
Part II∗

1. The polynomial smoothing spline.

2. Leaving-out-one, GCV and other smoothing pa-
rameter estimates.

3. The thin plate smoothing spline.

4. Generalizations: Different kinds of observations:
Non-gaussian, indirect, constrained.

5. Examples: The histospline, convolution equations
with positivity constraints. GCV with inequality
constraints.

∗Part II of ‘An Introduction to Model Building With Reproducing Kernel Hilbert
Spaces’, by Grace Wahba, Univ. of Wisconsin Statistics Department TR
1020, Overheads for Interface 2000 Short Course. c© Grace Wahba, 2000
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♣♣ The Polynomial Smoothing Spline

• The polynomial smoothing spline is the forerunner
of much more general RKHS models.

Let Wm be the collection of functions on [0,1] with
∫ 1
0 (f(m)(u))2du ≤ ∞. The polynomial smoothing

spline is the solution to the problem: Find f ∈ Wm to
min

1

n

n
∑

i=1

(yi − f(t(i)))2 + λ
∫ 1

0
(f(m)(u))2du.

It can be shown that Wm = W0
m ⊕ πm, where πm is

the span of the polynomials of degree m or less. We
rearrange things so that

Wm = H0 ⊕H1

where H0 = πm−1, the polynomials of degree m−1

or less, on which there will be no penalty, and H1 =

W0
m ⊕ {km}. It can be shown that the RK for H1 with

square norm ‖f‖2 =
∫ 1
0 (f(m)(u))2du is

K(s, t) = km(s)km(t) + (−1)mk2m([s− t]).
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By an argument generalizing the representer theo-
rem, and upon observing that {kν}

m−1
ν=0 span H0, it

follows that the minimizer fλ has the form

fλ(t) =
m
∑

ν=1

dνkν−1(t) +
n
∑

i=1

ciK(t(i), t), (1)

and that
∫ 1

0
(f(m)(u))2du =

n
∑

i,j=1

cicjK(t(i), t(j)). (2)

Upon substituting (1) and (2) into the original varia-
tional problem, the solution is obtained by minimiz-
ing a quadratic form in d = (d1, · · · , dm)′ and c =

(c1, · · · , cn)′. (There are easier ways to get the poly-
nomial spline, but the present way of going about it is
the one which we see will generalize in many ways.)
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Figure 1: Dashed Lines are Smoothing Splines with λ

too small, λ too large, and λ estimated via GCV,
from the top. Solid line is ‘truth’.
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♣♣ Choosing λ.

• Leaving-out-one.

Let f
[k]
λ (·) be the minimizer of

1

n

n
∑

i=1
i 6=k

(yi − f(t(i)))2 + λ
∫ 1

0
(f(m)(u))2du.

The leaving-out-one estimate of λ is the minimizer of

V0(λ) =
1

n

n
∑

k=1

(yk − f
[k]
λ (t(k)))2.

• GCV (Generalized Cross Validation).

The influence matrix A(λ) with kkth entry akk(λ) plays
an important role. The influence matrix relates the
data to the predicted data:











fλ(t(1))
fλ(t(2))

...
fλ(t(n))











≡ A(λ)y.
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• GCV (continued)

We have the Lemma:

V0(λ) ≡
1

n

n
∑

k=1

(

(yk − fλ(t(k))

(1− akk(λ))

)2

The GCV estimate of λ:

min V (λ) =
1
n

∑n
k=1(yk − fλ(t(k)))

2

(1− 1
n

∑n
`=1 a``(λ))2

.

≡
‖(I − A(λ)y‖2

1
n(I − trA(λ)))2

• Unbiased Risk (if you know σ2).

min U(λ) = ‖(I −A(λ)y‖2 + 2σ2trA(λ)

• Generalized Max Likelihood (GML, aka REML).

min M(λ) =
y′(I −A(λ))y

[det+(I −A(λ))]1/(n−M)

det+ = product of the n−M non-zero eigenvalues.
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• Cubic smoothing spline with GCV, SOFTWARE.

Codes for cubic (or higher order) smoothing splines
with GCV to choose the smoothing parameter. Ap-
proximately reverse chronological order.
...

