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iAbstrat
We ombine a smoothing spline ANOVA model and a log-linear model to builda partly exible model for multivariate Bernoulli data. The joint distributiononditioning on the preditor variables is estimated. The onditional log oddsratio is used to measure the assoiation between outome variables. A numer-ial sheme based on the blok one-step SOR-Newton-Ralphson algorithm isproposed to obtain an approximate solution for the variational problem. It isproved for a speial ase that the approximate solution an ahieve the samestatistial onvergene rate as the exat solution, but is muh more omputingeÆient. We extend GACV (Generalized Approximate Cross Validation) tothe ase of multivariate Bernoulli responses. Its randomized version is fast andstable to ompute. Simulation studies show that it is an exellent omputa-tional proxy for the CKL (Comparative Kullbak-Leibler) distane. It is usedto adaptively selet smoothing parameters in eah blok one-step SOR itera-tion. Approximate Bayesian on�dene intervals are obtained for the exibleestimates of the onditional logit funtions. Simulation studies are ondutedto hek the performane of the proposed method. Finally, the model is appliedto two-eye observational data from the Beaver Dam Eye Study to examine theassoiation of pigmentary abnormalities and various ovariates.
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1Chapter 1
Introdution
1.1 MotivationThe original motivation of this study omes from many typial data from oph-thalmologial studies. One harateristi of suh kind of data set is that wehave outomes from both eyes of the same person. Usually, they are orrelatedBernoulli outomes, Yij; i = 1; 2; :::; n; j = 1; 2. Yij = 1 indiates that the jtheye of the ith person has a ertain disease. Both person-spei� and eye-spei�ovariates may be available as preditor variables.As in many medial data, it is not suÆient to diretly predit the outomebased on the available ovariates, sine even people with the same ovariatevalues do not neessarily have the same medial outomes. Instead, we areinterested in �nding the relation between outome variables and preditor vari-ables, i.e. (1) what is the probability p of a ertain outome onditioning onsome given preditor variable values; (2) how will the hanges of preditor vari-ables a�et the onditional probability p; (3) how strong are the orrelationsbetween those multiple outomes.The �rst question is to build a preditive model for future observations.



2Their ovariate variable values may not appear in the training set. Consequentlywe need some smoothing tehnique whih not only provides estimate of p onthose data points available for model building, but also provides preditionbetween those data points.The seond question is related to interpretability of our model. Unlike ablak box, it should have readily interpretable result for multivariate funtionestimate and reasonable assessment of auray after the model has been �tted.This property is espeially important for medial researhers, sine the inves-tigators are usually interested in understanding the ause of ertain outomes.In omputer sienes, neural networks have been one of the most popular teh-niques for preditive model building, but the result is diÆult to interpret.The third question is related to the speial struture of typial ophthalmol-ogy data sets and many other data sets. When analyzing data from a typialophthalmology study, we must take into aount the fat that the measure-ments made on both eyes of the same person are highly orrelated. Hene, wean not treat them as independent outomes. Multiple outomes for the sameperson (or group) may also arise from two-period ross-over designs (Jones &Kenward 1989), twin studies (Cessie & Houwelingen 1994) and typial longitu-dinal studies. It is also of interest to model several losely related endpointssimultaneously. For example, in Liang, Zeger & Qaqish (1992), two endpointsfrom the Indonesian Children's Study, respiratory and diarrheal infetions wereonsidered in the same model. To address the third question, it is not enough



3to simply estimate the marginal distribution separately for individual outomevariables. Instead, we want to treat those outome variables together and esti-mate their joint distribution. The dependene struture an be useful for theeÆient estimation of the mean values, or it an be of diret sienti� interest.Numerous shemes have been proposed to study it. For example, Cox (1972)expressed the likelihood funtion in terms of the multivariate exponential familydistribution. Qu, Williams, Bek & Goormasti (1987) onsidered onditionallogisti models. MCullagh & Nelder (1989) proposed multivariate marginallogisti regression model. Lipsitz, Laird & Harrington (1991) and Williamson,Kim & Lipsitz (1995) onsidered marginal models and used the (global) oddsratio as a measurement of assoiation. Liang et al. (1992) had a disussionabout the di�erene between log-linear and marginal models. Molenberghs &Ritter (1996) proposed a likelihood based marginal model and established theonnetion with the seond order generalized estimating equations (GEE2).Classial log-linear models have been widely used to estimate joint ondi-tional probabilities. See Bishop, Fienberg & Holland (1975). People used toassume linear parametri forms for all the onditional logit funtions to be es-timated. However, it is not always adequate to make linear or even quadratior ubi assumptions. When the linear assumption is far away from the truth,the result obtained under suh an assumption may even be misleading.On the other hand, the nonparametri approah an give us more exibility



4for model building. In the past time, one fat prevented nonparametri re-gression from wide appliation was the limited omputing resoure. However,the omputing speeds of modern omputers have been improved dramatially,and they are equipped with muh larger high speed random aess memory(RAM) nowadays. Various new algorithms have also been developed to speedup the omputation. The nonparametri approah will be very useful when aparametri model is not suÆient. In the mean time, it an also serve as anautomated diagnosti tool for parametri �tting. We will not review the generalliterature here, other than to note that the additive smoothing spline has beenused by Heagerty & Zeger (1998) and Lin & Zhang (1999) for this purpose.Heagerty & Zeger (1998) used log odds ratio as a measurement of dependeneand smoothing splines with �xed degrees of freedom. Their model was �tted byusing Generalized Estimating Equation. Lin & Zhang (1999) proposed gener-alized additive mixed e�et model and used smoothing splines to estimate theadditive �xed e�et terms.Smoothing spline analysis of variane (SS-ANOVA) provides a general frame-work for multivariate nonparametri funtion estimation. It allows both maine�ets and interation terms. These models have been studied extensively forGaussian data. Reently, Lin (1998b) obtained some general onvergene re-sults for tensor produt spae ANOVA model and showed that smoothing splineANOVA model ahieves the optimal onvergene rate. Wahba, Wang, Gu, Kleinand Klein (1995, referred as WWGKK) gave a general setting for applying



5smoothing spline ANOVA to data from exponential families. They suess-fully applied their method to analyze demographi medial data with Bernoullioutomes. Lin (1998a) proposed to use SS-ANOVA to model data with poly-hotomous responses. Wang (1998a) developed mixed e�et smoothing splinemodel for orrelated Gaussian data. In this thesis, we will explore how to usesmoothing spline ANOVA to model orrelated multivariate Bernoulli data.We will ombine log-linear model and smoothing spline ANOVAmodel to ob-tain a partly exible estimate of the joint distribution for multivariate Bernoullidata. It is of partiular interest to us to explore the nonlinearity of the on-ditional logit funtions. Conditional log odds ratio will be used to model theassoiation among multivariate Bernoulli outomes. We will still let log oddsratio take a simple parametri form and estimate it by using maximum likeli-hood estimation. An extension of GACV proposed by Xiang & Wahba (1996)to multivariate responses will be used to hoose smoothing parameters. Wewill iteratively estimate the onditional logit funtions and log odds ratio untilonvergene.1.2 Outline of the ThesisIn Chapter 2, we will review the log-linear model for multivariate Bernoulliobservations and propose a smoothing spline ANOVA model to relax the para-metri assumption. The existene and uniqueness of the nonlinear solution isinvestigated.



6In Chapter 3, we disuss how to �t the penalized multivariate logisti re-gression model for a large data set. A numerial method ombining the blokone-step SOR-Newton-Ralphson algorithm and approximate smoothing splineis used to solve the variational problem for �xed smoothing parameters. Wealso proposed to use the iterated ranGACV for multivariate Bernoulli data toselet smoothing parameters adaptively. Simulation studies are onduted toillustrate the reasonable performane of the proposed algorithm.In Chapter 4, we apply the proposed method to investigate the assoiationbetween the pigmentary abnormalities and some risk fators for women in theBeaver Dam Eye Study. Finally, some disussions are given in Chapter 5.



7Chapter 2
Penalized Multivariate LogistiRegression using SmoothingSpline ANOVA
2.1 Log-linear Model for Multivariate BernoulliDataAssuming there are J di�erent endpoints, and Kj repeated measurements forthe jth endpoint, let Yjk denote the kth measurement of the jth endpoint. Forexample, in ophthalmologial studies, we have two repeated measurement foreah disease: left eye and right eye. In a typial longitudinal study, we haverepeated measurements over the time. Y = (Yjk; j = 1; :::; J; k = 1; :::; Kj) isa multivariate Bernoulli outome variable. Let Xjk = (Xjk1; Xjk2; :::; XjkD) bea vetor of preditor variables ranging over the subset X of RD, where Xjkddenotes the dth preditor variable for the kth measurement of the jth endpoint.Some preditor variables may take di�erent values for di�erent measurements



8while others may be the same for all Yjk's. For example, in ophthalmologystudies, there may be present both person-spei� preditors and eye-spei�preditors. The person-spei� preditors are the same for eah person whilethe eye-spei� preditors may be di�erent for the left and right eyes. LetX = (Xjk; j = 1; :::; J; k = 1; :::; Kj). Then (X; Y ) is a pair of random vetors.For a response vetor y = (yjk; j = 1; :::; J; k = 1; :::; Kj), its joint probabilitydistribution onditioning on the preditor variables X an be written asP (Y = yjX) = expf JXj=1 KjXk=1 fjkyjk + JXj=1 Xk1<k2 �jk1;jk2yjk1yjk2+ Xj1<j2 Xk1;k2 �j1k1;j2k2yj1k1yj2k2 + :::+�11;12;:::;JKjy11y12::::yJKj � b(f; �)g (2.1.1)whereb(f; �) = log(1 +Xj;k exp(fjk) +Xj1;k1Xj2;k2 exp(fj1k1 + fj2k2 + �j1k1;j2k2)+::: + exp(Xall f f + Xall ��)) (2.1.2)Let M =PJj=1Kj be the length of the vetor Y , there are in total 2M � 1 pa-rameters: (f; �) = (f11; f12; :::; fJKj ; �11;12; :::; �11;12;:::;JKj), whih may dependon X. The parameter spae is unonstrained. They have straightforward inter-pretations in terms of onditional probabilities. For example,fjk = logit(P (Yjk = 1jY (�jk) = 0; X)) (2.1.3)is the onditional logit funtion;�j1k1;j2k2 = logOR(Yj1k1 ; Yj2k2 jY (�j1k1;�j2k2) = 0; X) (2.1.4)



9is the onditional log odds ratio, whih is a meaningful way to measure pairwiseassoiation; �j1k1;j2k2;j3k3= logOR(Yj1k1 ; Yj2k2jYj3k3 = 1; Y (�j1k1;�j2k2;�j3k3) = 0; X)� logOR(Yj1k1 ; Yj2k2jYj3k3 = 0; Y (�j1k1;�j2k2;�j3k3) = 0; X) (2.1.5)is measuring three way assoiation. Here Y (��) denotes the subset of vetor Yexept Y�, and logit(p) = log p1� p; (2.1.6)OR(v; w) = P (v = 1; w = 1)P (v = 0; w = 0)P (v = 1; w = 0)P (v = 0; w = 1) : (2.1.7)Now assume that we have n independent observations (xi; yi); i = 1; :::; n,where yi = (yi11; yi12; :::; yiJKj) and xi = (xi11; xi12; :::; xiJKj). Here yijk andxijk = (xijk1; xijk2; :::; xijkD) are the outome variable and preditor vetor forthe kth measurement of the jth endpoint of the ith subjet. From now on,we will use fi and �i to denote the parameters for the ith subjet, while y =(y1; :::; yn), f = (f1; :::; fn) and � = (�1; :::; �n). We an write down the negativelog likelihood funtion based on the observed data.L(y; f; �) = nXi=1f JXj=1 KjXk=1 fijkyijk + JXj=1 Xk1<k2 �ijk1;ijk2yijk1yijk2+Xj1<j2 Xk1;k2 �ij1k1;ij2k2yij1k1yij2k2 + :::+�i11;i12;:::;iJKjyi11yi12::::yiJKj � b(fi; �i)g (2.1.8)



10We refer to equation (2.1.8) as the log-linear model for multivariate logistiregression. fijk is the onditional logit funtion for the kth measurement of thejth endpoint of the ith subjet. Sienti�ally, exept for that they may takedi�erent preditor values from measurement to measurement, there is little rea-son to believe they will take di�erent funtional form for the same endpoint.Hene we an assume fijk = fj(xijk). Same reasoning applies to the assoia-tion terms. For example, we an assume �ij1k1;ij2k2 = �j1j2(xij1k1; xij2k2). Thetraditional parametri approah to �t the log-linear model is to assume linearrelation between the parameters and preditorsfijk = fj(xijk) = �j0 + �j1xijk1 + :::+ �jDxijkD (2.1.9)and so on. The model an be �tted eÆiently by iterative proportional �tting(Bishop et al. 1975).In pratie, there are many ways to redue the number of parameters to beestimated. For example, under many situations, sienti� interest will be pri-marily foused on the onditional logit funtion fijk and log odds ratio �ij1k1;ij2k2 ,whih measures pairwise assoiation. The existene of three way assoiation�ij1k1;ij2k2;ij3k3 and higher order assoiations are usually diÆult to verify inpratial situations, and may attrat less sienti� interest. Hene it is possi-ble to set all higher order assoiations to be zero and only �t a parsimoniousmodel instead of the saturated one desribed in (2.1.8). The redued model isa member of the quadrati exponential model in Zhao & Prentie (1990).



