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ABSTRACT. The interaction between transitivity and sparsity, two common features in
empirical networks, implies that there are local regions of large sparse networks that are
dense. We call this the blessing of transitivity and it has consequences for both modeling
and inference. Extant research suggests that statistical inference for the Stochastic Block-
model is more difficult when the edges are sparse. However, this conclusion is confounded
by the fact that the asymptotic limit in all of the previous studies is not merely sparse,
but also non-transitive. To retain transitivity, the blocks cannot grow faster than the
expected degree. Thus, in sparse models, the blocks must remain asymptotically small.
Previous algorithmic research demonstrates that small “local” clusters are more amenable

to computation, visualization, and interpretation when compared to “global” graph par-
titions. This paper provides the first statistical results that demonstrate how these small
transitive clusters are also more amenable to statistical estimation. Theorem 2 shows that
a “local” clustering algorithm can, with high probability, detect a transitive stochastic
block of a fixed size (e.g. 30 nodes) embedded in a large graph. The only constraint on
the ambient graph is that it is large and sparse—it could be generated at random or by
an adversary—suggesting a theoretical explanation for the robust empirical performance
of local clustering algorithms.

INTRODUCTION

Advances in information technology have generated a barrage of data on highly complex
systems with interacting elements. Depending on the substantive area, these interacting
elements could be metabolites, people, or computers. Their interactions could be repre-
sented in chemical reactions, friendship, or some type of communication. Networks (or
graphs) describe these relationships. Therefore, the questions about the relationships in
these data are questions regarding the structure of networks. Several of these questions are
more naturally phrased as questions of inference; they are questions not just about the re-
alized network, but about the mechanism that generated the network. To study questions
in graph inference, it is essential to study algorithms under model parameterizations that
reflect the fundamental features of the network of interest.

Sparsity and transitivity are two fundamental and recurring features. In sparse graphs,
the number of edges in a network is orders of magnitude smaller than the number of possible
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edges; the average element has 10s or 100s of relationships, even in networks with millions
of other elements. Transitivity describes the fact that friends of friends are likely to be
friends. The interaction of these simple and localized features has profound implications for
determining the set of realistic statistical models. They imply that in large sparse graphs,
there are local and dense regions. This is the blessing of transitivity.

One essential inferential goal is the discovery of communities or clusters of highly con-
nected actors. These form essential feature in a multitude of empirical networks, and
identifying these clusters helps answer vital scientific questions in many fields. A terrorist
cell is a cluster in the communication network of terrorists; web pages that provide hy-
perlinks to each other form a community that might host discussions of a similar topic;
a cluster in the network of biochemical reactions might contain metabolites with similar
functions and activities. Several papers, that are briefly reviewed below, have proved the-
oretical results for various graph clustering algorithms under the Stochastic Blockmodel, a
parametric model, where the model parameters correspond to a true partition of the nodes.
Often, these estimators are also studied under the exchangeable random graph model, a
non-parametric generalization of the Stochastic Blockmodel. The overarching goal of this
paper is to show (1) how sparse and transitive models require a novel asymptotic regime
and (2) how the blessing of transitivity makes edges become more informative in the asymp-
tote, allowing for statistical inference even when cluster size and expected degrees do not
grow with the number of nodes.

The first part of this paper studies how sparsity and transitivity interact in the Stochastic
Blockmodel, and more generally, in the exchangeable random graph model. Interestingly,
if a Stochastic Blockmodel is both sparse and transitive, then it has small blocks. The
second part of this paper (1) introduces an intuitive and fast local clustering technique to
find small clusters; (2) proposes the local Stochastic Blockmodel, which presumes a single
stochastic block is embedded in a sparse and potentially adversarially chosen network; and
(3) proves that if the proposed local clustering technique is initialized with any point in
the stochastic block, then it returns the block with high probability. Figure [1| illustrates
the types of clusters found by the proposed algorithm; in this case from a social network
on epinions.com containing over 76,000 people.

FicURE 1. Local clusters from a sparse 76k node social network from epin-
ions.com. Created with the igraph library in R [Csardi and Nepusz, [2006].
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0.1. Preliminaries. Networks, or graphs, are represented by a vertex set and an edge set,
G = (V,E), where V = {1,...,n} contains the actors and

E = {(i,7) : there is an edge from i to j}.
The edge set can be represented by the adjacency matrix A € {0, 1}"*™:

o 1 if(i,j)GE
1) Aij = { 0 otherwise.

This paper only considers undirected graphs. That is, (i,5) € F = (j,i) € E. The
adjacency matrix of such a graph is symmetric. Many of the results in the paper have
a simple extension to weighted graphs, where A;; > 0. For simplicity, we only discuss
unweighted graphs. For ¢ € V, let d; = ), A;y denote the degree of node i. Define IV; as
the neighborhood of node 1,

Ni={j:(i,j) € E}.
Define the transitivity ratio of A as

number of closed triplets in A

trans(A) = .
(4) number of connected triples of vertices in A
Watts and Strogatz [1998] introduced an alternative measure of transitivity, the clus-
tering coefficient. The local clustering coefficient, C(i), is defined as the density of the
subgraph induced by N;, that is the number of edges between nodes in N; divided by the
total number of possible edges. The clustering coefficient for the entire network is the

average of these values.
1
C=- C(i
2 o)

This is related to the triangles in the graph because an edge (j, k) between two nodes in
N; makes a triangle with node 1.

0.2. Statistical models for random networks. Suppose A = {A;; : 4,5 > 1} is an
infinite array that is binary, symmetric, and random. If A is (jointly) exchangeable, that
is

d o
A=Ao ={As0) 0@ 147 = 1},

for any arbitrary permutation o, then the Aldous-Hoover representation says there exists
1.1.d. random variables £1,&2,... and an additional independent random variable o such
that conditional on these variables, the elements of A are statistically independent [Hoover,
1979, |Aldous, (1981} Kallenberg, 2005]. The global parameter « controls the edge density
and for ease of notation, it is often dropped [Bickel et al., [2011]. One should think of this
result as an extension of DeFinetti’s Theorem to infinite exchangeable arrays.

While this representation has only been proven to be equivalent to exchangeability for
infinite arrays, it is convenient to adopt this representation for finite graphs.
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Definition 1. Symmetric adjacency matriz A € {0,1}"*™ follows the exchangeable ran-
dom graph model if there exists i.i.d. random variables &1, ...,&, such that probability
distribution of A satisfies

P(Al&, ..., &) = [ P(Ai14, &))-
1<j

For brevity, we will sometimes refer to this as the exchangeable model.

