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1.  INTRODUCTION

The purpose of this work is to develop a
new class of variational objective analysis
methods on the sphere. This work extends the
work of Wahba and VWendelberger (1980) on the
plane and in three dimensions, to the sphere.
This class of methods is suitable for the simul-
taneous analysis of both conventional and satel-
1ite data although we do not discuss those de-
tails here. The methods described have the po-
tential of incorporating in a global analysis,
realistic anisotropy, as discussed by Ghil,
Balgovind and Kalnay-Rivas (1981) and Thiebaux
(1977). . A parsimonious parametrization (Thiebaux
{1981)) which reflects observed or theoretically
derived decrease of the spectral distribution of
energy. with wave number, is incorporated, and
dynamic estimation of a small number of carefully
selected free parameters is made from the data
being analyzed. :

The methods have the feature that the re-
sulting fields can be differentiated and inte-
grated analytically, providing a tool for esti- -
mating vorticity, divergence, transport processes,
budgets, etc. In this paper we discuss the an-
alysis of a set of observational data, and the
development of specific models from historical
observations on spectral components. In num-
erical weather prediction models, the objective
analysis is typically carried out on a differ-
ence field, observations minus predictions,
where the predicted information is obtained from
a forecast corresponding to the observation time.
The analyzed (observed minus predicted) field is
then added to the predicted field to obtain new
initial conditions. The analysis will not in
general be the same as if only data are being
analyzed (Jones (1965) and Ghil et al (1980) are
relevant here). However, we believe that the
class of models proposed here is 1ikely to be
appropriate for the analysis of observed minus
predicted fields. The details of the optimum
models have to be established in conjunction with
a particular forecast model however, as they will
be dependent on the dynamics of the forecast =~
model, and further work remains to be done.

2.  ISOTROPIC SPLINE SMOOTHING ON THE SPHERE

First, the isotropic variational objective
analysis methods in Wahba and Wendelberger (1980)
for data observed on a plane, are extended to
data on one variable observed on the sphere. Let
the data be modelled as ' :
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where P is a point on the sphere, f(P;) is the
"true" value of the quantity of interest at Py
(the 500 mb. ht., for example) and the e; are
errors modelled as independent zero mean random
variables with common unknown variance o?. Given
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and A is the Laplacian on the sphere,
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A = Sin7s Top * sTne (51M8fplg:
8 = colatitude, ¢ = longitude, (6,6} = P. The
estimate fy 3 may be considered to be a general-
ization to the sphere of the notion of a poly-
nomial spline on the real Tine. It may also be
considered to be a low pass {Butterworth) filter-
ing of the data with respect to the spherical
harmonics. A controls the half power point and
m the steepness of the roll off of the filter. In
any method of this type where the data are noisy
the results can be expected to be sensitive to
the choice of A. (A can also be considered as a
proxy for the effective signal to noise ratio,
see below).

The parameters A and m can be preset or can
be estimated dynamically from the data being
analyzed by generalized cross validation. As in
Wahba and Wendelberger (1980), and Hendelberger
(1981), data in the form of integrals or deriva-
tives of f can be objectively analyzed simul-
taneously with data on {f(P;)}, and estimates of
integrals or derivatives of f can be made by inte-
grating or differentiating fm’l.

Wendelberger (1981) has developed some fast
numerical methods which can be used to compute
fm,x and estimate m and X by -generalized cross



validation, which appear to work efficiently for
up to around 200-300 data points. Using methods
suggested in Utreras (1979? and Wahba (1980) it
is believed that Wendelberger's numerical methods
can be efficiently extended to the simultaneous
analysis of several times that many data points.

3.  VARIATIONAL METHODS, LANGEVIN EQUATIONS,
AND GANDIN METHODS

There are intimate relations between certain
forms of variational objective analyses, Langevin
equation models and Gandin (or Bayes) objective
analysis. See Kimeldorf and Wahba (1970), Wahba
(1978). By smoothing the data using fm,a it can
be shown that one will get the same est1mate for
f (up to but not including the choice of A), as
if one modelled f as a random function satisfying
the Langevin equation

Amlzf = "white noise"

(m even). (3)
Through this observation our work is related to
that of Ghil, Balgovind and Kalnay-Rivas (1981).
It can be shown that the model (3) leads to the
same result as modelling f as a random combina-
tion of spherical harmonics:

FPY=F+ ] g Y (P) (4)
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where ? is a constant, the Ypg, |s|sn are nor-
malized spherical harmonics and the &, are in-
dependent, zero mean normaily d1str1buted random
variables with

i =

EEZ. = BA  » (5)
b is an unknown constant and lns = [n(n+1)]
o?/Nb plays the role of A. (Equation (4) is also
called the Karhunen-Loeve expans1on).