112.2 The Variational ProblemIn this thesis, we are interested in building exible log-linear models. We arepartiularly interested in exploring the nonlinearity of the onditional logit fun-tions fj's. On the other hand, sine it will take a very large number of obser-vations to estimate many multivariate smooth funtions simultaneously, thisapproah will still let the �'s take a simple parametri form. In this setion, tosimplify the notation, we will onsider a parsimonious model. Without loss ofgenerality, exept for the pairwise assoiation, we will assume all higher orderassoiations to be zero. Then the negative log likelihood funtion an be writtenas L(y; f; �)= � nXi=1 li(f(xi); �(xi))= �Xi=1f JXj=1 KjXk=1 fj(xijk)yijk + JXj=1 Xk1<k2 �jj(xijk1 ; xijk2)yijk1yijk2+Xj1<j2 Xk1;k2 �j1j2(xij1k1 ; xij2k2)yij1k1yij2k2 � b(fi; �i)g (2.2.1)where b(fi; �i)= log(1 +Xj;k exp(fj(xijk))+Xj1;k1Xj2;k2 exp(fj1(xij1k1) + fj2(xij2k2) + �j1j2(xij1k1; xij2k2))+ � � �+ exp(Xj;k fj(xijk) +Xj1k1Xj2k2 �j1j2(xij1k1 ; xij2k2))) (2.2.2)



12We propose to use the penalized likelihoodmethod to ahieve greater exibil-ity in log-linear models. To relax the linear assumption, the penalized likelihoodmethod (O'Sullivan 1983) only assumes the funtion to be estimated is smoothin some sense and imposes a ertain roughness penalty on the funtion. Tehni-ally, a reproduing kernel Hilbert spae (RKHS) is a Hilbert spae of funtionson X in whih the evaluation funtional is ontinuous (Aronszajn 1950). Wewill then assume fj 2 Hj, where Hj is a reproduing kernel Hilbert spae.The penalized multivariate logisti regression estimate of f = (f1; f2; :::; fJ) and� = (�11; �12; :::; �J;J) is the minimizer of the following variational problemL�(y; f; �) = � nXi=1 li(f(xi); �(xi)) + n2J�(f1; :::; fJ); (2.2.3)where the �rst part is the negative log likelihood and the seond part is theroughness penalty. We will assume additive form of the penalty funtion forsimpliity and easy interpretation:J�(f1; :::; fJ) = JXj=1 �jJj(fj) (2.2.4)We onsider the orthogonal deomposition Hj = Hj0 � Hj1. Here Hj0 is�nite dimensional (the \parametri" part, usually polynomials), and Hj1 (the\smooth" part) is the ortho-omplement of Hj0 in Hj. The penalty funtion willonly be related to the smooth part of the funtion: Jj(fj) = jjP j1fjjj2, where P j1is the orthogonal projetion operator in Hj onto Hj1. The penalized likelihood



13has the following expression:L�(y; f; �) = � nXi=1 li(f(xi); �(xi)) + JXj=1 �jjjP j1fjjj2 (2.2.5)The following theorem will show the existene and uniqueness of the solutionto the variational problem (2.2.3). Denoting H0 = H10 � � � � � HJ0 be the nullspae of H1 � � � � � HJ with respet to the penalty funtion J�, the followingtheorem is true.Theorem 2.1 If the minimizer of (2.2.5) exists in H0, it uniquely exists inH1 � � � � � HJBefore we prove this theorem, we will �rst state two lemmas.Lemma 2.1 Let fijk denote fj(xijk) and �ij1k1;ij2k2 denote �j1j2(xij1k1; xij2k2).L(y; f; �) in (2.2.1) is a stritly onvex funtion of fijk's and �ij1k1;ij2k2 's.Proof We need to show the Hessian is positive de�nite. To simplify the no-tation, we will relabel Yi = (Yijk) to be (Yi1; :::; YiM), where M = PJj=1Kj.We simplify the notation for f 's and �'s similarly. From the property of ex-ponential families, we know the Hessian with respet to f 's and �'s is H =diagfH1; H2; :::; Hng, where Hi is the ovariane matrix of ~Yi = (Yi1; Yi2; :::;YiM ; Yi1Yi2; Yi1Yi3; :::; Yi;M�1YiM)T . Denoting ai = (ai1; ai2; :::; aiM ; ai12; ai13; :::;ai;M�1;M)T , if aTi Hiai = var(aTi ~Yi) = 0, then we have aTi ~Yi = onstant. We willshow ai must be a zero vetor. First, the onstant here must be zero sine wean let all Yim's be zero. To show aim = 0, we will let Yim = 1 and the rest



14of vetor ~Yi be zeroes. Afterwards, to derive aim1m2 = 0, we will let the onlynonzero elements of the ~Yi vetor be Yim1 = 1; Yim2 = 1 and Yim1Yim2 = 1. Thisproof also extends to the saturated model.The following Lemma is Theorem 4.1 from Gu & Qiu (1993)Lemma 2.2 Suppose L(g) is a ontinuous and stritly onvex funtional in aHilbert spae H = H0 � H1, where H1 has a square norm J(g) and H0 is thenull spae of J(g) of �nite dimension. If L(g) has a minimizer in H0, thenL(g) + J(g) has a unique minimizer in H.Proof of Theorem 2.1De�ne
g(xi; j1; k1; j2; k2) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
fj(xijk); 1 � j = j1 = j2 � J;1 � k = k1 = k2 � Kj; fj 2 Hj�jj(xijk1; xijk2) 1 � j = j1 = j2 � J;1 � k1 < k2 � Kj�j1j2(xij1k1; xij2k2) 1 � j1 < j2 � J;1 � k1 � Kj1; 1 � k2 � Kj2

:
Let H = fg(xi; j1; k1; j2; k2) : xijk 2 X ; 1 � j1 � j2 � J; 1 � k1 � Kj1;1 � k2 � Kj2g. Then H is a Hilbert spae with square semi-norm J�(g) =J�(f1; : : : ; fJ). Let L�(g) = L(y; f; �). By Lemma 2.2, it suÆes to show thatL�(g) is ontinuous and stritly onvex in H. Continuity is obvious. Stritonvexity follows from Lemma 2.1.



152.3 Smoothing Spline Analysis of VarianeGiven a smooth multivariate funtion f on some domain X , we are interested indeompose it into some omponent funtions for the reason of easy interpreta-tion and model building. A general ANOVA type deomposition is desribed inChapter 10 of Wahba (1990) and Wahba, Wang, Gu, Klein & Klein (1995). Tomake any deomposition well de�ned, we assume thatM, a linear spae of fun-tions of x (the model spae) whih we assume ontains f , an be deomposedas a diret sum of its subspaes.M = H0 �H1 � :::�Hq (2.3.1)Hene the deomposition of any f 2 M into omponent funtions in thesesubspaes is unique.A unique ANOVA type deomposition an always be de�ned provided fsatis�es some measurability onditions. Let X (�) be a measurable spae. d��be a probability measure on X (�). De�ne the averaging operator E� on X =X (1) 
 � � � 
 X (D) as(E�)(x) = ZX (�) f(x1; x2; :::; xD)d��(x�) (2.3.2)Then the identity is deomposed asI = Y� (E� + (I � E�))= Y� E� +X� (I � E�)Y� 6=� E� +X�<�(I � E�)(I � E�) Y 6=�;� E+:::+Y� (I � E�) (2.3.3)



16The omponents of this deomposition generate the ANOVA deompositionof f in the following formf(x1; :::; xd) = �+ dX�=1 f�(x�) +X�<� f��(x�; x�) + :::+ f1;:::;D(x1; :::; xD);(2.3.4)where we have � = (Q� E�)f , f� = ((I � E�)Q� 6=� E�)f , f�� = ((I � E�)(I �E�)Q 6=�;� E)f , and so forth.The idea behind Smoothing Spline ANOVA is to onstrut a ReproduingKernel Hilbert Spae (RHKS) H of funtions on X so that the omponents ofthe SS-ANOVA deomposition represent an orthogonal deomposition of f inH. Let H(�) be an RKHS of funtions on X (�) with RX (�) f�(x�)d�� = 0 forf�(x�) 2 H(�), and let [1(�)℄ be the one dimensional spae of onstant funtionson X (�). Construt H as the tensor produt spaeH = DYj=1(f[1(�)℄g � fH(�)g) = [1℄�X� H(�) �X�<�[H(�) 
H(�)℄� : : : (2.3.5)where [1℄ denotes the onstant funtion on X . With some abuse of notation,fators of the form [1�℄ are omitted whenever they multiply a term of a di�erentform. Thus H(�) is a shorthand for [1(1)℄
� � �
[1(��1)℄
H(�)[1(�+1)℄
� � �
[1(D)℄(whih is a subspae of H). The omponents of the ANOVA deomposition arenow in mutually orthogonal subspaes of H. Note that the omponents willdepend on the measures d�� and these should be hosen in spei� appliation sothat the �tted mean, main e�ets, two fator interations, et. have reasonableinterpretations.



17Next, H(�) is deomposed into a parametri part and a smooth part, byletting H(�) = H(�)� �H(�)S , where H(�)� is �nite dimensional (the \parametri"part) and H(�)S (the \smooth" part) is the ortho-omplement of H(�)� in H(�).Elements of H(�)� are not penalized through the devie of letting J�(f�) =kP (�)S f�k2 where P (�)S is the orthogonal projetor onto H(�)S . Now [H(�) 
H(�)℄is a diret sum of four orthogonal subspaes: [H(�) 
 H(�)℄ = [H(�)� 
 H(�)� ℄ �[H(�)� 
 H(�)S ℄ � [H(�)S 
 H(�)� ℄ � [H(�)S 
 H(�)S ℄. By onvention the elements ofthe �nite dimensional spae [H(�)� 
 H(�)� ℄ will not be penalized. Continuingthis way results in an orthogonal deomposition of H into sums of produts ofunpenalized �nite dimensional subspaes, plus main e�ets \smooth" subspaes,plus two fator interation spaes of the form parametri
 smooth [H(�)� 
H(�)S ℄,smooth 
 parametri [H(�)S 
 H(�)� ℄ and smooth 
 smooth [H(�)S 
 H(�)S ℄ andsimilarly for three and higher fator subspaes.In pratie, the series of ANOVA deomposition in (2.3.4) will be trunatedat some point. Assuming that we have already deided whih subspaes will beinluded in our modelM(� H), we an regroup and write the model spae as in(2.3.1). Usually we will letH0 be a �nite dimensional spae ontaining funtionswhih are not going to be penalized. The norms on the omposite Hl; 1 � l � qare the tensor produt norms indued by the norms on the omponent subspaes,and jjf jj2 = jjP0f jj2 +Pql=1 jjPlf jj2, where Pl is the orthogonal projetor inM onto Hl. Now we an use RKHS methods to expliitly impose roughnesspenalties. The smoothing spline ANOVA estimate of f in the Gaussian ase is



18the solution to the following variational problemminf2Mf nXi=1 (yi � f(xi))2 + n2 qXl=1 �ljjPlf jj2g: (2.3.6)The �rst term in (2.3.6) is the sum of squared residuals whih measures thegoodness of �t while the seond part is the penalty on roughness of the estimate.The �l's are smoothing parameters ontrolling the trade-o� between goodnessof �t and roughness. These smoothing parameters an be estimated from thedata by the generalized ross validation (GCV ) method or by the unbiased riskmethod (UBR) (see Wahba 1990).2.4 Penalized Log-linear Model using Smooth-ing Spline ANOVAWe will use tensor produt spae and Smoothing Spline ANOVA to obtain amultivariate funtion estimate based on the variational problem (2.2.3). It is adiret generalization of (2.3.6) to multivariate Bernoulli observations.Assume that we have already hosen a model spaeMj = Hj0�Pqjl=1Hjl foreah onditional logit funtion fj in (2.2.3), we an rewrite (2.2.5) asminfj2Mj ;�j1j2f� nXi=1 li(f(xi); �(xi)) + n2 JXj=1 qjXl=1 �jljjP jl fjjj2g (2.4.1)The �rst part in (2.4.1) measures the goodness of �t while the seond partis roughness penalty in SS-ANOVA model. In the seond part, P jl denotesthe orthogonal projetor inMj onto the penalized subspae Hjl . The roughness



19penalty for that subspae is the squared norm de�ned on that subspae jjP jl f jj2.The �jl's are the smoothing parameters whih ontrols the bias-variane trade-o�. Larger smoothing parameters will fore the estimate into the parametrisubspae while smaller ones will lead to more exible estimate.Let's de�ne jjf jj2�j = jjP j0f jj2 + qjXl=1 �jljjP jl fjjj2: (2.4.2)This is a modi�ed but topologially equivalent norm on Mj. indexed by �j.Denoting the reproduing kernel for the subspaeHjl assoiated with the originalnorm is Rjl , we an show that ��1jl Rjl is the RK for Hjl assoiated with themodi�ed norm.The RK of the diret sum of orthogonal subspaes is the sum of the individualRK's. The RK of the tensor produt spae is the produt of the RK's of theomponent spaes. Hene the omputation for eah Rjl is straightforward. Forexample, if RH(d1)� (�; �) and RH(d2)S (�; �) are the RK orresponding to the Hilbertspaes H(d1)� and H(d2)S respetively, the RK orresponding to the tensor produtspae H(d1)� 
H(d2)S isRH(d1)� (xd1(i1); xd1(i2))RH(d2)S (xd2(i1); xd2(i2));where xu(v) denotes the uth oordinate of the vth design point. Consequently,it an be shown that the RK for Mj under the modi�ed norm is equal toRj;�j = Rj0(�; �) + qjXl=1 ��1jl Rjl (�; �): (2.4.3)



20In priniple any positive-de�nite funtion may play the role of a reproduingkernel. Conditionally positive-de�nite funtions as our in thin plate spline analso be aommodated. One of the most ommonly used penalty on [0; 1℄ is thesquare integral of the seond derivative R 10 (f 00(x))2dx. LetH denote the Sobolevspae ff jf; f 0absolutely ontinuous,f 00 2 L2g. We an deompose H into thediret sum of the unpenalized subspae H0 and the penalized subspae H1. Areproduing kernel of H1 with respet to the above penalty funtion an bewritten as R(x; x0) = k2(x)k2(x0)� k4([x� x0℄); (2.4.4)here [�℄ takes the frational part of a number andk1(x) = x� 1=2k2(x) = (k21(x)� 1=12)k4(x) = (k41(x)� k21(x)=2 + 7=240)=24: (2.4.5)Furthermore, we have the relationZ 10 ( d2dx2 ( nXi=1 iR(x; xi)))2dx = nXi1=1 nXi2=1 i1i2R(xi1; xi2): (2.4.6)Let �1(x) = 1, �2(x) = k1(x), then H0 = spanf�1(x); �2(x)g. This penaltyfuntion and reproduing kernel is partiularly useful in biostatistial applia-tions. In pratie, we an always resale the original data points to the interval[0; 1℄.Next, we will show that the minimizer of the variational problem (2.4.1) isatually within a �nite dimensional linear spae.