Independently of the research on infinite exchangeable arrays, Hoff et al. [2002] proposed
the latent space model which assumes that (1) each person has a set of latent characteristics
(e.g. past schools, current employer, hobbies, etc.) and (2) it is only these characteristics
that produce the dependencies between edges. Specifically, conditional on the latent space
characteristics, the relationships (or lack thereof) are independent. The Latent Space
Model is equivalent to the exchangeable model in Definition

The Stochastic Blockmodel is an exchangeable model that was first defined in [Holland
and Leinhardt [1983].

Definition 2. The Stochastic Blockmodel is an exchangeable random graph model with
1,6, €{1,...,K} and

P(Aij = 1§, &) = O, ¢,
for some © € [0, 1]E*K,

In this model, the &; correspond to group labels. The diagonal elements of © correspond
to the probability of within-block connections. The off-diagonal elements correspond to
the probabilities of between-block connections. When the diagonal elements are sufficiently
larger than the off-diagonal elements, then the sampled network will have clusters that
correspond to the blocks in the model.

The next subsection briefly reviews the existing literature that examines the consistency
of various estimators for the partition created by the latent variables &;,...,&, in the
Stochastic Blockmodel.

0.3. Previous research. This paper builds on an extensive body of literature examining
various types of statistical estimators for the latent partition &i,...,&, in the Stochastic
Blockmodel. These estimators fall into four different categories)

(1) Several have studied estimators that are solutions to discrete optimization problems
(e.g. Bickel and Chen| [2009], Choi et al.|[2012], |Zhao et al. [2011} [2012], [Flynn
and Perry| [2012]). These objective functions are the likelihood function for the
Stochastic Blockmodel or the Newman-Girvan modularity [Newman and Girvan)
2004], a measure that corresponds to cluster quality.

The works cited in this section give a sample of the previous literature on statistical inference for the
Stochastic Blockmodel; it is not meant to be an exhaustive list. In particular, there are several highly
relevant papers in the Computer Science literatures on (i) the planted partition model and (ii) the planted
clique problem. The curious reader should consult the references in |[Ames and Vavasis| [2010] and [Chen
et al.|[2012b).



THE BLESSING OF TRANSITIVITY IN SPARSE AND STOCHASTIC NETWORKS 5

(2) Others have have studied various approximations to the likelihood that lead to
more computationally tractable estimators. For example, Celisse et al.| [2011] and
Bickel et al.|[2012] studied the variational approximation to the likelihood function
and |Chen et al.| [2012a] studied the maximum pseudo-likelihood estimator.

(3) Building on on spectral graph theoretic results [Donath and Hoffman) 1973, [Fiedler,
1973|, several researchers have studied the statistical performance of spectral algo-
rithms for estimating the partition in the Stochastic Blockmodel [McSherry, 2001,
Dasgupta et al., [2004] |Giesen and Mitsche] 2005, |Coja-Oghlan and Lanka), 2009,
Rohe et al] [2011, Rohe and Yu, 2012], |Chaudhuri et al.| 2012} |Jinl 2012, |Sussman
et al. 2012, Fishkind et al., |2013]. Others have studied estimators that are so-
lutions to semi-definite programs |[Ames and Vavasis, 2010, |Oymak and Hassibi,
2011}, |Chen et al., 2012b].

(4) More recently, Bickel et al.| [2011], Channarond et al.| [2011], Rohe and Yul [2012]
have developed methods to stitch together network motifs, or simple “local” mea-
surements on the network, in a way that estimates the partition in the Stochastic
Blockmodel. Bickel et al. [2011] draws a parallel between this motif-type of esti-
mator and method of moments estimation.

All of the previous results described above are sensitive to both (a) the population of the
smallest block and (b) the expected number of edges in the graph; larger blocks and higher
expected degrees lead to stronger conclusions. This limitation arrises because the proofs
rely on some form of concentration of measure for a function of sufficiently many variables.
Bigger blocks and more edges yield more variables, and thus, more concentration. This
paper shows how transitivity leads to a different type of concentration of measure, where
each edge becomes asymptotically more informative. As such, the results in this paper
extend to blocks of fixed sizes and bounded expected degrees.

Section 2] proposes the LocalTrans algorithm that exploits the triangles built by network
transitivity. As such, it is most similar to motif-type estimators in bullet (4). Our analysis
of LocalTrans is the first to study whether a local algorithm (i.e. initialized from a single
node) can estimate a block in the Stochastic Blockmodel. The emphasis on local structure
aligns with the aims of network scan statistics; these compute a “local” statistic on the
subgraph induced by N; for all ¢ and then return the maximum over all 7. In the literature
on network scan statistics, Rukhin and Priebe|[2012] and Wang et al.|[2013] have previously
studied the anomaly detection properties under random graph models, including a version
of the Stochastic Blockmodel.

1. TRANSITIVITY IN SPARSE EXCHANGEABLE RANDOM GRAPH MODELS

In this section, Proposition [I| and Theorem (1| show that previous parameterizations of
the sparse exchangeable models and sparse Stochastic Blockmodels lack transitivity in the
asymptote. That is, the sampled networks are asymptotically sparse, but they are not
asymptotically transitive. Theorem [2| concludes the section by describing a parameteriza-
tions that produce sparse and transitive networks.
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Define

(2) Pmax = IEH%X P(Aij = Hgivé-j)
21987

as the largest possible probability of an edge under the exchangeable model. In the sta-
tistics literature, previous parameterizations of sparse Stochastic Blockmodels, and sparse
exchangeable models, have all ensured sparsity by sending pyax — 0.

Define
(3) bA = P(Auv = 1|Azu = Aiv = 1)

a population measure of the transitivity in the model. It is the probability of completing
a triangle, conditionally on already having two edges.
By sending ppax to zero, a model removes transitivity.

Proposition 1. Under the exchangeable random graph model

PA < Pmax;
where these probabilities are defined in equations and .

The next theorem gives conditions that imply the transitivity ratio of the sampled net-
work converges to zero.

Theorem 1. Under the exchangeable random graph model (Definition , define A, =
E(d;) as the expected node degree. If N, — 00, A\, = o(n), and

_ P(A;; =1)
(4) pmax_O<P(Aijzjl‘AM:1)>,

where pmax 15 defined in , then trans(A) Zo.

A proof of this theorem can be found in the appendix.

