) (OA*(AQA* + 2P)r.r)g)(s).

Thus we have proved (5.6) for g (AQA* + 2P) ((A*)).
We next show that QA*(AQA*+ 2P)r,r =- QA*(R + 2P)- defines a

bounded linear operator from WR to (2" If g Vfm, then (R + 2p)-l/eg
-p Y ( ’(R + 2P) and

Q1/2A*(R + 2P)- g Q1/2A*(R + 2P)- /2p y,
since

Therefore

IIQ1/2A*(R + 2P)- 1/2p 1/2 /2p < Pr R (R +2P)-1 r

QA*(R + 2P)-g Wo’ g

But

[[QA*(R + 2n)-’g [o Q1/2A*(R q- 2P)-1/2p < [p[Y Y R(;O"

It can be shown that (R + 2P) (o@(A*)) is dense in /{)R(2)’ SO that the right-hand
equality in (5.6) extends to all g e Wn(), and the left-hand equality obviously
extends by the continuity of the inner product.

We call the (linear) mapping which assigns (by Theorem 5.1) to each g e
the unique minimizing element fz the regularization operator of the equation
Af g.

The most useful situations occur, of course, when Wn is strictly contained in

vfnz. For example, Wn may be a dense subset of Y in the Y-topology and
a bigger dense subset. We discuss this case further in 6. On the other hand, if

W (in Y) is not empty, then P may be chosen so that the closure of We in the
Y-topology equals W in Y. Then We f’l WR {0}, Wp and WR are orthogonal
subspaces of WR (see [1]), and the decomposition (5.3) is unique. In this case we
have the following theorem which shows that the regularization operator is indeed
a generalized inverse in an appropriate RKHS.

THEOREM 5.2. lf3pWR {0}, then the minimizing element f of (5.1) is
the solution to the problem: Find f to minimize

(5.8) Ilfllo,
where

(5.9) = f" fe We, g Af IIR) inf IIg Ah R(X)}"
h,Q

Proof. We first note that if Wp V)Wg -{0}, then also Wzp Wg -{0}
and the decomposition g- go / with go R and W,,p is unique, with

go R(R + 2P)-g and -AP(R + P)-g.

This decomposition is also independent of in this case, PR RP O, and
R(R / AP)-1 is the restriction of the projection onto dV’(R)+/- in Y to the domain
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R/ Y P/a Y. We have

IIg Afll2,- Ilgo + Afll 2

Thus since go e A(Wo), inf {llg Af R" f } 1 z and {f" f
Af go}. Hence j Ao,go OA*R-’go OA*(R + 2P)-Xg.

Remark 5.1. In our setting we have

Ao) .
Replacing W and W in (3.2) by W and Wna, respectively, we get from (3.5)"

(5.10) Ao,{z}y Q/2[(R + 2P)-/2AO/e]x,r}(R + 2n)-

for y e (Ao,R{a}); see (3.4.).
It is helpful to remember that the topology on WR is not, in general, the re-

striction of the topology of WR{a}, with the notable exception of the case Wu
{0}. In [11] the authors provide a concrete example arising in the approxi-

mate solution ofboundary value problems whereW is not a closed subspace of
If u n {0}, then WR is a closed subspace of WR, and (by Theorem

5.2)

QA*(R +(5.1 l) A{O,R{a}
Note that in this case, the generalized inverse and the regularization operator

coincide.
If WR A(WO) is not closed in Wn{a, then the regularization operator and the

generalized inverse are different. Also, the right-hand sides of (5.10) and (5.11) are
not the same" (5.11) has maximal domain WRZ, while (5.10) has maximal domain

6, Propertiesofwhen c ,Ratofconvergenceofto the eneraliz
inverse. In this section we note some properties of as Z 0 when c .
If e A(), then we have/ A}, as Z 0; here we may say some-

thin about the rate of convergence if certain additional conditions are satisfied
(compare also with Ivanov and Kudfinskii 4]). However, may not be in the
domain of 2},. This situation can occur if, for example, is dense in
In this case, lim0

.
(i) B P- ’/R ’/ is boun&d operator o Y

AQ,R,g- f), 0(2)

(iii) if o 0 and (B’B)- 1/2R- 1/2(Afo f2[T] < GO, then

AO_,R)g fa 2 0(3.)"

(iv) il" o q WR, then lim,o fl <.
Here inverses indicated by are the generalized inverses in the geometry of ’2-
spaces.
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Proof. Assertion (i) follows from the fact that FR R/e([T]) and
P/2(2’2[T]). If R c P, then R/2(’2[T]) P/2(2[T]), so that P-1/2R1/

is bounded. To prove assertions (ii) and (iii), we note that since A(e)= R,
R-/e(Afo) is a well-defined element 4 of 2[T], and after some computation,
we obtain that if 0 0, then

Ao,mg fz II II(I R’/(R + 2P)- 1R1/2) a[Tl

12(S*S + 2I)-
2[I(B*B + 2I)-’4 w

< (B*B)-
If (B’B)- XR-/2Afo)l 2[T] m < thor

thus proving assertion (ii).
Assertion (iii) follows by noting that 2(B*B + 21)- N I in the sense of positive

definiteness; thus 2(B*B + 2I)- N 2/2(B*B + 2I)-/. Hence,
2RNIIB*B + XI) 14 2[T]2 =< RIl(B*B + 21) /241

< Xl (n’n)-1/ 2[T]

giving assertion (iii).
To see (iv), we observe that

Since e p, we have P/20 for some 0 e (P); (2 in 2[T]). Then

llQ/2A*(AQA* + 2P)- P/201 ts BB*)I/2(BB* + 2I)- 101 =ts"
If {2, 4} are the eigenvalues and eigenfunctions of the bounded positive
operator BB*, then

(BB*)I/2(BB* + I) 1012 O)ts.

Since R, p1/20 is not in the domain of R-/2 and 0 is not in the domain of
B-. Thus

(nz*) ’/11t- 0)zts
v=l

and

iII(BB*)(BB* -t- I)-10 #2[s]--
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