21Theorem 2.2 The solution to (2.4.1) has the formfj(x) = �j(x)Tdj + �j(x)T j; (2.4.7)where j and dj are vetors of oeÆients. Here f�jvgpjv=1 is a set of basisfuntions spanning the null spae Hj0. �j(�)T = (�j1(�); � � � ; �jpj(�)). �j(�)T =(Rj;�j(x1j1; �); � � � ; Rj;�j(x1jKj ; �), Rj;�j(x2j1; �); � � � ; Rj;�j(xnjKj ; �)).Proof See Wahba (1990).The above theorem states the fat that the minimizer in an in�nite dimen-sional funtion spae is atually a linear ombination of a �nite number of basisfuntions. Hene the omputation of the minimizer is feasible. Substituting(2.4.7) into (2.4.1), we an estimate i and di by minimizingI�(; d; �)= � nXi=1 li(�1(xi)Td1 + �1(xi)T 1; :::; �J(xi)TdJ + �J(xi)T J ;�11(xi); �12(xi); :::; �J;J(xi)) + n2 JXj=1 jTQj;�jj (2.4.8)where Qj;�j is an (nKj � nKj) matrix
Qj;�j = 0BBBBBBBB�

Qj;11 Qj;12 : : : Qj;1nQj;21 Qj;22 : : : Qj;2n... ... . . . ...Qj;n1 Qj;n2 : : : Qj;nn
1CCCCCCCCA : (2.4.9)



22The de�nition of the Kj �Kj submatrix Qj;i1i2 is as following
Qj;i1i2 = 0BBBBBBBB�

Rj;�j(xi1j1; xi2j1) Rj;�j(xi1j1; xi2j2) : : : Rj;�j(xi1j1; xi2jKj)Rj;�j(xi1j2; xi2j1) Rj;�j(xi1j2; xi2j2) : : : Rj;�j(xi1j2; xi2jKj)... ... . . . ...Rj;�j(xi1jKj ; xi2j1) Rj;�j(xi1jKj ; xi2j2) : : : Rj;�j(xi1jKj ; xi2jKj)
1CCCCCCCCA(2.4.10)Sine li's are not quadrati, solution of (2.4.8) does not have a losed form. Inthe next hapter, we will disuss how to obtain the estimate numerially. Whenthe sample size is large, an approximate solution instead of the exat one willbe obtained.



23Chapter 3
Fitting the PenalizedMultivariate Logisti Regression
3.1 IntrodutionIn this hapter, we will disuss how to numerially obtain the solution to thepenalized multivariate logisti regression. Tehnially, Newton-Raphson algo-rithm an be used to obtain the solution beause it is a quadrati onvergentalgorithm. However, the omputational burden is extremely heavy. The param-eters to be estimated aording to Theorem 2.2 is aboutPJj=1(pj +nKj). Con-sequently, the omplexity for one step in Newton-Ralphson iteration is aboutO((PJj=1(pj + nKj)3), and the memory required to store the matrix is aboutO((PJj=1(pj + nKj)2). To redue the omputational burden, two methods areproposed here. The �rst one (Setion 3.2) is an iterative method alled blokone-step SOR-Newton-Ralphson method. The onvergene is super-linear. Theomplexity for one iteration is about O(PJj=1(pj+nKj)3). We sari�e the on-vergent rate a little to redue the omputational omplexity in eah iteration.The seond method (Setion 3.4) is to obtain an approximate solution. Only a



24small number of basis funtions will be hosen for the �nal penalized regressionstep. It is shown in some speial ase that the approximate solution by usinga subset of basis funtions an ahieve the same statistial onvergene rate asthe exat solution.We will disuss a data-driven method to hoose smoothing parameters inSetion 3.5. For Gaussian data, two of the ommonly reognized methods arethe generalized ross validation (GCV ) and the unbiased risk (UBR) methods(Wahba 1990). For general exponential family, Wahba et al. (1995) used iteratedUBR method to hoose smoothing parameters. Xiang & Wahba (1996) pro-posed generalized approximate ross validation (GACV ). They reported thatGACV outperformed iterated UBR. This is further on�rmed in Lin (1998a).In this thesis, we will extend GACV to the ase of multivariate Bernoulli re-sponses. A randomized version for easy omputation is also proposed. Com-bined with the blok one-step SOR-Newton-Ralphson algorithm, GACV will beused to hoose smoothing parameters iteratively. Simulation studies show thatit is an exellent omputational proxy for the Comparative Kullbak-Leibler(CKL) distane.Bayesian \on�dene intervals" were �rst proposed for smoothing spline withGaussian data by Wahba (1983) and their properties were studied by Nyhka(1988, 1990). Silverman (1985) provided another look at the Bayesian problem.Wahba et al. (1995) developed the omponentwise approximate Bayesian \on-�dene intervals" for the non-Gaussian SS-ANOVA model. In Setion 3.6, we



25will identify the penalized likelihood estimation for multivariate logisti regres-sion with a Bayesian problem. Based on this observation, approximate Bayesian\on�dene intervals" were proposed for ross-validated smoothing spline esti-mates.In the last setion, to demonstrate the reasonable performane of smoothingspline estimates, we will show results from some simulation studies.3.2 Blok One-Step SOR IterationWe will review how to use blok one-step Suessive Overrelaxation (SOR)method to solve a large nonlinear system in this setion. Some onvergeneproperties will also be disussed.Assuming a large linear or nonlinear system we want to solve hasm equationsand m variables 8>>>><>>>>: f1(x1; � � � ; xm) = 0... ... ...fm(x1; � � � ; xm) = 0: (3.2.1)First let us assume this is a linear system. The Suessive OverrelaxationMethod, or SOR, is devised by applying extrapolation to the Gauss-Seidelmethod. This extrapolation takes the form of a weighted average between theprevious iterate and the omputed Gauss-Seidel iterate suessively for eah



26omponent: x(k+1)i = !�x(k+1)i + (1� !)x(k)i (3.2.2)where �x(k+1)i is from a Gauss-Seidel iterate. This algorithm redues to Gauss-Seidel algorithm when the relaxation (extrapolation) fator ! = 1.To derive the blok SOR method, we need regroup the unknown x = (x1; x2,� � � ; xm) into p groups (x1; x2; � � � ; xp). Correspondingly, the m equations arealso regrouped into p groups8>>>><>>>>: F1(x1; � � � ; xp) = 0... ... ...Fp(x1; � � � ; xp) = 0: (3.2.3)The updating formula for blok SOR algorithm is(xi)(k+1) = !(�xi)(k+1) + (1� !)(xi)(k) (3.2.4)where (�xi)(k+1) is the suessive Gauss-Seidel update for the ith linear systemin (3.2.3)Fi((x1)(k+1); � � � ; (xi�1)(k+1); xi; (xi+1)(k); � � � ; (xp)(k)) = 0: (3.2.5)In eah iteration, we suessively update the blok omponent of x by the abovemethod. This is repeated until some onvergene riteria is met.Now assuming that (3.2.1) is a nonlinear system. Hene in the updatingformula (3.2.4), the suessive Gauss-Seidel solution (�xi)(k+1) of (3.2.5) an notbe obtained expliitly. To solve the smaller nonlinear system (3.2.5), we need to



27use some iterative method like Newton-Ralphson method. In this ase, the pro-ess to solve a nonlinear system is alled blok nonlinear SOR-Newton-Ralphsonmethod. See Ortega & Rheinboldt (1970) for details.To simplify the nonlinear algorithm, we may only run the Newton-Ralphsoniteration for one step to approximate the exat solution of (3.2.5), and use thatas (�xi)(k+1) in (3.2.4). This nonlinear SOR proess is alled blok one-step SOR-Newton-Ralphson method. Spei�ally, the updating formula (3.2.4) now hasthe following expression(xi)(k+1) = (xi)(k) � ! ��Fi�xi (y(k;i))��1 Fi(y(k;i)); (3.2.6)where y(k;i) = ((x1)(k+1); � � � ; (xi�1)(k+1); (xi)(k); � � � ; (xl)(k)):In the statistis literature, the nonlinear system usually arises from a mini-mization or maximization problem in whih we need to �nd a set of parametersto minimize (or maximize) a funtion. Spei�ally, suppose we are going to�nd x 2 Rm to minimize a twie di�erentiable multivariate funtion g(x), thenthe updating formula for the blok one-step SOR-Newton-Raphson method willbeome (xi)(k+1) = (xi)(k) � ![r2iig(y(k;i))℄�1rig(y(k;i)); (3.2.7)where r2iig is the submatrix of the Hessian and rig is the sub-vetor of thegradient.



28In the next part, we will disuss some onvergene properties for the gen-eral blok nonlinear SOR and the blok one-step SOR-Newton method. De-�ne F 0(x) = D(x) � L(x) � U(x) to be the deomposition of F 0(x) = �F=�xinto blok diagonal, stritly blok lower-triangular and stritly blok upper-triangular parts, where
D(x) = 0BBBBBBBB�

�F1�x1 0 � � � 00 �F2�x2 ...... . . . 00 � � � 0 �Fp�xp
1CCCCCCCCA : (3.2.8)

For ! > 0, letH!(x) = [D(x)� !L(x)℄�1[(1� !)D(x) + !U(x)℄: (3.2.9)The loal onvergene of the blok nonlinear SOR proedures is stated in thefollowing lemma. The proof of this lemma an be found in Ortega & Rheinboldt(1970).Lemma 3.3 (Loal Convergene and Rate of Convergene) Assume F :Rm ! Rm be ontinuously di�erentiable over a ompat set S0, and x� 2 S0suh that F (x�) = 0. If D(x�) is nonsingular and �(H!(x�)) < 1, then thereexists an open ball S = S(x�; Æ) in S0 suh that for any x0 2 S, both the Bloknonlinear SOR and the Blok one-step SOR-Newton sequene onverge to x�,and they share the same onvergent fator R1(xk; x�) = �(H!(x�)).We will state the global onvergene result in term of the minimization problem.



29Lemma 3.4 (Global Convergene) Assume g 2 C2(Rm) , r2g(x) > 0 andS0 = fxjg(x) � g(x0)g is bounded, then for suitable hosen relaxation parameter!, the iterative sequene from the blok one-step SOR-Newton method onvergesto the unique solution x�.The proof of the above lemma an be found in Shehter (1968). Fromthe above lemma, we an see that in general the blok one-step SOR-Newton-Raphson method with �xed ! is not guaranteed to onverge globally. In pra-tie, we an either hange the initial value or tune the relaxation parameter tomake the algorithm onverge. The following lemma adapted from Varga (1984)an be used to hek the onditions for the loal onvergene.Lemma 3.5 Let A = D�E�ET be a symmetri positive de�nite matrix, andD is also positive de�nite. Denote H! = (D�!E)�1((1�!)D+!E). If D�!Eis nonsingular for 0 � ! � 2, then �(H!) < 1 for 0 < ! < 2.The following Corollary is from Lin (1998a). It is obtained by diretly applyingthe above lemma.Corollary 3.1 If A = D�E �ET is symmetri positive de�ne and D is blokdiagonal matrix, E is stritly blok lower triangular matrix. If D is nonsingular,then for 0 < ! < 2, we have �(H!) < 1.Aording to Corollary 3.1, we note that if A is Hessian of a twie di�erentiableonvex funtion, we will always have �(H!) < 1 for 0 < ! < 2. Spei�ally, theloal onvergent property holds if we use blok nonlinear SOR-Newton-Raphson



30or blok one-step SOR-Newton-Raphson method to �nd the minimizer of a twiedi�erentiable onvex funtion.3.3 ImplementationIn our implementation, we will keep �j1j2's as simple parametri forms. Con-sequently, we assume �j1j2's are depending on a set of parameters �'s, whihare to be estimated. Reall fj depends on the oeÆient vetors j and dj. Forsimpliity reason, ! will be taken to be 1. The blok one-step SOR-Newton-Ralphson algorithm for minimizing (2.4.8) is as following:�jdj�  initial values , j = 1; :::; J�  initial valuesdo do j=1 to J�jdj�  one-step Newton-Ralphson update for �jdj�end�  Newton-Ralphson update for �until (onvergene)Table 1: Blok one-step SOR-Newton-Ralphson AlgorithmNotie that we only utilize one-step updating formula for fj part in thisimplementation. Compared to the smoothing funtions fj's, the omputationalburden for the parametri part �'s is relatively low. Therefore, we deide to runthe Newton-Ralphson iteration until onvergene in eah step for �'s.