The denominator on the right hand side of Equation quantifies how many edges are
adjacent to the average edge, and thus controls how many 2-stars are in the graph. It can
be crudely bounded with the maximum expected degree over the latent &;. For

A = max E(d;|&),

it follows that
P(AZJ = 1|A7,g = 1) < )\glax/n.

Corollary 1. Under the exchangeable random graph model (Definition , define A, =
E(d;) as the expected node degree. If A, — 00, Ay, = o(n), and

=0 )\n
pmax )\nmax 9
then tr (ITLS(A) = 0.

So, ensuring sparsity by sending pmax to zero removes transitivity both from the model
and from the sampled network. The next subsection investigates the implications of re-
stricting pmax > € > 0 in sparse networks.
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1.1. Implications of non-vanishing p,,.x in the Stochastic Blockmodel. It is easiest
to consider a simplified parameterization of the Stochastic Blockmodel. The following
parameterization is also called the planted partition model.

Definition 3. The four parameter Stochastic Blockmodel is a Stochastic Blockmodel
with K blocks, exactly s nodes in each block, ©; = p, and ©;; =1 for i # j.

In this model, (1) n = Ks, (2) the “in-block” probabilities are equal to p, and (3) the
“out-of-block” probabilities equal to r. Moreover, the expected degred of each node is

(5) Expected degree under the four parameter model = sp + (n — s)r.

Define this quantity as A,. Under the four parameter model, p is analogous to pmyax.

Note that sp < A\, and

p
= < K.
n)\ <

n
In sparse and transitive graphs, A, is bounded and p is non-vanishing. In this regime, K

grows proportionally to n. The following proposition states this fact in terms of s, the
population of each block.

Proposition 2. Under the four parameter Stochastic Blockmodel, if p is bounded from
below, then
s=0(\)

where s is the population of each block and A\, is the expected node degree.

The following Theorem shows that graphs sampled from this parameterization are asymp-
totically transitive.

Theorem 2. Suppose that A is the adjacency matriz sampled from the four parameter
Stochastic Blockmodel (Deﬁm’tion@ with n nodes. If p>e€ >0, r=0(n""'), and s > 3,
then as n — oo
trans(A) Le> 0,
where ¢ is a constant which depends on p,r,s.
Remark: If » = 22, for some constant cg, then
pBs?
cr .
p?s? + c3 + 2spcy
The appendix contains the proof for Theorem
The fixed block size asymptotics in Theorem [2|align with two pieces of previous empirical
research suggesting the “best” clusters in massive networks are small. |Leskovec et al.
[2009] found that in a large corpus of empirical networks, the tightest clusters (as judged
by several popular clustering criteria) were no larger than 100 nodes, even though some of
the networks had several million nodes. This result is consistent with findings in Physical

Anthropology. [Dunbar| |[1992] took various measurements of brain size in 38 different
primates and found that the size of the neocortex divided by the size of the rest of the

For ease of exposition, this formula allows self-loops.
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brain had a log-linear relationship with the size of the primates natural communities. In
humans, the neocortex is roughly four times larger than the rest of the brain. Extrapolating
the log-linear relationship estimated from the 38 other primates, Dunbar| [1992] suggests
that the average human does not have the social intellect to maintain a stable community
larger than roughly 150 people (colloquially referred to as Dunbars number). |Leskovec
et al.| [2009] found a similar result in several other networks that were not composed of
humans. The research of Leskovec et al. [2009] and Dunbar| [1992] suggests that the block
sizes in the Stochastic Blockmodel should not grow asymptotically. Rather, block sizes
should remain fixed (or grow very slowly).

1.2. Implications for the exchangeable model. The interaction between sparsity and
transitivity also has surprising implications in the more general exchangeable random graph
model. To see this, note that in the exchangeable model, it is sufficient to assume that
&1,...,&, are i.d.d. Uniform(0,1) [Kallenberg, 2005]. Then, the conditional density of &;
and ; given A;; =1 1is

P(Ai; =11&,&5)
P(Aij =1)

(6) (& &) =

When pmax does not converge to zero, there exist values of £ and &7 such that P(A;; =
1|&;,&;) does not converge to zero. However, in a sparse graph, the edge density P(A;; = 1)
(in the denominator of Equation (6))) converges to zero. So, ¢(&F, §7) is asymptotically un-
bounded. For example, in the popular P(A4;; = 1) = O(1/n) limit, ¢(&;, €;) is proportional
to n. In a sense, as a sparse and transitive network grows, each edge becomes more infor-
mative. This is the blessing of transitivity in sparse and stochastic networks.

This asymptotic setting, where ppax is bounded from below, makes for an entirely dif-
ferent style of asymptotic proof; the asymptotic power comes from the fact that each edge
becomes increasingly informative in the asymptote. Previous consistency proofs rely on
concentration of measure for functions of several independent random variables (i.e. sev-
eral edges). In the sparse and transitive asymptotic setting, concentration follows from
the blessing of transitivity, allowing asymptotic results with fixed block sizes and bounded
degrees. For example, in Theorems |3| and |4] in the next section, neither the block size nor
node degree grows in the asymptote.

2. LOCAL ( MODEL + ALGORITHM + RESULTS )

This section investigates clustering, or community detection, in sparse and transitive
networks. Following the results of the last section, sparse and transitive communities are
small. As such, this section is focused on finding small clusters of nodes. In an attempt to
strip away as many assumptions as possible from the Stochastic Blockmodel, this section

(1) proposes a “localized” model with a small and transitive cluster embedded in a
large and sparse graph (that could be chosen by an adversary),

(2) introduces a novel local clustering algorithm that explicitly leverages the graphs
transitivity, and
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(3) shows that this local algorithm will discover the cluster in the localized model with
high probability.
Similarly to the last section, the interaction between sparsity and transitivity provides for
these results, enabling both the fast algorithm and the fixed block asymptotics.

2.1. The local Stochastic Blockmodel. The “local” Stochastic Blockmodel (defined
below) presumes that a small set of nodes S, constitute a single block and the model
parameterizes how these nodes relate to each other and how they relate to the rest of the
network.

Definition 4. Suppose A € {0, 1}(”+3)X(”+S) is an adjacency matriz on n + s nodes. If
there is a set of nodes Sy with |Sy| = s and
(1) 4,5 € Sy implies P(Aij = 1) > pin,
(2) i € Sy and j € S¢ implies P(Aij = 1) < Dout,
(3) the random wvariables {A;; : Vi € Sy and Vj} are both mutually independent and
also independent of the rest of the graph

then A follows the local Stochastic Blockmodel with parameters Sy, Pin, Dout-

The only assumption that this definition makes about edges outside of S, (that is, (i, 7)
with 4,7 € S.) is that they are independent of the edges that connect to at least one
node in S,. So, the edges outside of S, could be chosen by an adversary, as long as
the adversary does not observe the rest of the graph. The theorems below will add an
additional assumption that the average degree (within S¢) must be not too large (i.e. it
must be sparse).