Code- Author- Where Found (∗ = freeware)
—- —– —–
∗ pspline-Jim Ramsay-http:www.r-project.org

smooth.spline()-Trevor Hastie-Splus
∗ sbart-Finbarr O’Sullivan-http://www.netlib.org/gcv
∗ gcvspl-H. J. Woltring-http://www.netlib.org/gcv
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♣♣ The Thin Plate Spline

• The thin plate spline is one of the two-dimensional
generalizations of the univariate spline.

Letting t = (t1, t2), the penalty
∫

(f(2))2 is replaced
by

J(f) =

∫ ∞

−∞

∫ ∞

−∞
[f2

t1t1
+ 2f2

t1t2
+ f2

t2t2
]dt1dt2.
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Figure 2a: Thin plate spline demo. Top: True surface.
Bottom: The observations.
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Figure 2b. Top: fλ with λ too large. Bottom: fλ with λ

too small.
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Figure 2c. fλ̂ with λ estimated by GCV.
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• Thin plate spline with GCV, SOFTWARE.

Codes for thin plate smoothing splines with GCV to
choose the smoothing parameter. Approximately re-
verse chronological order.
...

Code- Author- Where Found (∗ = freeware)
—- —– —–

tpspline-Dong Xiang-SAS
∗ funfits-Doug Nychka-http://www.cdg.ucar.edu/

/stats/software.shtml
ANUSPLIN-M. Hutchinson-http://cres20.anu.edu/

/au/software/anusplin.html
∗GCVPACK-Bates et al-http://www.netlib.org/gcv

30



♣♣ The Representer Theorem (more general case)

Let H = H0 ⊕H1, where H0 is a finite dimensional
space spanned by φν, ν = 1, · · ·M , and H1 is an
RKHS with square norm ‖f‖2HK

. Find f = f0 + f1
with f0 ∈ H0 and f1 ∈ H1 to min

Iλ(y, f) =
1

n

n
∑

i=1

gi(yi, f(t(i))) + λ‖f1‖
2
HK

.

Suppose g is convex in f and the minimizer of
∑n

i=1 gi(yi, f(t(i))) in H0 is unique. Then the mini-
mizer fλ of Iλ is unique and has a representation

f(·) =
M
∑

ν=1

dνφν(·) +
n
∑

i=1

ciKt(i)(·).

where (d, c) minimize

n
∑

i=1

gi(yi, (Td + Kc)i) + λc′Kc.

Here, Tn×M = {φν(t(i))}, Kn×n = {K(t(i), t(j))}

and (x)i means the ith component of x.
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♣♣ Quick List of Generalizations

• In the ‘distance’ of f from observations.

1. g(y, f) = log likelihood

2. g(y, f) = robust functional

3. g(y, f) = support vector machine (SVM) functional

4. g(y, f) = indicator functionals, e. g. g(y, f) = 0

or ∞ according as f ∈ [y + u, y − l]

• In the kinds of observations.
• In the imposition of constraints.
• In the domain of the model, T → T (1) ⊗ · · · ⊗ T (d)
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• In the kinds of observations: Integrals:

Replace f(t) by Ltf where the Ltf are bounded lin-
ear fuctionals in H: Example: Tomography.

Ltf =
∫

T
H(t, u)f(u)du.

Then Kt is replaced by

ξt(·) =
∫

U
H(t, u)K(u, ·)du

and < Ks, Kt > is replaced by

< ξs, ξt >=
∫

U

∫

U
H(s, u)K(u, v)H(t, u)dudu.

ξt is called the representer of Lt in H,

Ltf ≡< ξt, f >=

∫

T
H(t, u)f(u)du.

Where does this come from?



• In the kinds of observations: The Eta Theorem:

Theorem: Let L be a bounded linear functional in an
RKHS HK with RK K. By the Riesz representation
theorem there exists an η in HK such that

Lf =< η, f >, all f ∈ HK.

We may find η by observing that

η(s) =< Ks, η > .