31Sine the implementation of updating �'s is straightforward, we will mainlydesribe how to update j and dj in eah step. To update j and dj, the onlyrelevant part of the likelihood in (2.2.1) islj(fj) = � nXi=1f KjXk=1 fj(xijk)yijk � b(fi; �i)g: (3.3.1)The only relevant penalty term in (2.4.8) isJj�j (fj) = n2 jTQj;�jj: (3.3.2)With some abuse of notations, let fijk = fj(xijk), bi = b(fi; �i) and Qj;�j = Qj.Aording to the property of exponential family, the following relations are true�ijk= �bi�fijk = EYijk= (efijk +Xk3 6=k efijk+fijk3+�ijk;ijk3 +Xj3 6=jXk3 efijk+fij3k3+�ijk;ij3k3 + � � �+ePj3;k3 fij3k3+Pj3;k3Pj4;k4 �ij3k3;ij4k4 )=(1 +Xj3;k3 efij3k3 +Xj3;k3Xj4;k4 efij3k3+fij4k4+�ij3k3;ij4k4 + � � �+ePj3;k3 fij3k3+Pj3;k3Pj4;k4 �ij3k3;ij4k4 ) (3.3.3)wijk;ijk= �2bi�f 2ijk = V arYijk= �ijk(1� �ijk); (3.3.4)



32wijk1;ijk2= �2bi�fijk1�fijk2 = Cov(Yijk1; Yijk2)= E(Yijk1Yijk2)� EYijk1 � EYijk2 = �bi��ijk1;ijk2 � �ijk1�ijk2= (efijk1+fijk2+�ijk1 ;ijk2 + � � �+ ePj3;k3 fij3k3+Pj3;k3Pj4;k4 �ij3k3;ij4k4 )=(1 +Xj3;k3 efij3k3 +Xj3;k3Xj4;k4 efij3k3+fij4k4+�ij3k3;ij4k4 + � � �+ePj3;k3 fij3k3+Pj3;k3Pj4;k4 �ij3k3;ij4k4 )� �ijk1�ijk2: (3.3.5)We introdue the following notationsuijk = dljdfijk = �yijk + �ijk;uj = (u1j1; u1j2; :::; u1jKj ; u2j1; :::; unjKj)TWij = 0BBBBBBBB�
wij1;ij1 wij1;ij2 � � � wij1;ijKjwij2;ij1 wij2;ij2 � � � wij2;ijKj... ... . . . ...wijKj ;ij1 wijKj;ij2 � � � wijKj;ijKj

1CCCCCCCCA ;
Wj = diag(W1j;W2j; :::;Wnj);
Sj =

0BBBBBBBBBBBBBBB�
�j1(x1j1) �j1(x1j1) : : : �jpj(x1j1)... ... . . . ...�j1(x1jKj) �j1(x1jKj) : : : �jpj(x1jKj)�j1(x2j1) �j1(x2j1) : : : �jpj(x2j1)... ... . . . ...�j1(xnjKj) �j1(xnjKj) : : : �jpj(xnjKj)

1CCCCCCCCCCCCCCCA : (3.3.6)
To update j and dj, we only need to minimize part of the penalized likelihood



33in (2.4.8), whih is a summation of (3.3.1) and (3.3.2)Ij = � nXi=1f KjXk=1 fijkyijk � big+ n2 jTQjj: (3.3.7)Notie that in this expression, the smoothing parameters have already beenabsorbed into Qj. This is a onvex problem. Aording to Theorem (2.1), theminimizer of the above equation has the representation fj = Sjdj +Qjj. Herefj = (f1j1; f1j2; :::; f1jKj ; f2j1; :::; fnjKj)T and Sj de�ned above is the olletionof the parametri basis funtions in (2.4.7). For one-step Newton-Ralphsonupdating formula, we need the following derivatives�Ij�j = Qjuj + nQjj;�Ij�dj = STj uj;�2Ij�j�jT = QjWjQj + nQj;�2Ij�dj�djT = STj WjSj;�2Ij�j�djT = QjWjSj: (3.3.8)Hene the Blok one-step SOR-Newton-Ralphson updating formula for o-eÆients (j; dj) is0B�jdj1CA = 0B�j�dj�1CA�0B�QjWj�Qj + nQj QjWj�SjSTj Wj�Qj STj Wj�Sj1CA�10B�Qjuj� + nQjj�STj uj� 1CA ;(3.3.9)where the subsript minus indiates the quantities evaluated at the latest up-date. By rearranging the above formula, j and dj is the solution of the following



34linear system0B�QjWj�Qj + nQj QjWj�SjSTj Wj�Qj STj Wj�Sj1CA0B�j � j�dj � dj�1CA = 0B��Qjuj� � nQjj��STj uj� 1CA :(3.3.10)Another equivalent representation is0B�QjWj�Qj + nQj QjWj�SjSTj Wj�Qj STj Wj�Sj1CA0B�jdj1CA = 0B�QjWj�fj� �Qjuj�STj Wj�fj� � STj uj�1CA : (3.3.11)Aording to Theorem (2.1), fj = Sjdj + Qjj is always unique as long asSj's are of full olumn rank. If Qj is nonsingular, the above linear systems areequivalent to0B�Wj�Qj + nI Wj�SjSTj 0 1CA0B�jdj1CA = 0B�Wj�fj� � uj�0 1CA : (3.3.12)If Qj is singular, any solution to (3.3.12) is also a solution to (3.3.10) and(3.3.11). De�ne ~Qj = W 1=2j� QjW 1=2j� , ~Sj = W 1=2j� Sj, ~j = W�1=2j� j, ~dj = dj and~~yj =W 1=2j� (fj� �W�1j� uj�), (3.3.12) an be simpli�ed as8><>: ( ~Qj + nI)~j + ~Sj ~dj = ~~yj~STj ~j = 0 (3.3.13)It is easy to see that the solution of (3.3.12) gives the minimizer of1n nXi=1 ( ~~yij �W 1=2ij�fij)T ( ~~yij �W 1=2ij�fij) + ~jT ~Qj~j= 1n nXi=1 (~yij � fij)TWij�(~yij � fij) + jTQjj: (3.3.14)



35With abuse of notations, we use uij to denote (uij1; :::; uijKj)T and fij to de-note (fij1; :::; fijKj)T , et. ~yij = fij� �W�1ij�uij� are alled the pseudo-data.The blok one-step SOR-Newton-Ralphson proedure iteratively reformulatesthe problem to estimate fj from the pseudo-data by weighted penalized leastsquares.The following theorem will show the pseudo-data approximately have theusual data struture if fj� are not far away from fj. This observation will laterbe used to onstrut the approximate Bayesian on�dene intervals.Theorem 3.3 For �xed j, if jfijk� � fijkj = o(1) uniformly in i = 1; 2; :::; nand k = 1; :::; Kj, j�� � �j = o(1) uniformly, �j(x) is uniformly bounded awayfrom 0 and 1, �'s are uniformly bounded away from �1 and 1, then~yij = fij + �ij + op(1)where �ij = (�ij1; :::; �ijKj)T has mean 0 and ovariane matrix W�1ij , and�1j; � � � ; �nj are independent.Proof Denote E(yijk) = �ijk, V ar(yij) = Wij and uij = �yij+�ij. Here �ijk isthe shorthand for �j(xijk). Then we have E(W�1ij uij) = 0 and V ar(W�1ij uij) =W�1ij . Take the di�erene = (fij� �W�1ij�uij�)� (fij �W�1ij uij)= (fij� � fij)� (W�1ij�(�yij� + �ij�)�W�1ij (�yij + �ij))The expetation of  is (fij�� fij)�W�1ij�(�ij���ij). Sine �j(x) is uniformlybounded away from 0 and 1, �'s are uniformly bounded away from �1 and



361, it is easy to see that fijk's are also uniformly bounded away from �1and 1. From jfijk� � fijkj = o(1), j�� � �j = o(1) uniformly, we also havej�ijk� � �ijkj = o(1) uniformly. The element of Wij� also onverges to theorresponding element of Wij uniformly jwijk1;ijk2� � wijk1;ijk2j = o(1).Next, we will show there exist two onstants 0 < 1 < 2 < 1 suh thatall eigenvalues of Wij are in the interval (1; 2). Wij as a ovariane matrix ispositive de�nite. All of its eigenvalues are positive. Its trae is less than Kj=4.Note the trae of a matrix equals the summation of all of its eigenvalues. Heneits largest eigenvalue is also less than Kj=4. The smallest eigenvalue of Wij asa funtion of f and � is ontinuous and always greater than zero. Its domain(F ;A) is bounded and losed hene a ompat set. There exists 1 > 0 suhthat the smallest eigenvalue of Wij is greater than 1 for all (f; �) 2 (F ;A).Hene for n > n1 (n1 does not depend on f and �), the smallest eigenvalueof Wij� is also greater than 1=2. Consequently the largest eigenvalue of W�1ij�is bounded away from 1. As a result, we have E() = o(1). Meanwhile,V ar(k) < tr(Cov()) < KjjjCov()jj. And for n > n1,jjCov()jj = jj(W�1ij� �W�1ij )Wij(W�1ij� �W�1ij )jj= jjW�1ij�(Wij �Wij�)W�1ij �Wij �W�1ij (Wij �Wij�)W�1ij�jj� jjW�1ij�jj2 � jjW�1ij jj � jjWij �Wij�jj2� 431 jj(Wij �Wij�)2jj� 431 tr(Wij �Wij�)2 = o(1): (3.3.15)



37Hene the diagonal elements of Cov() go to zero uniformly. Consequently,~yij = fij� �W�1ij�uij� = fij �W�1ij uij +  = fij + �ij + op(1);where �ij = �W�1ij uij has mean 0 and ovariane matrix W�1ij . The indepen-dene of �ij's follows from the independene of yij's.All of the previous disussions assume no speial struture in the designpoints. The algorithm is spei�ally designed to handle the unstrutured ase.However, when speial struture is available, the above algorithm an be simpli-�ed. One ommon ase is the presene of person-spei� ovariates only. Henexijk = xij for all k = 1; :::; Kj. Similarly fijk = fj(xijk) = fj(xij) = fij. Toupdate fj, the part of the penalized likelihood needs to be minimized has thesimpli�ed form Ij = � nXi=1f( KjXk=1 yijk)fij � big+ n2 jTQjj: (3.3.16)Now de�ne
Qj = 0BBBBBBBB�

Rj;�j(x1j; x1j) Rj;�j(x1j; x2j) : : : Rj;�j(x1j ; xnj)Rj;�j(x2j; x1j) Rj;�j(x2j; x2j) : : : Rj;�j(x2j ; xnj)... ... . . . ...Rj;�j(xnj; x1j) Rj;�j(xnj; x2j) : : : Rj;�j(xnj; xnj)
1CCCCCCCCA ;

Sj = 0BBBBBBBB�
�j1(x1j) �j2(x1j) : : : �jpj(x1j)�j1(x2j) �j2(x2j) : : : �jpj(x2j)... ... . . . ...�j1(xnj) �j2(xnj) : : : �jpj(xnj)

1CCCCCCCCA : (3.3.17)



38The minimizer of (3.3.16) has the representation fj = Sjdj +Qjj, too. Denoteyij =PKjk=1 yijk, �ij = E(PKjk=1 Yijk),Wij = V ar(PKjk=1 Yijk), uij = �PKjk=1 yijk+�ij and uj = (u1j; u2j; � � � ; unj)T . Exept for the above hanges, all of the pre-vious formulae and disussions remain true. But in the eah iteration, we onlyneed to solve an n� n system instead of an (nKj � nKj) one.3.4 Approximate Smoothing Spline for LargeData SetsAs mentioned before, in eah blok-one-step SOR-Newton-Ralphson iteration,we need about O(n3) omputing time and O(n2) memory spae. However, the\true" funtion fj to be estimated may not be very \omplex". Hene it may bewell approximated in the span of a muh smaller subset of the basis funtions.Therefore, this approah will take muh smaller omputer memory and shorterrunning time. This approah is partiularly useful for analyzing medial data,where the underlying truth is believed to be quite \smooth".3.4.1 An Approximate SolutionTo obtain an approximate solution, a subset of basis funtions needs to be hosenarefully. The variational problem is then solved in this lower dimensionalsubspae. This approah was proposed by Wahba (1980) for thin-plate splines.Luo & Wahba (1997) proposed hybrid adaptive spline. Xiang (1996) proposed



39to use lustering method to hoose the subset of basis funtions. We will followXiang's approah here for seleting basis funtions.The basis funtion �jijk(�) = Rj;�j(xijk; �) in (2.4.7) is the representer of designpoint xijk in the Reproduing Kernel Hilbert Spae M1j . Usually, when thedesign points are lose, their representers are also very lose. Hene, whenthe data set is large, it is very likely that lots of the basis funtions will benearly linearly dependent. On the other hand, if by some \prior" knowledge,it is believed that the struture of the true fj is not very ompliated, then itmay be well approximated by a small number of basis funtions. As a result,if we selet the design points having maximum separation, their orrespondingrepresenters are expeted to have less orrelation.Considering this problem from another point of view, the objet is to groupdesign points into several groups. Ideally, those groups should be spaed as faras possible from eah other. Thus, we an borrow the lassial luster analysistehnique to solve this problem. There are many algorithms for lustering thedata. Even though there is no natural separation among design points in ourase, we still an fore the algorithm to run. SAS proedure FASTCLUS isdesigned for the disjoint lustering of very large data sets in minimum time. Wewill use it to separate the data sets into several lusters. Within eah luster,we randomly selet the representer of one data point to form the approximatingsubspae.Hene, as an iterative proedure, the algorithm for approximate spline is



40as follows. When the number of basis funtions V inreases, the approximatesolution onverges to the exat solution.V  initial valuedo Cluster the data points into V groupsRandomly selet one data point from eah groupGenerate the orresponding basis funtionsfj  initial values, j = 1; 2; :::; J�  initial valuesdo do j = 1 to Jfj  updated values in the approximating subspaeend�  Newton-Ralphson update for �until (onvergene)V  2� Vuntil ( jjfnew�foldjjjjfoldjj < pre1 and jj�new��oldjjjj�oldjj < pre2 )Table 2: Iterative Algorithm for Approximate SplineHere pre1 and pre2 are pre-spei�ed thresholds. We suggest that the initialvalue for V be at least 25. The above algorithm usually onverge very rapidly.From our experiene, for medial data, 50 to 100 basis funtions usually yieldvery good approximation.Next, we will disuss the blok one-step SOR updating formula for approx-imate spline. Assume for �xed V , we have seleted V data points, whihare indexed as xj;v for v = 1; :::; V . Their orresponding basis funtions are�j;v(�) = Rj;�j(xj;v; �). We will still use Sj to denote the olletion of basis



41funtions for parametri subspae. For approximating smooth subspae, denote
Qj;V = 0BBBBBBBB�

�j;1(x1j1) �j;2(x1j1) � � � �j;V (x1j1)�j;1(x1j2) �j;2(x1j2) � � � �j;V (x1j2)... ... . . . ...�j;1(xnjKj) �j;2(xnjKj) � � � �j;V (xnjKj)
1CCCCCCCCA ;

Q�j;V = 0BBBBBBBB�
�j;1(xj;1) �j;2(xj;1) � � � �j;V (xj;1)�j;1(xj;2) �j;2(xj;2) � � � �j;V (xj;2)... ... . . . ...�j;1(xj;V ) �j;2(xj;V ) � � � �j;V (xj;V )

1CCCCCCCCA : (3.4.1)
Let jV = (j;1; j;2; :::; j;V )T . With abuse of notation, the approximate solutionhas the representation fj = Sjdj +Qj;V jV . It is easy to verify that the penaltyfor fj has the quadrati form jjP1fjjj2�j = jV TQ�j;V jV . Therefore, to update fj,the variational problem is to minimizeIj;V = � nXi=1f KjXk=1 fijkyijk � big+ n2 jV TQ�j;V jV : (3.4.2)The one-step updating formula orresponding to (3.3.10) is to solve0B�QTj;VWj�Qj;V + nQ�j;V QTj;VWj�SjSTj Wj�Qj;V STj Wj�Sj 1CA0B�jV � jV�dj � dj� 1CA = 0B��QTj;V uj� � nQ�j;V jV��STj uj� 1CA :(3.4.3)In pratie, it is highly possible that the oeÆient matrix of the linear sys-tem (3.4.3) would be omputationally singular even if it is nonsingular in theory.In order to obtain a numerially stable solution, QR fatorization with pivoting



42is performed. In the meantime, a uto� parameter � (suh as the mahine pre-ision times the largest absolute diagonal element of the R matrix) is spei�ed.Let rii denote the diagonal element of the R matrix in the QR deomposition.Whenever jriij < � , the orresponding solution in the oeÆients vetor jV isset to be zero.3.4.2 The Convergene RateIn this setion, we will prove in a speial ase, to ahieve the same statistialonvergene rate, the approximate spline only need a small portion of the basisfuntions ompared to the exat solution. More general result is also believedto be true and it is one of my future researh topi.The speial ase treated here is the one dimensional smoothing spline esti-mate for Gaussian data. The lassial variational problem to be solved isminf 1n nXi=1 (yi � f(xi))2 + �jjP1f jj2: (3.4.4)It is well known that for the penalty funtion jjP1f jj2 = R 10 f (m)(x)2dx, forroughly equally spaed data on (0; 1), the statistial onvergene rate for smooth-ing spline estimate is Op(n� 2m2m+1 ). We will demonstrate that in order to maththe same onvergene rate, V , the number of basis funtions in the approximat-ing spae, only need to grow at a rate of O(n 2m(2m+1)(2m�1) ). This is a muh smallernumber ompared to n when n is large. The proof is based on the following twolemmas. However, these lemmas are more general. They do not require the onedimensional assumption.



