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1. INTRODUCTION 

The purpose of this work is to develop a 
new class of variational objective analysis 
methods on the sphere. This \~ork extends the 
work of Wahba and ~/ende 1 berger (1980) on the 
plane and in three dime~sions, to the sphere. 
This class of methods is suitable for the simul­
taneous analysis of both conventional and satel­
lite data although we do not discuss those de­
tails here. The methods described have the po­
tential of incorporating in a global analysis, 
realistic anisotropy, as discussed by Ghi1, 

. Balgovind~nd Kalnay-Rivas (1981) and Thiebaux 
(1977). _ A parsimonious parametrfzation (Thiebaux 
(1981» which reflects observed or theoretically 
derived decrease of the spectral distribution of 
energy. wi th wave . number; is incorporated, and 
dynamic estimation of a small number of carefully 
selected free parameters is made from the data 
being analyzed. 

The methods have the feature that the re­
sulting fields can be differentiated and inte­
grated analytically, providing a tool foresti­
mating vorticity, divergence, transport processes, 
budgets, etc. In this paper ~Ie discuss the an­
alysis of a set of observational -data, and the 
development of specific models from historical 
observations on spectral components. In num­
erical weather prediction models, the objective 
analYSis is typically carried out on a differ­
ence .field, observations minus predictions, 
where the predicted information is obtained from 
a forecast corresponding to the observation time. 
The analyzed (observed minus predicted) field is 
then added to the predicted field to obtain new 
initial conditions. The analysis will not in 
general be the same as if only data are being 
analyzed (Jones (1965) and · Ghi1 et a1 (1980) are. 
relevant here). However, we believe that the 
class of models proposed here is likely to be 
appropriate for the analysis of observed minus 
predicted fields. The details of the optimum 
models have to be established in conjunction with 
a particular forecast model however. as they will 
be dependent on the dynamics of the forecast 
model, and further work remains to be done. 

2. ISOTROPIC SPLINE SMOOTHING ON THE SPHERE 

First, the isotropic variational objective 
analysis methods in Wahba and ~Jendelberger (1980) 
for data observed on a plane, are extended to 
data on one variable observed on the sphere. Let 
the data be modelled as . -

zi = f(P i ) + £i' i=1.2, •••• N (1) 

where Pi is a point on the sphere, f(Pi) is the 
"true" value of the quantity of interest at Pi 
(the 500 mb. ht., for example) and the ~i are 
errors modelled as independent zero mean random 
variables with common unknown variance (J2. Given 
zl, ... ,zN' f is estimated as the minimizer, call 

_ it f - ,. (in an appropriate function space) of . m,,, N 

k.L (zi- f (Pi»2 + XJm(f) (2) 
1=1 

where 

+ (A(m-1)/2f)~ sineded~. m odd. 

and A is the Laplacian on the sphere; 

Af = si~2e f~~ + s;ne (sinefe)e' 

e = colatitude, ~ = longitude, (e,~) = P. The 
estimate fm A may be considered to be a general­
ization to fhe sphere of the notion of a poly­
nomial spline on the real line. It may also be 
considered to be a low pass (Butterworth) filter­
ing of the data with respect to the spherical 
harmonics. A controls the half power point and 
m the steepness of the roll off of the filter. In 
any method of this type where the data are noisy 
the results can be expected to be sensitive to 
the choice of X. (A can also be considered as a 

. proxy for the effecti ve s i.gna 1 to noi se ra ti o. 
see below). 

The parameters A and m-can be preset or can 
be estimated dynamically from the data being 
analyzed by generalized cross validation. As in 
Wahba and l~ende 1 berger (1980). and Hendel berger 
(1981), data in the form of integrals or deriva­
tives of f can be objectively analyzed simul­
taneously with data on {f(Pi)}' and estimates of 
integrals or derivatives of f can be made by inte­
grating or differentiating fm•A. 

\~endelberger (1981) has developed some fast 
numerical methods which can be used to compute 
fm,A and estimate m and A by generalized cross 



validation. which appear to work efficiently for 
up to around 200-300 data points. Using methods 
suggested in Utreras (1979) and Hahba (1980) it 
is bel i eved tha t ~Jende 1 berger IS numeri ca 1 methods 
can be efficiently extended to the simultaneous 
analysis of several times that many data points. 

3. VARIATIONAL HETHODS. LANGEVIN EQUATIONS. 
AND GANDIN ~1ETHODS 

There are intimate relations between certain 
forms of variational objective analyses, Langevin 
equation models and Gandin (or Bayes) objective 
analysis. See Kimeldorf and Wahba (1970), Wahba 
(1978). By smoothing the data using fm A it can 
be shown that one will get the same estlmatefor 
f (up to but not including the choice of A), as 
if one modelled f as a random function satisfying 
the Langevin equation 

l:J.m/2f = "white noise" (m eve!!). (3) 

Through this observation our work is related to 
that of Ghil, Ba1govind and Kalnay-Rivas (1981). 
It can be shown that the model (3) leads to the 
same result as modelling f as a random combina­
tion of s~herical harmonics: 

f(P) = T + n~s" ~nsYns(P) (4) 

n~O 

where f is a constant, the Yns ' Is'~n are "nor­
malized spherical harmonics and the ~ns are in­
dependent. zero mean normally distributed random 
variables with 

E~~s = bAns ' (5) 

. b is an unknown constant and Ans = [n(n+l )]-m~ 
a~/Nb plays the role of A. (Equ.ation (4) is also 
ca ned the Karhunen-Loeve expanslon). 