2.2. Local clustering with transitivity. A local algorithm searches around a seed node
for a tight community that includes this seed node. Several papers have demonstrated the
computational advantages of local algorithms for massive networks [Priebe et al.l |2005|
Spielman and Teng, [2008|. In addition to fast running times and small memory require-
ments, the local results are often more easily interpretable |[Priebe et al., 2005] and yield
what appear to be “statistically regularized” results when compared to other, non-local
techniques |Leskovec et al., [2009} (Clauset, 2005, Liao et al., 2009]. |Andersen et al.| [2006],
Andersen and Chung [2007], |Andersen and Peres| [2009] have studied the running times
and given perturbation bounds showing that local algorithms can approximate the graph
conductance. With the exception of Rukhin and Priebe| [2012] and [Wang et al. [2013], the
previous literature has not addressed the statistical properties of local graph algorithms
under statistical models.

Given an adjacency matrix A and a seed node i, this section defines an algorithm that
finds a clusters around node i. This algorithm has a single tuning parameter cut that
balances the size of the cluster with the tightness of the cluster. Smaller values of cut
return looser clusters. The algorithm initializes the cluster with the seed node S = {i}. It
then repeats the following step: For every edge between a node in S (j € S) and a node
not in S (¢ € S¢), add £ to S if there are at least cut nodes that connect to both ¢ and j
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(this ensures that (i, j) is contained in at least cut-many triangles). Stop the algorithm if
all edges across the boundary of S are contained in fewer than cut-many triangles.

Algorithm 1 LocalTrans(A, i, cut)

1. Initialize set S to contain node 1.
2. For each edge (7,/) on the boundary of S (i € S and ¢ ¢ S) calculate Tjy:

Tip =) AirAge.
ks

3. If there exists any edge(s) (i,¢) on the boundary of S with T;y > cut, then add the
corresponding node(s) ¢ to S and return to step 2.
4. Return S.

Consider LocalTrans(A,j,7) as a function that returns a set of nodes, then
i € LocalTrans(A, j,cut) = j € LocalTrans(A, 1, cut).
Moreover, if cut™ > cut then,
LocalTrans(A,i,cut™) C LocalTrans(A,i,cut).

This shows that the results of LocalTrans(A, i, cut), for every node ¢ and every parameter
cut, can be arranged into a dendogram. LocalTrans only finds one branch of the tree. A
simple and fast algorithm can find the entire tree.

To compute the entire dendogram, apply single linkage hierarchical clustering] to the
similarity matrix

(7) T = (AA) - A, where - is element-wise multiplication.

The computational bottleneck of this algorithm is computing 7', which can be computed in
O(|E|?/?). Techniques using fast matrix multiplication can slightly decrease this exponent
[Alon et al., [1997].

When A contains no self loops, T;; equals the number of triangles that contain both nodes
1 and j. We propose single linkage because it is the easiest to analyze and it yields good
theoretical results. However, in some simulation, average linkage has performed better
than single linkage. One could also state a local algorithm in terms of average linkage.

Proposition 3. Viewing LocalTrans as a function that returns a set of nodes and GlobalTrans
as functions that returns a set of sets, LocalTrans(A,i,7) C GlobalTrans(A,T). More-
over,

U LocalTrans(A,i,7) = GlobalTrans(A,T).

1

This is equivalent to finding the maximum spanning tree
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Algorithm 2 GlobalTrans(A, 7)

1. Compute the similarity matrix T'= [AA] - A, where - is element-wise multiplication.
2. Run single linkage hierarchical clustering on similarity matrix 7', i.e. grow a maximum
spanning tree.

3. Cut the dendogram at level 7, i.e. delete any edges in the spanning tree with weight
smaller than 7.

4. Return the connected components.

Proof. Nodes i and j are in the same cluster in both LocalTrans(A, i, 7) and GlobalTrans(A4, 7)
if and only if there exists a path from ¢ to j such that every edge in the path is in at least
7 triangles. ([l

2.3. Local Inference. The next theorem shows that LocalTrans estimates the local block
in the Local Stochastic Blockmodel with high probability.

Theorem 3. Under the local Stochastic Blockmodel (Definition , if

> Ay <nA,

i,j€S¢
then

(1) cut = 1: for all i € Ss, LocalTrans(A,i,cut = 1) = S, with probability greater
than

1
- (520 2+ OGEums(s +3)).

(2) cut = 2: for all i € S., LocalTrans(A,i,cut = 2) = S, with probability greater
than
1= (s*(1 = p3)" 7 + O(uens(s + N)?)) -

See the appendix for the proof of this theorem.

For the local Stochastic Blockmodel to create a transitive block with bounded expected
degrees, it is necessary for p;, to be bounded from below and for s to be bounded from
above. Then, py,: = O(1/n) is a sufficient condition for bounded expected degrees. How-
ever, because of the inequality in bullet (2) of Definition 4] po,s = O(1/n) is not a necessary
condition for sparsity. As such, the restriction on py,; is particularly relevant. It is also
fundamental to the bound in Theorem [l

The approximation terms O(pZ,,ns(s+A)) and O(p3,,ns(s+ A)?) bound the probability
of a connection in T across the boundary of S,. The strength of these terms come from the
fact that a connection across the boundary requires cut + 1 simultaneous edges across the
boundary of S,. Figure[2gives a graphical explanation for the “+1”. As such, pyy; is raised
to the cut +1 power. When s and A are fixed, then py,: = o(n_l/Q) and poyr = o(n_l/3)
make the approximation term asymptotically negligible for the case cut = 1 and cut = 2,
respectively. Both of these settings allow the nodes in S, have (potentially) large degrees.
If pout = O(n™1), then the approximation terms become O(n~!) and O(n~2) respectively.
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Nodes in S

P
¢ éo

FiGURE 2. This figure illustrates the two types of triangles that contain
nodes in both S, and S¢. To make one triangle that crosses the boundary
of S requires two edges to cross the boundary.

Theorem 2 and the algorithms LocalTrans and GlobalTrans all leverage the interaction
between transitivity and sparsity, making the task of computing S and estimating S, both
algorithmically tractable and statistically feasible.