43Assume the funtional spae an be deomposed into the diret sum of aparametri subspae and a smooth subspae. H = H0 � H1. We will use thefollowing notations. Let the olumns of S be the parametri basis funtions inH0, the olumns ofQ be the smooth basis funtions whih are the representers ofthe evaluation funtionals of all data points in H1. Hene the solution of (3.4.4)lies in the �nite dimensional spae spanfS;Qg. Let QV denote the olletion of asubset of all basis funtions in Q. The approximating subspae is spanfS;QV g.We will use P1 to denote the projetion into H1 under the original norm jj � jj.PV � is the projetion into the approximating subspae spanfS;QV g under themodi�ed norm jj � jj�. We will use < �; � > to denote the inner produt induedby the original norm while < �; � >� is used to denote the inner produt induedby the modi�ed norm.The following lemma shows given the exat solution, how to alulate theapproximate solution.Lemma 3.6 For �xed �, denote f = Sd+Q to be the exat solution of the vari-ational problem (3.4.4). De�ne a new norm jjf jj2� = 1nPni=1 f(xi)2 + �jjP1f jj2.The approximate spline solution of (3.4.4) in the subspae spanfS;QV g is f� =PV �(f), where PV � denotes the projetion into the subspae spanfS;QV g underthe norm jj � jj�.Proof It is easy to hek jj � jj� is a valid norm in the spae spanfS;Qg. Underthis norm, we have the following deomposition f = f����, where < f�; �� >�=



440. Hene, 1n nXi=1 (yi � f(xi))2 + �jjP1f jj2= 1n nXi=1 y2i � 2n nXi=1 yif(xi) + 1n nXi=1 f(xi)2 + �jjP1f jj2= 1n nXi=1 y2i � 2n nXi=1 yif(xi) + jjf jj2�= 1n nXi=1 y2i � 2n nXi=1 yi(f�(xi) + ��(xi)) + jjf�jj2� + jj��jj2�= (1n nXi=1 y2i � 2n nXi=1 yif�(xi) + jjf�jj2�)+( 1n nXi=1 y2i � 2n nXi=1 yi��(xi) + jj��jj2�)� 1n nXi=1 y2i= (1n nXi=1 y2i � 2n nXi=1 yif�(xi) + 1n nXi=1 f�(xi)2 + �jjP1f�jj2)+( 1n nXi=1 y2i � 2n nXi=1 yi��(xi) + 1n nXi=1 ��(xi)2 + �jjP1��jj2)� 1n nXi=1 y2i= (1n nXi=1 (yi � f�(xi))2 + �jjP1f�jj2)+( 1n nXi=1 (yi � ��(xi))2 + �jjP1��jj2)� 1n nXi=1 y2i (3.4.5)Therefore if f is the minimizer of (3.4.4) in spanfS;Qg, then f� must be theminimizer of (3.4.4) in spanfS;QV g, �� must be the minimizer of (3.4.4) in inH�, where spanfS;Qg = spanfS;QV g � H� w.r.t. the norm jj � jj�.



45The next lemma gives an easy to handle upper bound for the di�erene ��appeared in the above lemma.Lemma 3.7 For �xed �, suppose f is the exat solution of (3.4.4), f� = PV �(f)is the approximate solution in the subspae spanfS;QV g, let f � = PV (f) wherePV is the projetion of f into the subspae spanfS;QV g under the original normjj � jj. Let �� = f � f �, �� = f � f�, we have the following relation:1n nXi=1 ��(xi)2 � 1n nXi=1 ��(xi)2Proof From Lemma 3.6, we know that f� = PV �f . Sine f = f� + ��, let��0 = PV (��) and ��1 = �� � ��0, then f = (f� + ��0) + ��1, where (f� + ��0) 2spanfS;QV g, ��1 is orthogonal to spanfS;QV g under the original norm jj � jj.Hene by a di�erent way, we obtain the same deomposition as f = f � + ��.Therefore, atually ��1 = �� and �� = ��0 � �� under the original norm. Thuswe onlude jj��jj2 � jj��jj2. In fat, jjP1(��)jj2 � jjP1(��)jj2 is also true sineP1(��) = P1(��0)� P1(��) under the original norm.Similarly, we have jj��jj2� � jj��jj2�. By ombining these two fats, we have1n nXi=1 ��(xi)2 + �jjP1(��)jj2 � 1n nXi=1 ��(xi)2 + �jjP1(��)jj2jjP1(��)jj2 � jjP1(��)jj2 (3.4.6)Hene (1=n)Pni=1 ��(xi)2 � (1=n)Pni=1 ��(xi)2.Before we prove the next theorem, we will review some basi properties ofthe projetion f �.



46Let Q = (�1; �2; :::; �n). Without loss of generality, let QV = (�1; �2; :::; �V )be the olletion of �rst V olumns in Q. �i is the representer of the evaluationfuntional of the ith data point in the reproduing kernel Hilbert spae H1.�i = P1�i, where �i is the representer of the evaluation funtional of the ithdata point in the reproduing kernel Hilbert spae H. Hene for any funtionf 2 H, f(xi) =< f; �i > and P1f(xi) =< f; �i >.In the above lemma, f is deomposed into the diret sum of f � and ��,where �� is orthogonal to the approximate subspae spanfS;QV g. Hene, wehave < �i; �� >= 0 for i = 1; 2; :::; V . Meanwhile, sine �� 2 H1,��(xi) =< �i; �� >=< �i; P1�� >=< P1�i; �� >=< �i; �� >= 0:Hene the values of f at the data point xi (1 � i � V ) remain unhanged afterthe projetion. However, jjP1f �jj � jjP1f jj. Intuitively, f � is smoother than f .Some detail is lost during the projetion, while the values of f on ertain hosendesign points are preserved. So it raises an interesting question as how to seleta good subset of representers.In the following proof, without any knowledge of the underlying true fun-tion, we will selet V roughly equally spaed design points in [0; 1℄.Theorem 3.4 Assume f 2 W2[0; 1℄ and jjP1f jj2 = R 10 [f 00(x)℄2dx. For n roughlyequally spaed design points, by seleting V basis funtions orresponding to Vroughly equally spaed design points, we only need V = O(n 415 ) to ahieve thesame onvergene rate as the exat ubi spline estimate.



47Proof Let f be the exat solution. f = f � � ��, where �� is orthogonal tospanfS;QV g. Hene, we have ��(xi) = 0 for i = 1; 2; :::; V . Without loss ofgenerality, we assume xi � i=V for 1 � i � V .The following relation is true for any xi � a � b � xi+1, i = 0; 2; :::; V � 1,Z xi+1xi ��00(x)2dx � Z ba ��00(x)2dx � �Z ba ��00(x)dx�2 = (��0(a)� ��0(b))2:(3.4.7)Sine ��(xi) = 0 for i = 1; 2; :::; V and � is smooth, there must be some pointb 2 (xi; xi+1) suh that ��0(b) = 0. Therefore, for any point a 2 (xi; xi+1), wehave ��0(a)2 � R xi+1xi ��00(x)2dx. Combining with the fat ��(xi) = 0, we have��(a)2 � � 1V �2� maxx2(xi;xi+1) ��0(x)�2 � � 1V �2 Z xi+1xi ��00(x)2dx (3.4.8)for all a 2 (xi; xi+1). Consequently,1n nXi=1 ��(xi)2dx = 1n VXi=1 0� Xxi<xj<xi+1 ��(xj)21A� 1n VXi=1 nV � 1V �2 Z xi+1xi ��00(x)2dx= 1V 3 Z 10 ��00(x)2dx� 1V 3 Z 10 f 00(x)2dx (3.4.9)Meanwhile, we know when n is large, R 10 f 00(x)2dx is bounded in probability bysome onstant. Hene, to math the same onverge rate of ubi spline O(n�4=5),we only need 1V 3 = O(n�4=5). Hene, it is suÆient for V = O(n4=15).



48From Lemma 3.7, we know that �� is an upper bound for ��, whih is thedi�erene between the exat solution and the approximate solution. Hene theresult is proved.The following orollary extends the above result to f 2 Wm, m � 2 ase.Corollary 3.2 For f 2 Wm[0; 1℄, let the penalty J(f) = R 10 f (m)(x)2dx. Forroughly equally spaed design points on [0; 1℄, to math the same onvergenerate rate as the exat solution, V only needs to grow at a rate of O(n 2m(2m+1)(2m�1) ).Proof Notie that there will be a point suh that �� has zero ith derivative(1 � i � m) with i adjaent intervals separated by the grid points x1; x2; :::; xV .Hene the maximum absolute value of �� within the interval (xi; xi+m�1) isbounded. maxxi<x<xi+m�1 ��(x)2 � (m� 1V )2 maxxi<x<xi+m�1 ��0(x)2 � � � �� (m� 1V )2(m�1) maxxi<x<xi+m�1 ��(m�1)(x)2� (m� 1V )2(m�1) Z xi+m�1xi f (m)(x)2dx (3.4.10)The proof of the above theorem extends immediately here. To ahieve the sameonvergene rate, we must have1V �m� 1V �2(m�1) = O(n 2m2m+1 ):Therefore, V = O(n 2m(2m+1)(2m�1) ).



493.5 Adaptive Choie of the Smoothing Param-etersSo far, all smoothing parameters are onsidered as �xed. When � is small,the estimate tends to follow the data and hene appears to be wiggly. Theestimated value has small bias but large variane. As � ! 1, fj is foredinto the null spae Hj0 of the penalty funtion, whih is usually a parametrispae. Hene it has small variane but large bias. When � varies, we have afamily of exible models. Tuning the smoothing parameters manually in lowdimensional situations may be possible. Alternatively, pre-spei�ed generalizeddegrees of freedom may be useful. However, to make this method more pratial,an automated data-driven method to hoose smoothing parameters is highlydesirable.3.5.1 Comparative Kullbak-Leibler DistaneCertain risk funtion has to be hosen to measure the average loseness of anestimator to the truth. In Gaussian ase, a popular hoie is the expetedsquared loss funtion. L(�; �̂) = E�(�̂� �)2: (3.5.1)Here, the observed data are distributed as N(�; �2) with �2 known. It an beshown the above loss funtion is in fat a speial ase of the more general soalled Kullbak-Leibler distane.



50Let p(y) denote the true density funtion to be estimated. p̂(y) is our esti-mated density funtion. The Kullbak-Leibler distane is de�ned byKL(p; p̂) = Ep log�p(y)p̂(y)� : (3.5.2)where Ep denotes the expetation under the truth p. Note the Kullbak-Leiblerdistane is not a distane in fat sine it is not symmetri. The omparativeKullbak-Leibler distane CKL is de�ned byCKL(p; p̂) = KL(p; p̂)� Ep log p(y)= �Ep log p̂(y); (3.5.3)whih di�ers from the Kullbak-Leibler distane by a quantity whih does notdepend on the estimator. One way to look at the omparative Kullbak-Leiblerdistane is to view it as the expeted negative log-likelihood based on the esti-mated density funtion. To minimize the CKL distane is equivalent to maxi-mize the expeted log-likelihood for the future observations.In many pratial problems, exept for the observed outome variable yi, wealso observe a set of ovariates xi 2 X � RD, whih an be used as preditors.Considering the random pair (Yi; Xi), we are interested in estimating the on-ditional probability p(yjx). Hene, onditioning on the value of X, the CKLdistane of p(yjX) and p̂(yjX) isCKL(p; p̂jX) = �Ep (log p̂(yjX)jX)= � Z log p̂(yjX)p(yjX)dy (3.5.4)



51Hene, the objet funtion desired to be minimized should be the expetationof CKL(p; p̂jX) with respet to XE(CKL(p; p̂jX)) = �E(Ep(log p̂(yjX)jX))= � Zx�Zy log p̂(yjx)p(yjx)dy�p(x)dx= � Zx Zy log p̂(yjx)p(y; x)dydx: (3.5.5)Unfortunately, this quantity is unknown if we do not know the true p(y; x).If we have n pairs of observed data (yi; xi), a onsistent estimate of the abovequantity isCKL = 1n nXi=1 Ep(log p̂(yjxi)jxi) = 1n nXi=1 Zy log p̂(yjxi)p(yjxi)dy: (3.5.6)This expression is useful when we are not interested in the distribution of X.However, it still depends on the unknown quantity p(yjxi). Therefore, it is de-sired to have a good estimate or proxy for it. In the Gaussian ase, we an showthat the UBR and AIC riterias are equivalent to the unbiased risk estimatesfor the above quantities. For omplex modeling proedures, Ye (1998) de�nesthe generalized degrees of freedom (GDF ), and by an interesting theorem showsthat it is the key to model �tting and seletion when the goal is to minimize theCKL. The GDF generalizes the degrees of freedom for signal for the Gaussianpenalized likelihood estimates, given in Wahba (1983). Interesting examplesof Gaussian Case are given in Ye (1998), where randomization tehniques areused in the estimation proess. However, for Bernoulli data, it is known thatno exat unbiased risk estimate exists (Wong 1992). Thus we an only have



52approximately unbiased estimates. This, no doubt, explains why smoothingparameter seletion with Bernoulli data has resisted a �nal, de�nitive answerso far.Xiang & Wahba (1996) proposed the generalized approximate ross valida-tion (GACV ). Simulation studies show that it is an exellent omputationalproxy for CKL distane. We will give a heuristi argument here to supportthis observation. For Bernoulli outomes, the CKL distane has the form(1=n)Pni=1(��if̂i + b(f̂i)), where f̂i is the estimated logit funtion for the ithobservation. However, the true mean �i is unknown. One approah is to sub-stitute it with the observed yi and alulate OBS = (1=n)Pni=1(�yif̂i + b(f̂i)),whih is the observed negative log-likelihood funtion for f̂ . But it is wellknown that OBS tends to underestimate CKL beause that yi and f̂i areusually positively orrelated for any meaningful modeling proedure. HeneE(CKL � OBS) = (1=n)PE(yi � �i)f̂i = (1=n)PCov(yi; f̂i), whih tendsto be a positive number. See Efron (1986) for referene. To orret this bias,leave-out-one ross validation will also substitute f̂i by f̂ (�i)i in CKL, whihonly depends on the observations other than yi. Thus f̂ (�i)i is independent ofyi, and for large n, is expeted to be lose to f̂i. Eyif̂ (�i)i = EyiEf̂ (�i)i � �iEf̂i.Therefore we expet CV to be a omputable proxy for CKL distane.