Since

< Ks, η >≡ LKs,

the representer of any bounded linear functional in
HK may be found by applying the bounded linear
functional to Ks, and then looking at the result as a
function of s.

This allows us to estimate f based on observations
on integrals and even derivatives if HK is chosen so
that these are bounded linear functionals. Derivatives
up to the m − 1st are bounded linear functionals in
Wm.
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• In the kinds of observations:The Representer
Theorem (even more general case)

Let H = H0 ⊕H1, where H0 is a finite dimensional
space spanned by φν, ν = 1, · · ·M , and H1 is an
RKHS with square norm ‖f‖2HK

. Find f = f0 + f1
with f0 ∈ H0 and f1 ∈ H1 to min

Iλ(y, f) =
1

n

n
∑

i=1

gi(yi, Lif) + λ‖f1‖
2
HK

,

where the {Li} are bounded linear functionals on H.
Suppose g is convex in f and the minimizer of
∑n

i=1 gi(yi, Lif) over f in H0 is unique. Then the
minimizer fλ of Iλ is unique and has a representation

f(·) =
M
∑

ν=1

dνφν(·) +
n
∑

i=1

ciξi(·). (3)

where ξi is the representer for Li inH1, Lif ≡< ξi, f >

and (d, c) minimize

1

n

n
∑

i=1

gi(yi, (Td + Kc)i) + λc′Kc.

Here, Tn×M = {Liφν}, Kn×n = {< ξi, ξj >}.
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•. The histospline. Given area integrals.

Female lung cancer rates in Wisconsin, by county.

yi =
1

|Ωi|

∫

Ωi

f(A)dA + εi.

The thin plate penalty is used for the histospline.
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Figure 3a. Female lung cancer rates, by county.
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Figure 3b. Volume matching. Min J(f) subject to
1
|Ωi|

∫

Ωi
f̂(A)dA = yi
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Figure 3c. Volume smoothing. Find fλ ∈ H to min
∑

i(yi −
1
|Ωi|

∫

Ωi
f(A)dA)2 + λJ(f)
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• In the kinds of observations: Constraints

Let H as before. Find f = f0 + f1 with f0 ∈ H0 and
f1 ∈ H1 to min

Iλ(y, f) =
1

n

n
∑

i=1

gi(yi, Lif) + λ‖f1‖
2
HK

subject to

1. Positivity: f(t) ≥ 0
2. Linear inequality constraints: Ntf ≥ at
3. Constraints via solutions to PDE’s:

t = (time, space), H(Lf) ≤ C

To compute, the constraints are discretized. The rep-
resenters of the constraints are incorporated in the
representation of the solution. For inequality constraints,
the coefficients are obtained by solving a mathemat-
ical programming problem. (MINOS) In typical cases
where the family of constraints is ‘smooth’ the addition
of a few constraints will lead to the constraints actually
being satisfied everywhere.
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Let {Nj} be a finite set of discretized constraints, and
let {ηj} be their representers, < ηj, f >= Njf . The
problem then becomes Find f = f0 + f1 to min

Iλ(y, f) =
1

n

n
∑

i=1

gi(yi, Lif) + λ‖f1‖
2
HK

subject to

< ηj, f >≥ aj, j = 1, · · · J,

and the solution has a representation

f(·) =
M
∑

ν=1

dνφν(·) +
n
∑

i=1

ciξi(·) +
∑

j

c̃jηj(·).
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Figure 4a. The convolution kernel

• Positivity constraints in a convolution equation.

yi =
∫

k(vi, u)f(u)du + εi.

Find fλ to min

1

n

∑

i

(yi −
∫

k(vi, u)f(u)du)2 +

∫

(f(2))2,

subject to fλ(uj) ≥ 0. The GCV for constrained prob-
lems: For fixed λ, solve the quadratic programming
problem, and find the active constraints. At the so-
lution, the same answer will be obtained by throwing
away the inactive constraints and putting in the ac-
tive inequality constraints as equality constraints. This
problem is linear - compute the GCV for it.
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Figure 4b. Two examples: Left panels-true f and ob-
servations yi. Right panels-true f , unconstrained so-
lution (wiggly) and constrained solution fλ̂.
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