2.4. Preliminary Data Analysis. This section applies GlobalTrans to an online social
network from the website slashdot.org, demonstrating the shortcomings of the proposed
algorithms with input A and motivating the next section that uses the graph Laplacian as
the input. The slashdot network contains 77 360 nodes with an average degree of roughly
12 [Leskovec et all 2009]] This network is particularly interesting because it has a smaller
transitivity ratio (.024) than the typical social network.

Figure 3| plots the size of the ten largest clusters returned by GlobalTrans(A, cut) as a
function of cut (excluding the largest cluster that consists of the majority of the graph).
The values of cut range from 3 to 500 and they are plotted on the log, scale. Over this
range of cut, only two times does a cluster exceed ten nodes. While we motivated the
local techniques as searching for small clusters, these clusters are perhaps too small. It
suggests that there are no clusters that are adequately described by the local Stochastic
Blockmodel.

One potential reason for this failure is that under the Local Stochastic Blockmodel, the
probability of a connection between a node in S, and a node in S¢ is uniformly bounded
by some value, poyut- The slashdot social network, like many other empirical networks, has
a long tailed degree distribution. A more realistic model might allow the nodes in S, to be
more highly connected to the high degree nodes in S¢. The next subsection (1) proposes a
“degree-corrected” local Stochastic Blockmodel, (2) proves that LocalTrans with a simple
adjustment can estimate S, in the degree corrected model, and (3) demonstrates how this
new version of the algorithm improves the results on the slashdot social network.

3. THE DEGREE-CORRECTED LOCAL STOCHASTIC BLOCKMODEL

Inspired by [Karrer and Newman| [2011], the degree-corrected model in Definition 5 makes
the probability of a connection between a node ¢ € S, and a node j &€ S, scale with the

This data can be downloaded at http://snap.stanford.edu/data/soc-Slashdot0811.html
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GlobalTrans(A) finds very small clusters in the slashdot network.

Toa
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1 2 3 4 5 6
log(cut)

FIGURE 3. This plots the number of nodes in the largest ten clusters (ig-
noring a single giant cluster) found by GlobalTrans(A, cut) in the slashdot
social network. These clusters are very small, and probably too small for
many applications. Moreover, there are not that many of them.

degree of node j on the subgraph induced by S¢.
(8) A= Ay
tese
For the following definition to make sense, we presume that d7 is fixed for all j € S§.
Definition 5. Suppose A € {0, 1}(”+S)X("+S) is an adjacency matriz and Sy is a set of
nodes with |Si| = s. For j € 5%, define d} as in Equation @®). 1f
(1) i € Sy and j € SS implies

(2) 1,7 € Sy implies P(Aij = 1) > pin,

(3) {Aij :Vj and Vi € Si} are mutually independent
then A follows the local degree-corrected Stochastic Blockmodel with parameters
S*vpin-
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The fundamental difference between the previous local model and this degree corrected
version is the assumption that if ¢ € S, and j € S¢, then

S | &

P(A;jj=1) <

In the previous model, P(A;; = 1) < poy. This new condition can be interpreted as
P(Ai; = 1) < powt d;'f for poyt = 1/n. In this degree-corrected model, the nodes in S,
connect to more high degree nodes than they do under the previous local model.

The degree corrected model creates two types of problems for LocalTrans(A,, 7). Be-
cause the high degree nodes in S¢ create many connections to the nodes in S, it is more
likely to create triangles with two nodes in S,. Additionally, by definition, the high degree
nodes outside of S, have several neighbors outside of S,. As such, it is more likely to create
triangles with one node in S, and two nodes outside of S,. In essence, the high degree nodes
create several triangles in the graph, washing out the clusters that LocalTrans(A,,7) can
detect. To confront this difficulty, it is necessary to down weight the triangles that contain
high degree nodes.

3.0.1. The graph Laplacian. Similarly to the adjacency matrix, the normalized graph Lapla-
cian represents the graph as a matrix. In both spectral graph theory and in spectral clus-
tering, the graph Laplacian offers several advantages over the adjacency matrix [Chung)
1997, [Von Luxburg, 2007]. The spectral clustering algorithm uses the eigenvectors of the
normalized graph Laplacian, not the adjacency matrix, because the normalized Laplacian
is robust to high degree nodes [Von Luxburg, 2007].

For adjacency matrix A, define the diagonal matrix D and the normalized graph Lapla-
cian L, both elements of R™*™  in the following way
© D;; = d(i) B

Ly = (DD, = e
Some readers may be more familiar defining L as I — D~/2W D~
is necessary to drop the I—.

The last section utilized the matrix 7' = [AA] - A to find the triangles in the graph. To
confront the degree corrected model, the next theorem uses [LL]- L instead. The interpre-
tation of this matrix is similar to T'. It differs because it down weights the contribution of
each triangle by the inverse product of the node degrees. For example, where a triangle
between nodes i, j, k would add 1 to element T};, it would add (d(i)d(j)d(k))~"! to the i, jth
element of [LL] - L.

Some versions of spectral clustering use the random walk graph Laplacian, an alternative
form of the normalized graph Laplacian.

Lrw = DA

12 For our purposes, it

While the algorithmic results from spectral clustering can be depend on the choice of graph
Laplacian, LocalTrans returns exactly the same results with L as it does with Lry . To
see this, first imagine that if the graph is directed, then A is asymmetric, and for 71" to
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correspond to directed cycles of length three, it is necessary to take the transpose of the
final A, that is [AA] - AT. Since Lgy is asymmetric, it is reasonable to use the additional
transpose from the directed formulation. It is easy to show that

(10) [LL]- L = [LrwLrw] - Lk

Chaudhuri et al.| [2012] and |Chen et al.| [2012a] have recently proposed a “regularized”
graph Laplacian. |Chaudhuri et al.| [2012] propose replacing D with D, = D + 71, where
7 > 0 is a regularization constant. They show that a spectral algorithm with

LT — D;l/QAD;l/Q

has superior performance on sparse graphs. Similarly, it will help to use L, with LocalTrans.
(Note that the equivalence in Equation still holds with the regularized versions of the
Laplacians.)

The next theorem shows that under the local degree-corrected model — with the reg-
ularized graph Laplacian, a specified choice of tuning parameter cut, and ¢ € S, — the
estimate LocalTrans(L;, 4, cut) = S, with high probability. Importantly, using L. instead
of A allows for reasonable results under the degree-corrected model.