533.5.2 GACV for Multivariate Bernoulli ResponsesWe will extend GACV to multivariate Bernoulli distribution to hoose smooth-ing parameters adaptively. Before we proeed, we need to generalize the leave-out-one lemma in Craven & Wahba (1979) �rst. This time, we need to leaveout one independent unit at a time.Lemma 3.8 (Leave-out-one-subjet lemma) Let �lj(yij; fij) = �Pk yijkfijk +b(fij) be the part of likelihood funtion related to the jth endpoint. All other partsof the likelihood funtion are onsidered as �xed. I�j (fj; Yj) = �Pi lj(yij; fij)+n2J�j(fj). Suppose h(i; z; �) is the minimizer of I�j(fj; Z), where Z = (yT1j; :::;yTi�1;j; zT ; yTi+1;j; :::; yTnj)T , thenh(i; �(�i)(xij); �) = f (�i)�j (�);where f (�i)�j is the minimizer of Pi1 6=i l(yi1j; fi1;j) + n2J�j(fj), and �(�i)(xij) =(�(�i)(xij1); :::; �(�i)(xijKj))T is the vetor of means orresponding to f (�i)�j (�).Proof We have�lj(�(�i)(xij); f (�i)�j (xij)) � �lj(�(�i)(xij); fj(xij)): (3.5.7)This follows sine setting��lj(�(�i)(xij); �)��k = ��(�i)(xijk) + �b(�)��k = 0and using the fat �2b(�)��T �� > 0, implies that �lj(�(�i)(xij); �) ahieves its unique



54minimum for �b(�)��k = �(�i)(xijk), hene �k = f (�i)�j (xijk). Therefore, for any fj,I�j (fj; Z) = �lj(�(�i)(xij); fij)�Xi1 6=i lj(yi1j; fi1j) + n2J�j(fj)� �lj(�(�i)(xij); f (�i)�j (xij))�Xi1 6=i lj(yi1j; fi1j) + n2J�j(fj)� �lj(�(�i)(xij); f (�i)�j (xij))�Xi1 6=i lj(yi1j; f (�i)�j (xi1j)) + n2J�j(f (�i)�j )The �rst inequality is due to (3.5.7), the seond one is due to the fat thatf (�i)�j (�) is the minimizer of �Pi1 6=i l(yi1j; fi1;j) + n2J�j(fj). Therefore we haveh(i; �(�i)(xij); �) = f (�i)�j (�).Let Y (�i)j = (yT1j; :::; yTi�1;j; �(�i)(xij)T ; yTi+1;j; :::; yTnj)T . Beause that (f�j ; Yj)and (f (�i)�j ; Y (�i)j ) are two loal minimizers of I�j (f; Z), �I�j=�fj is equal to zeroon those two points. Thus,�I�j�fj (f�j ; Yj) = 0; �I�j�fj (f (�i)�j ; Y (�i)j ) = 0: (3.5.8)It is also easy to verify that�2I�j�fj�fTj = Wj(f) + n��j ; �2I�j�Yj�fTj = �I; (3.5.9)where Wj(f) = diag(W1j;W2j; :::;Wnj) is de�ned in (3.3.6). ��j is the semi-positive de�nite matrix satisfying J�j (fj) = fTj ��jfj.



55Using a �rst order Taylor expansion, we have the following equation0 = �I�j�fj (f (�i)�j ; Y (�i)j )= �I�j�fj (f�j ; Yj) + �2I�j�fj�fTj (f �; Y �)(f (�i)�j � f�j )+ �2I�j�Yj�fTj (f �; Y �)(Y (�i)j � Yj)= �2I�j�fj�fTj (f �; Y �)(f (�i)�j � f�j ) + �2I�j�Yj�fTj (f �; Y �)(Y (�i)j � Yj):(3.5.10)Equivalently, this is(f�j � f (�i)�j ) = (Wj(f �) + n��j )�1(Yj � Y (�i)j ); (3.5.11)where (f �; Y �) is a point somewhere between (f�j ; Yj) and (f (�i)�j ; Y (�i)j ). Ap-proximateW (f �) byW (f�j) and note that Y�Y (�i) = (0; :::; 0; (yij��(�i)(xij))T ;0; :::; 0)T . We have0BBBBBBBBBBBBBBBBBB�
f�j(x1j1)� f (�i)�j (x1j1)...f�j (xij1)� f (�i)�j (xij1)...f�j (xijKj)� f (�i)�j (xijKj)...f�j (xnjKj)� f (�i)�j (xnjKj)

1CCCCCCCCCCCCCCCCCCA
� (Wj(f�j ) + n��j )�1

0BBBBBBBBBBBBBBBBBB�
0...yij1 � �(�i)(xij1)...yijKj � �(�i)(xijKj)...0

1CCCCCCCCCCCCCCCCCCA(3.5.12)



56Denote Hj = [Wj(f�j) + n��j ℄�1, whih is the inverse Hessian of I�j (fj; Yj)with respet to fj evaluated at f�j . Hj has the following struture
Hj = 0BBBBBBBB�

Hj11 Hj22 ** . . . Hjnn
1CCCCCCCCA ; (3.5.13)

where Hjii is the Kj �Kj submatrix on the diagonal. Hene, we have0BBBB� f�j(xij1)� f (�i)�j (xij1)...f�j (xijKj)� f (�i)�j (xijKj)
1CCCCA � Hjii0BBBB� yij1 � �(�i)(xij1)...yijKj � �(�i)(xijKj)

1CCCCA : (3.5.14)Starting with the ordinary leave-out-one ross validation funtion CV (�j),we will use the above relation and several �rst order Taylor expansions in ourderivation.CV (�j) = 1n nXi=1 [� KjXk=1 yijkf (�i)ijk + b(fij)℄= 1n nXi=1 [� KjXk=1 yijkfijk + b(fij) + KjXk=1 yijk(fijk � f (�i)ijk )℄= OBS(�j) + 1n nXi=1 KjXk=1 yijk(fijk � f (�i)ijk )
= OBS(�j) + 1n nXi=1 �yij1 � � � yijKj�0BBBB� fij1 � f (�i)ij1...fijKj � f (�i)ijKj

1CCCCA(3.5.15)



57Next, we need to show the following relation is true. The �rst approximation isdue to Taylor expansion for a funtion with vetor responses.0BBBB� yij1 � �ij1...yijKj � �ijKj
1CCCCA

= 0BBBB� yij1 � �(�i)ij1...yijKj � �(�i)ijKj
1CCCCA+0BBBB� �(�i)ij1 � �ij1...�(�i)ijKj � �ijKj

1CCCCA
= 0BBBB� yij1 � �(�i)ij1...yijKj � �(�i)ijKj

1CCCCA+0BBBBB� �b�fij1 (f (�i)�j (xij))� �b�fij1 (f�j(xij))...�b�fijKj (f (�i)�j (xij))� �b�fijKj (f�j (xij))
1CCCCCA

� 0BBBB� yij1 � �(�i)ij1...yijKj � �(�i)ijKj
1CCCCA+Wij0BBBB�f (�i)�j (xij)� f�j(xij)...f (�i)�j (xij)� f�j(xij)

1CCCCA
� 0BBBB� yij1 � �(�i)ij1...yijKj � �(�i)ijKj

1CCCCA�WijHjii0BBBB� yij1 � �(�i)ij1...yijKj � �(�i)ijKj
1CCCCA

= (I �WijHjii)0BBBB� yij1 � �(�i)ij1...yijKj � �(�i)ijKj
1CCCCA (3.5.16)



58Hene, we have the following approximate relation. We will use it to de�ne theapproximate ross validation (ACV ) funtion.CV (�j)= OBS(�j) + 1n nXi=1 �yij1 � � � yijKj�0BBBB� fij1 � f (�i)ij1...fijKj � f (�i)ijKj
1CCCCA

� OBS(�j) + 1n nXi=1 �yij1 � � � yijKj�Hjii0BBBB� yij1 � �(�i)ij1...yijKj � �(�i)ijKj
1CCCCA

� OBS(�j) + 1n nXi=1 �yij1 � � � yijKj�Hjii(I �WijHjii)�10BBBB� yij1 � �ij1...yijKj � �ijKj
1CCCCA� ACV (�j): (3.5.17)Now de�ne Gjii = (I �WijHi). In a step reminisent of that used to get fromleave-out-one ross validation to GCV in the Gaussian ase, we will obtaina generalized form of the approximate ross validation. There, the diagonalelements of ertain matrix was replaed by 1=n times its trae. Here, for anymatries Aii; 1 � i � n,Ai = �ai;k1k2�K�K ; 1 � k1; k2 � K;



59we de�ne
�A = (Æ � )IK�K +  � eeT = 0BBBBBBBB�

Æ  � � �  Æ � � � ... ... . . . ...  � � � Æ
1CCCCCCCCA ; (3.5.18)

where e = (11 � � �1)T is the unit vetor, and Æ and  are the average values oforresponding elements in the matries Aii's.Æ = 1nK nXi=1 KXk=1 ai;kk; = 1n �K(K � 1) nXi=1 Xk1 6=k2 ai;k1k2: (3.5.19)Sine �A has a very speial struture, it is very easy to obtain the losed form ofits inverse�A�1 = 1Æ �  IK�K � (Æ � )(Æ + (K � 1))eeT0BBBBBBBB�
Æ+(K�2)(Æ�)(Æ+(K�1)) � (Æ�)(Æ+(K�1)) � � � � (Æ�)(Æ+(K�1))� (Æ�)(Æ+(K�1)) Æ+(K�2)(Æ�)(Æ+(K�1)) � � � � (Æ�)(Æ+(K�1))... ... . . . ...� (Æ�)(Æ+(K�1)) � (Æ�)(Æ+(K�1)) � � � Æ+(K�2)(Æ�)(Æ+(K�1))

1CCCCCCCCA(3.5.20)



60Hene, we de�ne the generalized form of approximate ross validation (GACV )for multivariate Bernoulli distribution as followingGACV (�j)= OBS(�j) + 1n nXi=1 �yij1 � � � yijKj� �Hj( �Gj)�10BBBB� yij1 � �ij1...yijKj � �ijKj
1CCCCA= 1n nXi=1 [� KjXk=1 yijkfijk + b(fij)℄+1n nXi=1 �yij1 � � � yijKj� �Hj( �Gj)�10BBBB� yij1 � �ij1...yijKj � �ijKj :

1CCCCA (3.5.21)We remark that the above formula is redued to (2.9) in Xiang & Wahba(1996) when j = 1 and K1 = 1. In pratie, we will iteratively hoose smoothingparameters in eah Blok nonlinear SOR iteration in order to minimize GACV .When only person-spei� ovariates exist, following the notation de�ned atthe end of setion (3.3), we an rewrite the above formula to a simpler formGACV (�j)= OBS(�j) + tr(Hj)=n �Pni=1 yij(yij � �ij)n� tr(W 1=2j HjW 1=2j )= 1n nXi=1 [�yijfij + b(fij)℄ + tr(Hj)=n �Pni=1 yij(yij � �ij)n� tr(W 1=2j HjW 1=2j ) (3.5.22)



613.5.3 The One-Step Randomized EstimateThe GACV de�ned in the last setion is very omputing intensive. It involvesthe omputation of the inverse Hessian, whih is a large matrix in our ase.However, this expliit alulation an be avoided by using a tehnique in thespirit of the randomized trae method, provided a solution, either exat orapproximate, of the variational problem an be obtained at a lower ost. Inthis setion, we will propose a one-step randomized estimate of GACV , whihis fast and heap to alulate.The randomized trae tehnique was proposed in Girard (1987), Girard(1991), Girard (1998). Given any square matrix A, and � is a zero mean randomvetor with independent omponents with variane �2, then tr(A) = 1�2E�TA�.Hene we an estimate the trae of A by 1�2 � �TA�. In pratie, �2 is replaedby 1nPni=1 �2i .Given a square matrix A with Aii(1 � i � n) being the K � K sub-matries on the diagonal, we disuss how to obtain a randomized estimate of�A. First, a vetor of i:i:d: random variables distributed as N(0; 1) is gener-ated. �i = (�i1; :::; �iKj)T and � = (�T1 ; :::; �Tn )T . Hene, Æ = tr(A)=(nK) anbe estimated by (�TA�)=(nK). On the other hand,  = (PiPk1;k2 ai;k1k2 �tr(A))=(nK(K � 1)). To estimate PiPk1;k2 ai;k1k2 , let ��i = (1=pK)PKk=1 �ik,�� = (��1; :::; ��1; ��2; :::; ��n)T . �� is a olumn vetor with K repliates of ��i for eah1 � i � n. We notie that E��TA�� =PiPk1;k2 ai;k1k2. Hene, we an estimate by (��TA��� �TA�)=(nK(K � 1)). Therefore, a randomized estimate of �A an