The proof that (3) and (4) are the same model
follows from the fact that A;l and Y,¢ are the
eigenvalues and eigenfunctions of Am/Z(Am/z)*
(For further details see Wahba (1979)). The se-
quence {bi,g} should be viewed as the spectral
distribution of f, and hence m governs the rate
of decay of the energy spectrum with wave number.
In practice m is not required to be an integer.
For later reference, we observe that if

f(P) = T + n%s fnsYns(P) (6)
n#0
then -
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can be related to a Gandin (or Bayes)
estima@e of f by deriving the covariance
R(P,Pf) Ef(P)f(P‘) from (4),_1t is
R(P,P*) =
b2>\
n,s
n#£0

where ¢ is some constant.
model for the data

z; = f(Pi) * e i=1,2,...,0

(P)Y, ( ‘) (8)
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with f having the prior covariance (B) and letting
¢ ~=, it can be shown that fy 1(P) is the condi-
t1ona1 expectation of f{P) givén ZYs...52ZNs IF

= g?/Nb. (Taking ¢ -~ = here essentially means .
that the mean of f is comp]ete]y determined by
that data). Proofs are in Kimeldorf and Wahba
(1970) and Wahba (1978).

4. OTHER ISOTROPIC MODELS

The spectral seauence {bA,g} of (5) and the
Langevin equation A™/2f = “wh1te n ise" of (3)

can be genera11zed by rep]ac1ng AV e by L m/2
defined by ]
. m/2 j

then the spectral sequence {Ans} is given by
= ( z a;l- n(n+1)]~’)2 (9)

thus the shape of the spectra] sequence {bi, }

can be controlled by the choice of the- {aJ} How--
ever only a small number of the a; should be cho-
sen dynamically (for further discussion of this
point, see Wahba (1981)).

5.  ANISOTROPIC MODELS

If isotropic models-are adequate, then data
similar to that collected by Stanford (19]9) can
be used to develop a model for' the Apg in (8) by,
e.g. fitting a model of the form (9) to the data
similar to that in his Table 1. The work of
Stanford (1979), Ghil, Balgovind and Kalnay-Rivas
(1981), and Thiebaux (1977), however, suggests
that anisotropic models for some meteorological
fields are more realistic. ~Ghil, Balgovind and
Kalnay-Rivas (1981) suggest the use of a Langevin

- equation based on the potential vorticity equa-

tion (instead of (3)), and show that realistic
anisotropic covariance functions can be obtained
this way (Ghil, personal communication).



We now suggest a related variational
approach to obtaining realistic anisotropic
covariance functions for objective analysis
of mass and wind fields. Let

be the Hough harmon1cs for an appropr1ate
equ1va1ent height. (U = cos s¢ U3(8),
sin s¢ 03(8), etc. of ﬁasahara, (19769
equat1ons (6.2)-(6.4)). The solutions to
Laplaces tidal equations on the sphere,
for a fixed time, are then of the form

u(p)

B(P) =1 v(P)

H(P) ng cns~ns(P)

where the c,. are constants. Ve now model the

height and wind field H(P) as

B EnsUnS(P)

ﬂ (P) = Z Ensvns(P)
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where the £,q are zero mean normally distri-
buted random variables with

E(eh,)? = (V)2 = E(gf )2 = ba

It appears that data such as that collected by
Kasahara (1976) and Kasahara and Puri (1981) can
in principle be used to construct reasonab]e
models for the shape of the sequence {A
proximate balance can be enforced by moae111ng a
high degree of correlation between £ng, £nc and
Eﬁ for the same ns.
set correlation (£ns, Efs) = corr(Eds, &) =
corr(ix s EH ) = p, and let all the other corre-
lation CoefFicients be 0. Leting .uj, v and hj
be observations .

%=uw)+£
v = V(P,) + e¥ i=1,2,....N,
hy = H(Py) + eH

then this model 1eads to a variational objective
analysis of the form: Find HA {in an appropriate
space of functions) to minimize

Ap- '
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J(H) = (1+p)(<U,U> + <V, V> + <H,H>)
- 2p(<U,V> + <U,H> + <V,H>), (10)
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“ and the other terms are -defined ana]ogous1y

represents the relative accuracy in measuring
winds and heights. Using the theory of repro-
ducing kernels (see e.g. Wahba (198, 1978): ex-
plicit expressions for the minimizer of (10) can
be obtained, and it is believed that feasible
numerical algorithms can also be obtained. Gravity
waves are partially suppressed by setting the Aps
corresponding to gravity waves small and com-
pletely suppressed by eliminating them from the
solution space. Three dimensional generaliza-
tions using vertical structure functions or

EOF's can also be developed.
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