Theorem 4. Let A come from the local degree-corrected Stochastic Blockmodel. Define A
such that

(11) D Ay <n
i,jESe
Set cut = [2(s — 1)pin + 2\ + 7] 73, If
n>3(2(s — Dpim + 21 + 1)/ 77 1e,
and s > 3, then for any i € S,
LocalTrans(L,,i,cut) = S,

with probability at least
1— (Y2 s*(1 = p},)" > + sexp (=Y/a spin + A) + O(n* 7)) .

A proof of Theorem [4] can be found in the Appendix.

Because simple summary statistics (of sparsity and transitivity) on empirical networks
contradict the types of models studied in the literature, Theorem [ tries to minimizes the
assumptions on the “global” structure of the graph. It only assumes that the graph outside
of S, i.e. the induced subgraph on S¢, is sparse. There are no other assumptions on this
part of the graph.

This result is asymptotic in n = |S¢|, with S, fixed and containing nodes with bounded
expected degree; the assumption in Equation and the definition of d; imply that the
nodes in S, have expected degree less than s + .
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GlobalTrans(L) finds several reasonably sized clusters
in the slashdot network.

cluster size
100 150 200 250
| | | |

50

log(cut)

FIGURE 4. A plot of the number of nodes in the largest ten clusters (ignor-
ing one very large cluster) found by GlobalTrans(L,,cut) in the slashdot
social network. GlobalTrans with L, instead of A finds much larger clus-
ters.

3.1. Preliminary Data Analysis. Recall that Figureillustrates how GlobalTrans(A, cut)
fails to find any clusters larger than twenty nodes in the slashdot social network. Fig-
ure |4 shows that using L, instead of A corrects for the problems observed in Figure
It plots the size of the largest ten clusters in the slashdot social network found by
GlobalTrans(Lis, cut) for values of cut between 3 * 1076 and 500 * 1076, It finds several
clusters that exceed twenty nodes. In this analysis, and all other analyses using L, the
regularization constant 7 is set equal to the average node degree (as suggested in Chaudhuri
et al.|[2012]). In this case, T ~ 12.

Figure |[5|shows some of the clusters from the slashdot social network. Specifically, it plots
twenty-four of the induced subgraphs from GlobalTrans(L,—12, cut = 32 10~°). Because
the clusters are not so large, the sub-graphs are easily visualized and it is easy to see how
these clusters have several different structures. Some are nearly planar; others appear as
densely connected, “clique-like” sub-graphs; other clusters are a collection of several smaller
clusters, weakly strung together. Figure [l|in the introduction gives a similar plot for the
epinions social network. These visualizations were created using the graph visualization
tool in the igraph package in R [Csardi and Nepusz, 2006].
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FiGURE 5. Twenty-four small clusters from the slashdot data set. Because
GlobalTrans discovers small clusters, one can easily plot and visualize the
clusters with a standard graph visualization tool [Csardi and Nepusz, |20006].
The point of this figure is to show the variability in cluster structures; some
are tight, clique-like clusters; others are small lattice-like clusters; others
are “stringy” collections of three or four tight clusters. This highlights the
ease of visualizing the results of local clustering.

Figure |§| illustrates how LocalTrans(L 12,1, cut) changes as a function of cut for a
certain node in the epinions social network. Each of the four panels displays the network
for cut = 58 x 1076, In each of the four panels, solid nodes are the nodes that are included
in LocalTrans(L,—12,1, cut) for four different values of cut. This seed node was selected
because the local cluster is slowly growing as cut decreases and you can see in this in Figure
[Bl] The left most panel displays the results for the largest value of cut. This returns the
smallest cluster and not surprisingly, the igraph package plots these nodes in the center of
the larger graph. Moving to the right, the clusters grow larger and the additional nodes
start to extend to the periphery of the visualization. While the clusters for this node grow
slowly, for many other nodes, the transitions are abrupt. For example, the nodes that join
the cluster in the last panel in Figure [6] jump from cluster sizes of one or two into this
bigger cluster. Then, decreasing cut a little bit more, this cluster becomes part of a giant
component.

In particular, it was chosen as the “slowest growing” from a randomly chosen set of 200 nodes.
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cut=201 cut =153 cut =106 cut =58

FIGURE 6. Starting from a seed node, this figure demonstrates how
LocalTrans(L;—12,1, cut) grows as cut decreases. In each panel, the graph
is drawn for the smallest value of cut, and the solid nodes correspond to the
nodes returned by LocalTrans(L,—12,1, cut), where the value of cut is given
above the graph in the units 107%. Moving from left to right, the clusters
grow larger, and the additional nodes start to extend to the periphery of
the visualization.

4. DISCUSSION

The tension between transitivity and sparsity in networks that implies that there are
local regions of the graph that are dense and transitive. This leads to the blessing of
dimensionality, which says that edges (in sparse and transitive graphs) become asymptoti-
cally more informative. For example, under the exchangeable model, if the model is sparse
and transitive, then the conditional density of the latent variables &;,&;, given A;; = 1, is
asymptotically unbounded, concentrating on the values of &;,&; that are consistent with
the local structure in the model. This has important implications for statistical models,
methods, and estimation theory.

In sparse and non-transitive Stochastic Blockmodels, the block structure is not revealed
in the local structure of the network. Rather, the blocks are revealed by comparing the
edge density of various partitions. However, under transitive models, the local structure
of the network can reveal the block structure. As such, these blocks can be estimated by
fast local algorithms. Theorems [3| and 4] show that LocalTrans performs well under a local
Stochastic Blockmodel that makes minimal assumptions on the nodes outside of the true
cluster; this is the first statistical result to demonstrate how local clustering algorithms
can be robust to vast regions of the graph.

This paper studies small clusters because (1) they can create sparse and transitive
Stochastic Blockmodels, (2) they are relatively easy to find, both computationally and
statistically, and (3) they are easy to plot and visualize. In future research, we will study
how these ideas can be used to find large partitions in networks. Sparse and transitive
models do not preclude large partitions, as long as some type of local structure exists
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within each partition. It is not yet clear how global algorithms like spectral clustering
might leverage this transitive structure in a stochastic model; this is one area for future
research.
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APPENDIX A. PROOFS FOR SECTION [I]
A.1. Proof of Theorem

Proof. Recall that the transitivity ratio of A is

number of closed triplets in A

trans(A) = :
(4) number of connected triples of vertices in A



22 THE BLESSING OF TRANSITIVITY IN SPARSE AND STOCHASTIC NETWORKS

Both the numerator and the denominator of the transitivity ratio have other formulations
that suggest how they can be computed.

number of closed triplets in A = 6 x Number of triangles in A
trace(AAA)
number of connected triples of vertices in A = 2 x Number of 2-stars in A

- 23(3)
= de.—dj.

