Part II*

1. The polynomial smoothing spline.

2. Leaving-out-one, GCV and other smoothing pa-
rameter estimates.

3. The thin plate smoothing spline.

4. Generalizations: Different kinds of observations:
Non-gaussian, indirect, constrained.

5. Examples: The histospline, convolution equations
with positivity constraints. GCV with inequality
constraints.

*Part Il of ‘An Introduction to Model Building With Reproducing Kernel Hilbert
Spaces’, by Grace Wahba, Univ. of Wisconsin Statistics Department TR
1020, Overheads for Interface 2000 Short Course. (C) Grace Wahba, 2000
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& The Polynomial Smoothing Spline

e The polynomial smoothing spline is the forerunner
of much more general RKHS models.

Let W,,, be the collection of functions on [0, 1] with
fol(f(m)(u))Qdu < oo. The polynomial smoothing
spline is the solution to the problem: Find f € W, to
min

n

1 . 1

=3 (i = FEON? + A [ (O (w)) .

n. 3 0

It can be shown that W,,, = WO @ 7y, where mp, is
the span of the polynomials of degree m or less. We
rearrange things so that

m:HO@H]_

where Hg = m,,_1, the polynomials of degree m — 1
or less, on which there will be no penalty, and 'H{ =
WO & {km}. It can be shown that the RK for 7 with
square norm || f||2 = J3 (£ (u))2du is

K(s,t) = km(s)km(t) + (=1)"kom([s — t]).
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By an argument generalizing the representer theo-
rem, and upon observing that {k,/}";”gol span Ho, it
follows that the minimizer f, has the form

A=) dvk,—1(t) + > K (t(:),t), (1)
r=1 1=1
and that

1 n
LM @)Pdu= 3 K0, t(). @)
1,7=1

Upon substituting (1) and (2) into the original varia-
tional problem, the solution is obtained by minimiz-
ing a quadratic formind = (dy,---,dm)" and ¢ =
(c1,---,cn)’. (There are easier ways to get the poly-
nomial spline, but the present way of going about it is
the one which we see will generalize in many ways.)
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Figure 1: Dashed Lines are Smoothing Splines with A
too small, A\ too large, and A\ estimated via GCV,

from the top. Solid line is"truth’. -



& Choosing A.
e Leaving-out-one.

Let f}\k](-) be the minimizer of

LS i 7O+ [ @)
2

The leaving-out-one estimate of )\ is the minimizer of

o) = 3 (e~ AN
k=1

e GCV (Generalized Cross Validation).

The influence matrix A(A) with kkth entry az.. (M) plays
an important role. The influence matrix relates the
data to the predicted data:

f(t(1))
f)\(t.(Q)) = A()\)y

IRCO)
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e GCV (continued)

We have the Lemma:

13 (k= HEED
o) =] 2 ( (1= ars (V) )

" k=1
The GCV estimate of \:
% n_ 1 (yk — H(t(k)))?
(1— 204 ap(N)?
I(I — Ay
(I —trA(\)))2

min V(\) =

e Unbiased Risk (if you know o).

min U(N) = ||(I — A(\)y||? + 20°trA(N)

e Generalized Max Likelihood (GML, aka REML).

y' (I — A(\))y
[det™ (I — A(\))]Y/ (n=M)

det™ = product of the n — M non-zero eigenvalues.

min M(\) =
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e Cubic smoothing spline with GCV, SOFTWARE.

Codes for cubic (or higher order) smoothing splines
with GCV to choose the smoothing parameter. Ap-
proximately reverse chronological order.

Code- Author- Where Found (x = freeware)

x pspline-Jim Ramsay-ht t p: www. r - proj ect. org
smooth.spline()-Trevor Hastie-Splus

x Sbart-Finbarr O'Sullivan-ht t p: / / www. net | i b. or g/ gcv

x gcevspl-H. J. Woltring-ht t p: / / www. net |l i b. org/ gcv
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& The Thin Plate Spline

e The thin plate spline is one of the two-dimensional
generalizations of the univariate spline.

Letting t = (¢1,t»), the penalty [(f(2))2 is replaced
by

I = [ [ R+ 2020+ R )dndes
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Figure 2a: Thin plate spline demo. Top: True surface.
Bottom: The observations.
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Figure 2b. Top: f) with X too large. Bottom: f, with A
too small.

28



D
&
Lo 2lessale ot aloctalostattlotty

b

fr with \ estimated by GCV.

Figure 2c. f5 with A estimated by GCV.

29



e Thin plate spline with GCV, SOFTWARE.

Codes for thin plate smoothing splines with GCV to
choose the smoothing parameter. Approximately re-
verse chronological order.

Code- Author- Where Found (x = freeware)

tpspline-Dong Xiang-SAS
x funfits-Doug Nychka-ht t p: / / www. cdg. ucar . edu/
/| stats/software. shtmn
ANUSPLIN-M. Hutchinson-ht t p: / / cr es20. anu. edu/
/ au/ sof t war e/ anusplin. htm
x* GCVPACK-Bates etal-http: //ww. netli b. org/ gcv
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& The Representer Theorem (more general case)

Let H = Hg & H1, where Hg is a finite dimensional
space spanned by ¢, v = 1,---M, and Hy is an
RKHS with square norm ||f||%K. Find f = fog + f1
with fo € Hg and f1 € H1 to min

DG H = 3 gy, FE@D)) + A f
=1

1=
Suppose g is convex in f and the minimizer of
>or_q 9i(yi, f(t(2))) in Ho is unique. Then the mini-
mizer f) of I, is unique and has a representation

M n
FO)= > dvpu(-) + > ciKy» ().
r=1 1=1
where (d, ¢) minimize

> gi(yi, (Td + Kc¢);) + A Ke.
1=1

Here, Ty, pp = {dv(1(2)) }, Knxn = {K(¢(4),t(5))}
and (x); means the ith component of .
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& Quick List of Generalizations

e In the ‘distance’ of f from observations.