The proof that (3) and (4) are the same model 
follows from the fact that An~ and Yns are the 
eigenvalues and eigenfunctions of l:J,m/2(l:J,m/2)*. 
(For further details see ~Jahba (1979». The se­
quence {bAns} should be viewed as the spectral 
distribution of f, and hence m governs the rate 
of decay of the energy spectrum with wave number. 
In practice m is not required to be an integer. 
For later reference, we observe that if 

then 

f(P) = f + L fnsYns(P) 
n.s 
n~O 

(6) 

(7) 

f A can be related to a Gandin (or Bayes) 
estima~e of f by deriving the covariance 
R(P,P.') = Ef(P)f(PI) from (4), it is . 

R{P.P I
) = C + 

b I AnsYns(P)Yns{P') 
n,s 
n10 

where c is some constant. Assuming the random 
model for the data 

z. = f (P .) + e. ,i = 1 ,2, •.• ,tl 
111 

(8) 

with f having the prior covariance (8) and letting 
c .... "", it can be shown that fm A(P) is the condi­
tional expectation of f(P) given zl, ... ,zN' if 
A = a2/Nb. (Taking c .... "" here essentially means " 
that the mean of f is completely determined by 
that data). Proofs are in Kimeldorf and Wahba 
(1970) and Wahba (1978). 

4. OTHER ISOTROPIC MODELS 

The spectral se?uence {bAns} of (5) and the 
Langevin equation l:J,m 2f = "white nQ~se" of (3) 
can be generalized by replacing l:J,ml by Lm/2 
defined by 

'm/2 . 
L /2 = L a.A J, 
m . j=O J 

then the spectral sequence {Ans} is given by 

m/2 . 2 
Ans = (I a.J.[-n(n+l)]J) , (9) 

j=O 

thus the shape of the spectral sequence {bAns} 
can be controlled by the choice of the "{a.j}' How- " 
ever only a small number of the aj should b~ cho­
sen dynamically (for further" discussion of this 
point. see Wahba (1981». 

5. ANISOTROPIC MODELS 

If isotropic models"are adequate, then data 
similar to that collected by Stanford (1979) can 
be used to develop a model for" the Ans in (8) by, 
e.g. fitting a model of the form (9) to the data 
similar to that in his Table 1. The work of 
Stanford (l979 ), Ghi 1, Ba 1 govi nd and Ka 1 nay-Rivas 
(1981), and Thiebaux (1977), however, suggests 
that anisotropic models for some meteorological 
fields are more realistic. Ghil, Balgovind and 
Kalnay-Rivas (1981) suggest the use of a Langevin 

" equati on based on the potenti a 1 vorti city equa­
tion (instead of (3», and sho~1 that realistic 
anisotropic covariance functions can be obtained 
this way (Ghil, personal communication). 



We now suggest a related variational 
approach to obtaining re~listic anisotropic 
covariance functions for objective analysis 
of mass and wind fields. Let 

!!ns(P) =(~~:~;.~) 
Hns(P) 

be the Hough harmonics for an appropriate 
equ. ivalent height. (Uns.{P) = cos s~ O~{e). 
sin s~ O~(e). etc. of Kasahara. (1976). 
equations (6.2)-{6.4)). The solutions to 
Laplaces tidal equations on the sphere. 
for a fixed time. are then of the form 

H (P) = V{P) = E c H (P). ' 
( 

U(P)) , 
, - H(P) n,s ns-ns 

where the cn$ are constants. ~Ie now model the 
height and wlnd field ll(P) as 

( 

I: s~sUns(P) ) 

_ ' II (P)=, . I: s~sVn~(P) , 

:, ' , I: sns~ns (P) 

where the snsare zero mean normally distri­
buted random variables with 

U 2 V 2 H 2 
E(sns) = E(sns) = E(sns) = blns . 

It appears that' data such as that collected by 
Kasahara (1976) and Kasahara and Puri (1981) can 
in principle be used to construct reasonable 
models for the shape of the sequence {l sL Ap­
prOXimate balance can be enforced by mo3elling a 
h~gh degree of correlation between sWs' s~s and 
sns for the same ns. For notational simpllcity 
set correlation (sWs' sKs} = corr(sWs' s~s) = ' 
corr(sXs' sHs) = p, and let all the other corre­
lation coetfidents be O. Leting ,ui' vi and hi 
be observations 

u
1
' = U(P.) + €~ 

1 1 

Vl·=V(P.)+€~ 
1 1 

i=1,2 ••••• N. 

h
1
• = H(P.) + €~ 

, 1 1 

then this model leads to a variational objective 
analysis of the form: Find!!l (in an appropriate 
space of functions) to minimize 

where 

with 

where 

N 
+ ~N L (H(P.)-h.)2 + lJ(!!) , 

' i=l 1 1 

J(ll) = (l+p)«U,U> + <V,V> + <H.H» 

- 2p«U.V> + <U.H> + <V,H», 

<U,V> = E 
ns 

,Uns = J U Uns(P)dP 
S 

Vns = J V . Vns(P)dP, 
S 

(10) 

, and the other terms are ,defined analogously . " ~I 
represents the re 1ati ve accuracy in measiJri ng 
winds and heights. ' Using the theo~ of repro­
ducing kernels (see' e.g. ,Wahba 09]6,1-978) : ex­
plicit expressions for the minimizer of (10) can 
be obtained, and it is believed that feasible 
numerical algorithms can alsobe obtained. Gravity 
waves are par~i ally suppressed by setti ng the lns 
corresponding to gravity \~aves small and COI11-

p1etely suppressed by eliminating them from the 
solution space. Three dimensional general iza­
tions using vertical structure functions or 
EOF's can also be developed. ' 

We are grateful to D. Johnson and ~1. Ghil 
for many helpful discussions. 
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