For ease of notation, define X,, = trace(AAA) and Y,, = 3. d? — d;. So, trans(A) =
Xn/Y,. To show that transitivity converges to zero, use

p(Ze5 ) < B0
Y, €
and the following Lemma.
Lemma 1. If A, = o(n), then there exists a sequence f, such that E(X,) = o(f,) and
P(Y, > fn) = L.

Using Lemma [l and fact that X,,/Y,, <1 a.s.,

E% < FE <Xn1{Yn > fu}+ WY, < fn}>

. B(X.)
= L

— 0.

+ P(Y, < fn)

Now, to prove Lemma . For ease of notation, define d = ), d;. From Bickel, Levina,

Chen, define p = W‘l_l). They show that p/py, A 1, where p, = P(Aj2 = 1). So, this
converges to zero:

d
P (M < 1/2> =P(d<n(n—1)p,)

n—1
Define M,, = n(n — 1)p,. Then, P (d > M,) — 1. Define f,, = M?2/n — M, Notice that

MANY d;=m Zd? —d; > n((m/n)? —m/n) =m?/n—m.
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Putting these pieces together,

POz f) = [ 1{¥n2 f)aP
> [y d-azpyap
d>M,y, i
= Z/ W) d}—d> fu}dP
d=m

m> My, i

2
Z /d ml{m /n—m > f}dP

m> My,

Y

= P(d>M,)— 1.

The last piece is to show that E(X,,) = o(f,). From the definition of f,, and the fact
that p, = An/n,
n(n —1)p, 2
fn = ((n)) —n(n—1)pn
= n(n—17>%\/n)? —nn—-1\,/n

= An(n—1) <";1An—1)

— Mn

Define
Si2 =Y AinAy

as the number of two stars with nodes 1 and 2 as end points. Then, under the assumption

that
B < P(A;3=1) )
Pmax = O )
P(A13 = 1’A23 = 1)

E(X,) = pan(n—1)E(Si2)
Pmaxn*(nE(A13423))

Pmaxn° E(A13|Agz = 1)E(Ag3 = 1)
o(ppn®)

o(fn)-

it follows that

IN
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A.2. Proof of Theorem [2k

Proof. Let r = ¢o/n and let p be fixed.

Number of triangles: Let A, denote the number of triangles. Notice that there are
three types of triangles: (1) let A’ denote the number of triangles with all nodes in block 4;
(2) let Ag; denote the number of triangles with 2 nodes in the same block and one node in

a separate block; (3) let Ajj; denote the number of triangles with nodes in three separate
blocks.

E(Agr) = K(K — 1) (;) spr? = K(K — 1) (;) spd/($K?) < p(s — 1)/2,

K
E(A11) = <3>33r3 < K353¢3/(65°K3) = ¢} /6.

By the Markov inequality, Ag1/K L 0,A111/K Zo. Finally, A are iid. So, by LLN,
their average converges in probability to their expectation. Putting these pieces together
with Slutsky’s theorem, the number of triangles over K is,
1 P . S
—A, = E(AY) = 5.
Lo, B @p

Number of two stars: Let S,, be the number of two-stars. Define the events B =
{|Sn — E(Sy)| >t} and A = {Maximum Degree < M}

P(B) = P(BA) + P(BA®) < P(BA) + P(A°)

Apply the bounded difference inequality within the set BA. Define 4; € {0,1}"* for
i=1,...,n—1 as the ith row of the upper triangle of the adjacency matrix A. To bound
the bounded difference constant, first notice that ¢; > ¢; for all i. Moreover, we have

C1 S 3M2

This is because node 1 belongs to at most 3(1‘24) triplets. By changing the edges of node 1,
Sy can increase or decrease by at most 3(]\2/[ ) By the bounded difference inequality,

2
n

Choose M = logn and t = Ke for any ¢ > 0, we have P(BA) — 0. More over, by
concentration inequality,

P(A°) = P(Ui{d; > M}) <nP(dy > M) = 0
Therefore, we have

S,/ K 5 E(S,)/K.
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Notice that E(S,)/K is equal to the expected number of two-stars whose center is in the
first block. So,

s = o5 )+ - ne - (7))

— s ((8 ; 1);02 + (s — 1)pco +c(2)/2>

Finally,

TranRatio( A) — 5 2umber of triangles p3EA,

— .
number of 2-stars ES,

APPENDIX B. PROOFS FOR SECTION [2] AND
B.1. Proof of Theorem [3k

Proof. Define the following events

B, = {S. and S¢ are separated with cutting level a},
Co = {8 is clustered within one block with cutting level a},
D, = {Every pair of nodes in S, have at least a common neighbor.}

If both events B, and C, are satisfied, then for any i € S,, LocalTrans(A, i, a) recovers
block S, correctly. Events D, implies that S, is clustered within one block with cutting
level «, that is D, € C,. To see this, assume the contrary, then there exists a partition
Sy = S1 U S, such that for any j € S,k € S2,7(j, k) < a. However, D, implies that
S, is connected, hence there exists u € Si,v € So, such that A(u,v) = 1. Moreover, D,
also implies that u,v have at least & common neighbors. Hence, T'(u,v) > «. This is a
contradiction.
The following lemma leads to the desired results.

Lemma 2. Under the conditions above,

P(Bf) = O(pgutn5(5+)‘))a
P(Bg) = O(pgutns(s + )‘)2)3

a—1
c 1 2 S — 2 2 s—2—k
P(Da) < 55 Z ( k >(1 _pin) :
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By Lemma 2] we have

P(correctly clustering S, with cutting level 1) > P(B;NCh)

= 1-P(BfUCY

> 1-P(By)+ P(CY)

> P(Bf) + P(Dj)

-1 <32<1 P 4 Ol st + )
P(correctly clustering S, with cutting level 2) > P(32 NCy)

= P(B3UC3)

> 1—P(BS)+ P(CS)

>

(
~ P(B5) + P(DS)
1= (31— p2,)*0 + O(pms(s + 1))

([l
Proof of Lemma (2
Proof.
P(Bf) = P(There exists at least two nodes i € S, and j € S¢, such that T;; > 1)