. g(y, f) = log likelihood

. g(y, f) = robust functional

. g(y, f) = support vector machine (SVM) functional

. g(y, f) = indicator functionals, e. g. g(y, f) = 0O
or oo according as f € [y + u,y — ]

e In the kinds of observations.
¢ In the imposition of constraints.

e In the domain of the model, 7 - 71 @ ... @ 7(d)
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e In the kinds of observations: Integrals:

Replace f(t) by L;f where the L;f are bounded lin-
ear fuctionals in H: Example: Tomography.

Lef = | H(tu)f(u)du.
Then K, is replaced by

&() = /UH@,u)K(u,-)du

and < Ks, K¢ > Is replaced by

< &, & >= /u/Z/{H(S,u)K(u,v)H(t,u)dudu.

& Is called the representer of L; in 'H,

Lif =< &, f >= /TH(t,u)f(u)du-

Where does this come from?



e In the kinds of observations: The Eta Theorem:

Theorem: Let L be a bounded linear functional in an
RKHS Hj with RK K. By the Riesz representation
theorem there exists an 7 in "H g such that

Lf=<n,f>, all f e Hg.
We may find n by observing that

n(s) =< Ks,n > .
Since
< Ks,m >= LK,

the representer of any bounded linear functional In
Hi may be found by applying the bounded linear
functional to K, and then looking at the result as a
function of s.

This allows us to estimate f based on observations
on integrals and even derivatives if H j is chosen so
that these are bounded linear functionals. Derivatives
up to the m — 1st are bounded linear functionals in
W
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e In the kinds of observations:The Representer
Theorem (even more general case)

Let H = Ho & H1, where Hg is a finite dimensional
space spanned by ¢, v = 1,---M, and Hq is an
RKHS with square norm || f||%, . Find f = fo + f1
with fo € Hp and f1 € H1 to min

1 n
Dy, ) ==Y gi(yi, Lif) + >\||f1||72¢K,
ni=1

where the {L;} are bounded linear functionals on H.
Suppose g is convex in f and the minimizer of

>or_19i(yi, Lif) over fin Hp is unique. Then the
minimizer fy of I, is unique and has a representation

M n

where &; istherepresenterfor L; inHq, L, f =< &;, f >
and (d, ¢) minimize

l Z g;(y;, (Td + Kc);) + M\ Ke.
ni=1
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e. The histospline. Given area integrals.

Female lung cancer rates in Wisconsin, by county.

1
o Jo SN+

The thin plate penalty is used for the histospline.

Yi —
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Figure 3a. Female lung cancer rates, by county.
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s. Volume Matching
25
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Figure 3b. Volume matching. Min J(f) subject to
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| fQZ- f(A)dA — Yi
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Figure 3.15. 1979-1975 Female Lung Cancer, Histospline
Smoothed by GCV. Contour Interval: 0.05.

Figure 3c. Volume smoothing. Find f, € H to min
Si(yi = 1y Jo, F(A)AA)? + AT (f)
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e In the kinds of observations: Constraints

Let H as before. Find f = fo + f1 with fo € Hp and
f1 € H1 tomin

1 n
Ly, ) == iy, Lif) + Al f113,,,
mn
1=1

subject to

1. Positivity: f(¢t) > 0
2. Linear inequality constraints: N+f > ay
3. Constraints via solutions to PDE’s:

t = (time, space), H(Lf) < C

To compute, the constraints are discretized. The rep-
resenters of the constraints are incorporated in the
representation of the solution. For inequality constraints,
the coefficients are obtained by solving a mathemat-
ical programming problem. (MINOS) In typical cases
where the family of constraints is ‘'smooth’ the addition
of a few constraints will lead to the constraints actually
being satisfied everywhere.
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Let {IV;} be a finite set of discretized constraints, and
let {n,} be their representers, < n,, f >= N;f. The
problem then becomes Find f = fg + f1 to min

1 mn
Ly, ) == iy, Lif) + Al f113,,,
mn
1=1

subject to

<77]7f>2a]7 3217']7

and the solution has a representation

M n
r=1 1=1 J
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The convolution kernel k(t).

Figure 4a. The convolution kernel

e Positivity constraints in a convolution equation.

v = [ k(i) f ()du+ ¢
Find f) to min

%Z(yi_/k(’vi»U)f(u)du)?+/(f(2))27

subjectto f\(u;) > 0. The GCV for constrained prob-
lems: For fixed )\, solve the quadratic programming
problem, and find the active constraints. At the so-
lution, the same answer will be obtained by throwing
away the inactive constraints and putting in the ac-
tive inequality constraints as equality constraints. This
problem is linear - compute the GCV for it.
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Figure 4b. Two examples: Left panels-true f and ob-
servations y;. Right panels-true f, unconstrained so-
lution (wiggly) and constrained solution f5.
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