62be obtained.In pratie, the randomized estimate of GACV is alulated by solving thenonlinear system on the perturbed data Yj + � and Yj + ��. Denote fYj�j as thesolution of (3.3.7) by using the original data and fYj+��j as the solution by usingthe perturbed data. If we take fYj�j as the initial value to a Newton-Ralphsonalulation of fYj+��j , and we run the iteration only one by using all matrixdeompositions whih have already been performed for alulating fYj�j in thelast step, we obtain the one step solution fYj+�;1�j . Sine �I�j�fj (fYj�j ; Yj) = 0 and�2I�j�fTj �fj (fYj�j ; Yj) = �2I�j�fTj �fj (fYj�j ; Yj + �), we observe the simple relationfYj+�;1�j = fYj�j � [ �2I�j�fTj �fj (fYj�j ; Yj + �)℄�1�I�j�fj (fY�j ; Yj + �)= fYj�j � [ �2I�j�fTj �fj (fYj�j ; Y )℄�1(�� + �I�j�fj (fYj�j ; Yj))= fYj�j + (Wj + n��j )�1�: (3.5.23)Hene, we have fYj+�;1�j � fYj�j = Hj�: (3.5.24)Thus, �T (fYj+�;1�j � fYj�j ) = �THj� and ��T (fYj+��;1�j � fYj�j ) = ��THj��, we an obtaina randomized estimate of �Hj. Similarly �TGj� = �T �+ �TWj(fYj+�;1�j � fYj�j ), and��TGj�� = ��T ��+��TWj(fYj+��;1�j �fYj�j ). We an alulate the randomized estimate of�Gj. This approah avoids the expliit alulation of inverse Hessian Hj, whih isomputational expensive and tends to be unstable for ill onditioned matrix. Arandomized estimate an always be obtained provided a heap and stable \blak



63box" exists to alulate the (approximate) one-step solution for perturbed data.The resulting ranGACV funtion isranGACV (�j)= 1n nXi=1 [� KjXj=1 yijkfijk + b(fij)℄+1n nXi=1 �yij1 � � � yijKj� �̂Hj( �̂Gj)�10BBBB� yij1 � �ij1...yijKj � �ijKj :
1CCCCA ; (3.5.25)where �̂Hj and �̂Gj denote the randomized estimates. To redue the variane inthe term after \+" in (3.5.25), we may draw R independent random vetors�(1);...,�(R), replae the term after \+" in (3.5.25) by1nR RXr=1 nXi=1 �yij1 � � � yijKj� �̂Hj(r)( �̂Gj(r))�10BBBB� yij1 � �ij1...yijKj � �ijKj :

1CCCCA (3.5.26)to obtain an R-repliated ranGACV funtion. Combined with the approximatespline desribed in the last setion, the omputation of ranGACV is fast andstable. We will iteratively minimize ranGACV in eah step of blok one-stepSOR iteration. This will be done repeatedly until some pre-spei�ed onvergeneriteria is met, or the number of iterations exeeds the pre-spei�ed limit.The GACV and ranGACV funtion is derived by assuming that the mini-mizer of (3.3.7) is alulated at eah blok nonlinear SOR iteration. To speedup the algorithm, however, only one-step update will be alulated. We remark



64that all favorable properties of GACV and ranGACV are preserved for Blokone-step SOR algorithm and approximate spline estimate. It is very easy toarry out the omputation as no additional matrix deomposition is required.By evaluating Hj and Wj at the latest updated value fj�, most of the approxi-mations in the derivation of GACV beomes exat. If we take fj� as the initialvalue, all matrix deompositions whih have been done for alulating fYj ;1�j isreadily available for omputing the one-step estimate fYj+�;1�j for the perturbeddata. Moreover, the relation in (3.5.24) remains to be true for the blok one-stepSOR algorithm, whih sets fYj�j = fYj ;1�j in every iteration.Sine it is diÆult to write down the derivatives of ranGACV with respetto the smoothing parameter(s) �, to searh for the minimizer of ranGACVfuntion, optimization methods whih do not require the expliit alulation ofthe derivatives are highly desired. For single smoothing parameters, we willuse Golden setion method. For multiple smoothing parameters, we will usedownhill simplex method. See Press, Flannery, Teukolsky & Vetterling (1996)for referene.3.5.4 Numerial Examples(i) ranGACV vs. iterated ranGACVThe �rst experiment is to ompare the performanes of ranGACV and iteratedranGACV . For �xed smoothing parameters, Xiang & Wahba (1996) and Lin,Wahba, Xiang, Gao, Klein & Klein (1998) proposed to �nd the solution of the



65variational problem, then evaluate the GACV funtion. However, for multi-variate Bernoulli data, when there present more than one logit funtions to beestimated, or we assume the parametri form for the assoiation terms, evalu-ating and minimizing ranGACV for eah logit funtion at the orrespondingstep of the blok one-step SOR-Newton-Ralphson algorithm seems to be moreonvenient and natural. In this experiment, we will assume j = 1 and Kj = 1,the situation is redued to the univariate Bernoulli distribution.The �rst three univariate funtions are taken from Xiang & Wahba (1996).We de�ne the true logit funtions to be estimated asf1(x) = 3� (5x� 2:5)2f2(x) = 2 sin(10x)f3(x) = 0:218� 4:312x: (3.5.27)Figure 1 shows the true probability funtions determined by p(x) = ef(x)=(1 +ef(x)). The preditor variable x was taken to be uniformly distributed in (0; 1).Two sample sizes n = 100 and n = 400 were used for this simulation. Toompare the e�etiveness of these two methods, 100 independent sets of datafor eah ombination of logit funtion and sample size were generated. We usedthe same random perturbations and set R = 5 and omputed the 5-repliatedranGACV for both methods. Only 50 basis funtions hosen by lusteringmethod were used for approximate spline for all ases. The pairwise omparisonof CKL distane is plotted in Figure 2. From this experiment, the performanesof ranGACV and iterated ranGACV are almost the same. ranGACV seems



66to be slightly better than its iterated version for small sample sizes. However,this di�erene beomes negligible very quikly when the sample size inreases.The iterated ranGACV method is not guaranteed to onverge, although thishappens very rare. From extensive simulation studies, when the algorithm doesnot onverge, very often, the value at the last step of the iteration is still anaeptable estimation.
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Figure 1: True probability funtion p(x) determined by the logit funtions in(3.5.27): (a) f1 (b) f2 () f3The next Monte Carlo simulation uses the WESDR (Wisonsin Epidemiol-ogy Study of Diabetes Retinopathy) data. See Wahba et al. (1995) and ref-erenes ited there. Three ovariates dur, gly and bmi are used as preditorvariables. The outome variable is the progression of retinopathy. The followingANOVA model is �tted by iterated UBR method by GRKPACK (Wang 1997),logit(p(dur; gly; bmi) = + f1(dur) + f2(gly) + f3(bmi) + f12(dur; bmi):
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Figure 2: Pairwise omparison of CKL for ranGACV and iterated ranGACVfor the ases in (3.5.27). (a) f1; n = 100 (b) f1; n = 400 () f2; n = 100 (d)f2; n = 400 (e) f3; n = 100 (f) f3; n = 400



68The �tted logit funtion is then treated as the true test funtion in our simu-lation. 100 repliates of data are generated and �tted for the above ANOVAmodel by both ranGACV and iterated ranGACV methods. The number ofrepliates R for randomized estimate of GACV is taken to be 5 for both meth-ods. In the mean time, we used lustering method to obtain 50 basis funtionsfor the approximate spline. For eah run, the CKL distane between the trueprobability funtion used to generate the data and the estimated probability isomputed. The pairwise omparison of the CKL distane is plotted in Figure 3.The ranGACV method seems to be slightly better than the iterated ranGACValgorithm. However, the di�erene is very small.
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Figure 3: Pairwise omparison of CKL for ranGACV and iterated ranGACVfor 100 runs of the simulated WESDR data.



69In light of the results of the above simulation studies, we prefer to solve thevariational problem for �xed smoothing parameters, then evaluate the ranGACVfuntion at the solution whenever possible. However, for more ompliated sit-uations, there may exist more than one logit funtions to be estimated, or somefuntions to be estimated may take simple unpenalized parametri form. It isvery diÆult to write down the losed form of ranGACV and to ompute itdiretly. On the other hand, ombined with some iterative algorithm to solvethe variational problem, iterated ranGACV is the natural alternative whih isexpeted to be nearly as eÆient as ranGACV itself.(ii) Iterated ranGACV as a proxy for CKL distaneIn this experiment, we will show that the iterated ranGACV is an exellentomputational proxy for CKL distane for multivariate Bernoulli data. IteratedranGACV is an estimator of CKL distane at every updating step of the Blokone-step SOR-Newton-Ralphson algorithm.We assume that j = 1 and Kj = 2. There are one endpoint of interest andtwo repeated measurements for it. The �rst example is for the single smoothingparameter ase. The preditor variable x is assumed to be uniformly distributedon (0; 1). For eah subjet, x is assumed to be the same for both measurements.The true onditional logit funtion to be estimated isf(x) = logit(P (Yk = 1jY (�k) = 0; x)) = 3 sin(2:7x2)� 2: (3.5.28)Odds ratio is used to measure the assoiation between orrelated observations.



70We will let the onditional log odds ratio be a onstant� = logOR(Y1; Y2jx) = 1: (3.5.29)The sample size n is taken to be 500. The preditor variable x is assumed to beuniformly distributed on (0; 1). The true marginal probability p(x) = P (Yk =1jx) = (ef(x)+e2f(x)+�)=(1+2ef(x)+e2f(x)+�) and one set of randomly generateddata aording to the true joint distribution are plotted in Figure 4. This setof data is used in our simulation study. To ompute the approximate splineestimate, only 50 basis funtions are seleted.
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Figure 4: True marginal probability P (Yk = 1jx) and one set of generated data.As proposed early, the algorithm we used to estimate the joint distribution



71will iterative update f and �. We proposed to iteratively minimize ranGACVwhenever updating f by the one-step updating formula. The initial values forboth f and � are taken to be 0. At di�erent stage of this proess, the true CKLdistane and the ranGACV funtion are omputed and plotted in Figure 5-7.Figure 5 shows the omparison made at the �rst iteration step while �̂ = 0.Figure 7 shows the omparison made at the onverged value while �̂ = 1:53.Figure 6 shows the omparison made in the middle of this iterative algorithm,while �̂ = 0:91. Three di�erent values are taken for R, the number of repliatesused to evaluate the randomized estimate of GACV in order to redue variane.And for eah value of R, 10 independent realizations of ranGACV funtion areomputed and plotted. The losed irle is the minimizer of the CKL distanewhile the open irles indiate the minimizers for eah ranGACV urve.In terms of loating the best � whih yields the smallest CKL distane,ranGACV is an exellent proxy to be minimized. When R inreases, ranGACVseems to have smaller variane and better performane. Sine the iteratedalgorithm minimizes ranGACV at every step, we really prefer it to have smallervariane. In the meanwhile, The omputation of ranGACV is in fat very fastsine no additional matrix deomposition is neessary. Hene we suggest to letR be large enough, for example, R = 20.The next example is for multiple smoothing parameters. Still, there is oneendpoint of interest and paired observations for eah subjet. The preditorvariables (x1; x2) are assumed to be uniformly distributed on the unit square
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75(0; 1) � (0; 1). We assume the true onditional logit funtion has an additiveformf(x1; x2) = logit(P (Yk = 1jY (�k) = 0; x1; x2)) = 2 sin(2�x1)� sin(2�x2):(3.5.30)As in the previous example, we let the onditional log odds ratio be a onstant� = logOR(Y1; Y2jx1; x2) = 1:5: (3.5.31)The true marginal probability is plotted in Figure 8(a).
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Figure 8: The true and estimated marginal probability funtion p(x1; x2) =P (Yk = 1jx1; x2).



76For this simulation study, 500 pairs of observations are generated aordingto the joint distribution. 50 basis funtions are seleted by lustering method.We apply the Blok one-step SOR algorithm ombined with iterated ranGACVto estimate the joint distribution P (Y1; Y2jx1; x2). R = 20 repliates are used forestimating ranGACV . The estimated marginal probability is plotted in Figure8(b). Figure 8 and Figure 9 show the perspetive plots and ontour plots forboth ranGACV and CKL surfaes. Three omparisons are made during theiteration proess: at the �rst step (when �̂ = 0), in the middle of the iterations(when �̂ = 0:77) and at the onverged value (when �̂ = 1:29).From the plots, iterated ranGACV does an exellent job in terms of searh-ing for the minimum value of CKL distane. Although the minimizers ofranGACV are not the minimizers of CKL distane, onsidering the at na-ture of CKL surfae near its minima in this ase, we notie that the CKLdistanes ahieved by the minimizers of ranGACV are very lose to the min-imum values of CKL distane. The omparison of the minimum CKL valuesand the one ahieved by the minimizers of ranGACV is listed in Table 3.min�1;�2 CKL(�1;�2) CKL(�̂1; �̂2)�̂ = 0 0.88501 0.88912�̂ = 0:77 1.22738 1.23200�̂ = 1:29 1.50359 1.50903Table 3: Comparison of the minimum CKL distanes and CKL ahieved by(�̂1; �̂2), the minimizers of ranGACV funtion.
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Figure 9: Comparison of iterated ranGACV and CKL surfaes.
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Figure 10: Contour plots of iterated ranGACV and CKL. Solid dots denotethe minimizer of CKL distane while the triangles denote the minimizer ofranGACV funtions.