P(B

c
2

IN

IN

P( U U U {AijAjp A = 1})

iES* ]esg keS*US$7k7éi7j
P(J {AijAjrAr = 13) + P( | {AjAjuAr = 1})]
keS. keS¢
2 2 A
Sn(spout + npoutg)
O(p?,ns(s+ )

P(There exists at least two nodes ¢ € S, and j € S¢, such that Tj; > 2)

P( U U U {AijAj A AjAy = 1})

1€Sy JESS k<lESUSS k,l#1,5
snP( U U U U U {AijAj A Ay Ay = 1})

k€S« keS.leS¢ kleS¢

2.3 1 2.3 A 2 3 A
Sn(§8 Pout + in pout(ﬁ) + nspoutﬁ)

O(Douins(s + A)?)
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P(D§) = P(There exists at least two nodes i, j € S, such that i and j has less than « neighbors)

= P U {i and j has less than « neighbors}
§,jESs
a—1

1, 5—2 2 \s—2—k
s kzo( )

IN

Proof of Theorem [4k

Proof. In the proof, we assume that i,j € Si, P(A;; = 1) = pi,. The proof can be easily
extended to the case where P(A;; = 1) > p;p. First, we prove that P(max;ecg, D;; > 2EDq1)
is well bounded with some non-vanishing probability. Vi € S,

ED;; = ED; = Z EAW + Z EA” = (3 — 1)pm + A
JESx,j# JESS

Vi € Sy, Ve >0,

€
P(Dy; > EDyi + €) < LI
(Dis = “+€)—6Xp{ 2(ED¢¢+6/3)}

Take ¢ = ED11, and take union bound for all ¢ € S,, we have

P(m%XDii >2EDq;) < sexp {—2ED11} = sexp{—g[(s — D)pin + A}
1€

Let O denote the set {D;; < 2EDq1,Vi € S }. Then within the set O, by the same argument

from the proof of Theorem 3, we have that with probability at least %52(1 —p2)*72, S, is
clustered within one block by LocalTrans(L;,, cut) for any i € S, with cut

cut = (2ED11 +7) 7% = (2(s — D)pin + 22 +7) 2.

Second part proves that Vi € S, j € S¢, P(T;; > cut) is o(1). Notice that for any j € S,
the (j,7)th element of D, (denote as D7;) is d} + > _;cq, Aij + 7, so we have

DI >di+7, VjeSe

For any ¢ € S,, we have

D], >r1, Viels,
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Vi e S, je€ S,

P(Ty; > cut) < -LP(Ty> cut|Ay=1)
n

_ _J § : ( J
= F (DTDT by, M
JJ k=1 kk

d; "L A A
< Sp( L s Audy s oy
n T(dj +7) — Dj,
< 9 AipAr; > T2 t/2
> g Z ik k]_T(j+T)Cu/ +

keS.

Z dlk b 7(d} + 7)cut /2
keS¢

For the first term, when n large,

P( Z A Ay > TQ(dj +7)eut/2) < P( Z AirAp; > 0)
k€S, k€S, ki

< 1_(1_p. Cﬁ)s—l

— wm n

< pm(S - 1)%

On the other hand, notice that {A;Ax;,k € Si/{i}} are independent random variables

. dz . dx
with A Ag; ~ Ber(pin-) by the assumption. E[} 7, cq 1 AinAkj] = pin(s — 1)5F. By
concentration inequality, when n is sufficiently large (independent of j), we have

d*

P(Y Apdi; = 72(d5 + 7)cut/2) < P> AipArj > pinls — 1)-2+
kES« keSS,

d <T2cut/2 - p""(sn - ”))

oxo | — Cl(d;)
P 2c2d; /n + 2e1d /3

= exp(—cidj)

IN

where ¢; = 72cut /3.
For the second term, without loss of generality, assume that Aj; = Agj = ... = Ad;?,j =
1,Ag; = 0,Vk > dj. Notice that {Aj,k = 1,2,...,n,k # i} are independent random
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variables with A ~ Ber(d* ). Applying concentration inequality on the sequence { A, k =
2, ...,d;?}, with ap = 5=. Define X = Ek 1 @k Ak, then EX = -2 and

U—ZakEAzk = Zd* < ;J

k=1 J
When n is sufficiently large, we have,
A i A
Air o> 7(d; +T)eut/2 | < P Z F > (dt + T)cut )2
dp + 7 dy, J
keS¢ k=1
j *

Ay _ d; 1
< P > L4 di(reut/2 — =
< ( 4 S + dj (reut/ n)>

c2(dx)?
< [ N L
= eXp( 2(v + cd}/3)
<

o[ )
P\ 2@ /n+cdi/3)
= exp(—cd;)

where ¢ = Tcut/3.
On the other hand,

Zj Ak (df + 7)cut/2
> 7(dj +7)cu

kese Ok —1

i

IN
e

A Agj
P > * 2 < P
g A 7(d; + 7)cut/ < (

<

To sum up,when n is sufficiently large, we have that Vi € S,, j € S¢

;o )’ &
P(T;; > cut) < —L min (s — 1)L, 2e % 5.
n n n

where cut = (2ED11 +7) 73 = (2(s — 1)pin, + 2A + 7) 73, and ¢ = Tcut/3.
Next we show that, for any i € S,,j & S, P(T;; > cut) = O(n3~2), where € > log,, ().
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Case 1

. * €
.dj<n.

nP(T;; > cut)

IN

<

dr)3
min{( J) + pins
n

*\ 3 *\2
)7, 4)

inS

n3e n26

— + pins——
n n

O(n3e—1)

d*)? .
j) , Qd*eCdJ}
n ]

Case 2: d; > n. Notice that the derivate of u(z) = 2d} exp(—cd}) is (1 — cz) exp(—cxz).
So, if n° > 1/c then u(d}) < u(n) = 2n°exp(—cnf).

nP(T;; > cut)

IN N IA

So, independent of dj,

Putting the pieces together,

P(S, and S¢ are not separated ) <

[ (@)? (d . \
min + pins——, 2d; exp(—cd;)
n n

2d; exp(—cd;)
2n¢ exp(—cn®)

o(n™1)

P(T;; > cut) = O(n*?)

d*

= O(n*1

S g — min
n

n

d:)? d *
{( J) +pin3*j7 26_Cdj}
n

Finally, recall that O = {D;; < 2ED11,Vi € S.}, we have that for any i € S,

P({LocalTrans(L;, i, cut) returns S,}) >

2

1
> 1-— <52(1 —
2

1
1—=s*(1—p2,)" 2 -

O(n*~ 1) — P(0°)

0
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