793.6 Bayesian Inferene and Approximate Con-�dene IntervalsTheorem 3.3 shows that the pseudo-data de�ned in setion 3.3 have approxi-mately the usual data struture. We will make use of suh an observation inthis setion to onstrut the approximate Bayesian on�dene interval. An ap-proah similar to that used by Silverman (1985) is adapted for the approximatespline solution to the variational problem.First let us onsider the Bayesian formulation of the variational problemassoiated with orrelated Gaussian observations. For �xed smoothing param-eter(s), we will identify the variational problem with a Bayesian problem. As-sume there is only one endpoint, J = 1. On domain X , yik = f(xik) + �ik,i = 1; :::; n, k = 1; :::; K, where (�i1; :::; �iK), i = 1; :::; n are i:i:d: distributed asN(0; �2W�1), with W a known positive de�nite matrix. With abuse of nota-tion, the approximate spline solution of f(x) is a ombination of the seletedbasis funtions f = Sd+QV ; (3.6.1)where QV = (�1; :::; �V ). Let Q�V denote the matrix with (Q�V )ij =< �i; �j >.By assuming an improper prior distribution on the oeÆients (; d), we lettheir log-density funtion take the formlprior(; d) = �12bTQ�V ; (3.6.2)



80where b = (n�)=�2 and the notation \ =" means \equals up to a onstant".Following some standard Bayesian manipulation, the posterior log-likelihoodhas the following formlpost(; d) = �12bTQ�V � 12�2 (y �QV � Sd)TW (y �QV � Sd): (3.6.3)Hene by minimizing the posterior negative log-likelihood of (; d), we obtain ex-atly the same solution as solving the variational problem in the approximatingsubspae span(S;QV ).From (3.6.3), (; d) in fat has a proper posterior distribution as a multivari-ate normal with mean (̂; d̂) and ovariane matrix �2M�1, whereM = 0B�QTVWQV + n�Q�V QTVWSSTWQV STWS1CA (3.6.4)and 0B� ̂̂d1CA =M�10B�QTVST1CAWY: (3.6.5)Hene, for f = Sd+QV , the following is trueV ar(f) = �20B�QTVST1CAM�1�QV S� : (3.6.6)De�ne the inuene matrix A(�) satisfying f = A(�)y to beA(�) = 0B�QTVST1CAM�1 �QV S�W: (3.6.7)



81(3.6.6) an be re-written as V ar(f) = �2A(�)W�1: (3.6.8)Therefore, Bayesian on�dene intervals an be onstruted one the posteriormean and ovariane matrix are omputed for (; d).The onstrution of Bayesian on�dene intervals for multivariate Bernoullidata utilizes the fat that the pseudo-data have approximately multivariatenormal distribution, whih is based on the Taylor expansion of the penalizedlog-likelihood funtion entered at the mode (; d). Denote the negative log-density funtion of y onditioning on f and � as l(yjf; �). To estimate theonditional logit funtion for the jth endpoint fj, we will ondition on the otherestimated values for f (�j) and �. fj is the minimizer oflj(fj) + n2�Jj(fj) = lj(fj) + n2�Tj Q�V j: (3.6.9)At the onverged step of the blok one-step SOR iteration, we are atuallysolving a penalized weighted least square problem based on the pseudo-data1n nXi=1 (~yij � fij)TWij�(~yij � fij) + �jTQ�V j: (3.6.10)Here W�1ij� is an estimated value of V ar(Yj) = W�1j . From Theorem 3.3, weknow that ~yj is approximately distributed as N(fj ;W�1j ). Hene by dealingwith the pseudo-data ~yj, similar to (3.6.5), we have0B�̂̂d1CA = M�10B�QTVST1CAW ~yj (3.6.11)



82where M is evaluated at the onverged step of the iterations as in (3.6.4). Toalulated the posterior variane of f , (3.6.6) remains to be true. Therefore,the pseudo-data an be used to onstrut the approximate Bayesian on�deneinterval for the multivariate Bernoulli data.3.7 Monte Carlo SimulationsIn this setion, we will demonstrate results from some Monte Carlo simula-tions to evaluate the performane of the proposed method. The omparativeKullbak-Leibler distane (CKL) is used to measure the performane of theestimated values.3.7.1 Repeated Measurements for the Same EndpointThe �rst example is about the single smoothing parameter situation. We willtry to mimi the harateristi of possible ophthalmology data. There is oneendpoint of interest and paired observations for eah subjet. There presents oneobservation-spei� ovariate Xik; (k = 1; 2). Xi1's are assumed to be uniformlydistributed on the interval (0:05; 0:95). Xi2 = Xi1 + �i, while �i's are uniformlydistributed on (�0:05; 0:05).The true onditional logit funtion is assumed to bef(xik) = logit(P (Yik = 1jY (�k)i = 0; xik))= 2[exp(�30(xik � 0:25)2) + sin(�x2ik)℄� 2: (3.7.1)



83And the onditional log odds ratio � = logOR(Yi1; Yi2jxi) = 0:8. Three di�erentsample sizes are used in this simulation: n = 125, n = 250, n = 500. For eahsample size, 100 independent sets of data are randomly generated aording tothe true joint distribution.Figure 11 shows the histogram plots of the estimated �̂ for the three di�erentsample sizes. The dotted lines represent the true value of 0:8. The �tted valuesappear to onverge to the truth while the sample size inreases. The estimatorof � appears to be approximately unbiased and normally distributed from thehistogram.
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Figure 13: True and estimated onditional probability funtions when n = 250.



86

0.1
0.2

0.3
0.4

0.5
0.6

True
n=500

0.0 0.2 0.4 0.6 0.8 1.0

5th best
n=500

25th best
n=500

0.1

0.2
0.3

0.4
0.5

0.6
50th best

n=500
0.1
0.2

0.3
0.4

0.5
0.6

75th best
n=500

95th best
n=500

0.0 0.2 0.4 0.6 0.8 1.0

x

P
(1

|0
,x

)

Figure 14: True and estimated onditional probability funtions when n = 500.



87and the estimated urves for eah sample size, P (Yik = 1jY (�k)i = 0; xik) =ef(xik)=(1 + ef(xik)). For eah sample size, the 100 �tted values are ranked a-ording to the CKL distanes between the estimated joint distributions andthe truth. The 5th, 25th, 50th, 75th and 95th best �ts are plotted for eahsample size. The true onditional logit funtion is a bi-modal funtion. Thetrend is lear that when the sample size inreases, the estimated urves beomemore and more aurate. However, for parametri model, there might be noprior knowledge about the bi-modal nature of the truth. Hene a linear or evenquadrati form will miss the true urve no matter how large the sample size is.In the next experiment, we will ompare the proposed new multivariatemethod to the univariate �t. In the ophthalmology studies, one question ofinterest is to estimate the probability of at least one eye developing a ertaindisease given the values of the preditor variables for a person. Assuming thereis no eye-spei� ovariate. Xi's are uniformly distributed on (0; 1). For eahsubjet, there are paired observations (Yi1; Yi2). We want to estimate the prob-ability P (Yi1 = 1 _ Yi2 = 1jxi) = (2efi + e2fi+�i)=(1 + 2efi + e2fi+�) from theobserved data.For this experiment, we assumep(xi) = P (Yi1 = 1 _ Yi2 = 1jxi) = 0:8 sin(2:7x2i ) + 0:1 (3.7.2)The true p(x) is plotted in Figure 15. Four di�erent values are used for �: 0,0.4, 0.8, 1.2. � = 0 is orresponding to the ase that Yi1 and Yi2 are indepen-dent. However we pretend that this fat is unknown, � is still estimated by the
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Figure 15: True p(xi) = P (Yi1 = 1 _ Yi2 = 1jxi) used for the simulation study.proposed algorithm. Straightforward alulation yields the following formula toompute fi for given � and P (Yi1 = 1 _ Yi2 = 1jxi)fi = log (p(xi)� 1) +p(1� p(xi))2 + e�p(xi)(1� p(xi))e�(1� p(xi)) : (3.7.3)The experiment is onduted as follows. First, for the univariate �t, theonly information needed is �Yi whih is de�ned to be 0 when both Yi1 = Yi2 = 0and 1 otherwise. P ( �Yi = 1jxi) = p(xi). We generate 100 sets of data aordingto the true distribution and �t the data by using univariate penalized logistiregression. For the bivariate �t, we �rst alulate the true joint distribution of(Yi1; Yi2) aording to the previous formula. For eah value of �, 100 sets of dataare randomly generated and the joint distribution is estimated by the proposedmultivariate method. Afterwards, the probability of P (Yi1 = 1_Yi2 = 1jxi) an



89be derived from the estimated joint distribution. For every run, CKL distanebetween the estimated p̂(xi) and p(xi) is alulated.The above proedure is performed for three di�erent sample sizes: n = 100,n = 200 and n = 400. In Figure 16, we show the histograms of the estimated�̂'s for di�erent sample sizes and true values of �. Dotted lines represent thetrue values of �. From the plot, the estimated values have an approximatebell-shaped distribution and are approximately unbiased. When sample sizeinreases, the estimated values beome loser to the true value.In Figure 17, we ompare the CKL distanes between the �tted probabilityand the true probability p(xi) = P (Yi1 = 1 _ Yi2 = 1jxi) for di�erent method.Obviously, for all true values of �, the bivariate �t, whih estimates the jointdistribution of (Yi1; Yi2), has a better eÆieny than the univariate �t, whihestimates P ( �Yi = 1) diretly. This is not surprising sine the univariate �tonly needs to know �Yi, hene some information in (Yi1; Yi2) is not used in theestimation proedure.The next experiment is similar to the previous one but for multiple smooth-ing parameters. Assume (Xi1; Xi2)'s are uniformly distributed on the unitsquare (0; 1)� (0; 1). The true onditional logit funtion is taken to bef(xi1; xi2) = 2 sin(3xi1 � 3xi1xi2) + os(2� 2xi2)� 3(xi1 � 0:35)2 � 1:5(3.7.4)and the onditional log odds ratio � is taken to be a onstant 1. Eah time, 500



90

0

10

20

30

40

50

alpha=0
n=100

-1 0 1 2

alpha=0.4
n=100

alpha=0.8
n=100

-1 0 1 2

alpha=1.2
n=100

alpha=0
n=200

alpha=0.4
n=200

alpha=0.8
n=200

0

10

20

30

40

50

alpha=1.2
n=200

0

10

20

30

40

50

alpha=0
n=400

alpha=0.4
n=400

-1 0 1 2

alpha=0.8
n=400

alpha=1.2
n=400

-1 0 1 2

Estimated Alpha

P
er

ce
nt

 o
f T

ot
al

Figure 16: Histograms of estimated �̂'s for n = 100, n = 200 and n = 400.Dotted lines represent the true values of �.
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92independent pairs of observations (Yi1; Yi2)'s are simulated. The proposed pe-nalized multivariate logisti regression is used to estimate the joint distribution.This is repeated for 100 times.We an derive p(xi1; xi2) = P ( �Yi = 1jxi1; xi2) from the estimated joint dis-tribution. Figure 18 shows the true p(xi1; xi2) and the 5th, 25th, 50th, 75th and95th best estimated values ranked by the CKL distane. The proposed methodgives very good estimations most of the times.To make the omparison, we also use the univariate method to estimatep(xi1; xi2) diretly for the same 100 sets of data. Only the derived outomevariable �Yi is used in the estimation proedure. Assuming we are only interestedin estimating P ( �Yi = 1jxi1; xi2), the pairwise omparison of CKL distane isshown in Figure 19. About 2=3 of the times, the bivariate �t yields betterestimation.3.7.2 Di�erent EndpointsIn this example, we assume that there are two orrelated endpoints of inter-est. For eah subjet, there are two binary outome variables: Yi1 for the �rstendpoint and Yi2 for the seond endpoint. The proposed method will estimatethe onditional joint distribution of P (Yi1; Yi2jXi). This model is also useful topredit the outome of one endpoint, given the outome of another endpoint isknown. For example, if a person already has one disease, what is the probabilityof getting another disease?
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95approximating subspae for the approximate spline solutions. To ompute therandomized version of GACV , we use R = 20 repliates to redue the varianeof the estimated values.In Figure 20, we present the histogram plots of the estimated �̂ for twodi�erent sample sizes. The dotted lines are the true value of � = 1:5. Theestimated values onverge to the truth while sample size inreases.
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Figure 20: Histograms of estimated �̂ for two di�erent sample sizes. The dottedlines represent the true values of � = 1:5.In Figure 21 and 22, we plot the true and estimated onditional probabilityfuntions for both endpoints. For eah sample size, the 100 �tted values areranked aording to the CKL distane between the estimated joint distributionand the truth. The 5th, 25th, 50th, 75th, 95th best �ts are plotted for bothsample sizes. Figure 21 shows the onditional probability for the �rst endpoint



96P (Yi1 = 1jYi2 = 0; xi) = ef1(xi)=(1 + ef1(xi)). Figure 22 shows the onditionalprobability for the seond endpoint P (Yi2 = 1jYi1 = 0; xi) = ef2(xi)=(1 + ef2(xi)).
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Figure 21: True and estimated onditional probability P (Yi1 = 1jYi2 = 0; Xi).Solid lines are the estimated funtions while dotted lines represent the truefuntion.
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99Chapter 4
Appliation to the Beaver DamEye Study
4.1 IntrodutionThe Beaver Dam Eye Study (BDES) is an ongoing population-based ohortstudy of age-related eye diseases, atarat and maulopathy. A desription ofthe population and details of the study at the baseline may be found in Klein,Klein & Linton (1992). Five-year followup data has now been olleted andanalyzed, see, for example, Klein, Klein, Jensen & Meuer (1997b), and theten-year followup of the ohort is in progress.A private ensus of the population of Beaver Dam, Wisonsin was performedfrom September 15, 1987 to May 4, 1988 to identify the eligible population,whih is de�ned as being 43 to 84 years of age at the time of ensus. Afterwards,the population was examined over a 30-month period. Of the 5925 eligiblepeople, 4926 (83:1%) partiipated in the study. Photographs of eah eye weretaken and graded. An examination and a standardized questionnaire were alsoadministrated.



1004.2 The Pigmentary Abnormalities for WomenThe assoiation of pigmentary abnormalities with six other attributes at thebaseline was studied by the \univariate" penalized logisti regression in Lin etal. (1998). Only the n = 2585 women members of the ohort in the baseline withno missing values were onsidered. Pigmentary abnormalities are an early signof age-related maular degeneration and are de�ned by the presene of retinaldepigmentation or inreased retinal pigmentation in assoiation with retinaldrusen. Pigmentary abnormalities were found in 11:88% of the n = 2585 ohortstudied. Here, the question of interest is to estimate the probability of at leastone eye developing pigmentary abnormalities given the values of the preditorvariables.Based on the previous work, age is known to be a very strong risk fator forthe presene of pigmentary abnormalities and other age-related maulopathy inthe Beaver Dam Eye Study. The assoiation between ardiovasular disease andits risk fators and the inidene of age-related maulopathy was examined inKlein, Klein & Jensen (1997a). Hormone replaement therapy was assoiatedwith a weak protetive e�et while a history of heavy alohol onsumption andbeer drinking was assoiated with a deleterious e�et for some endpoints. SeeKlein, Klein & Ritter (1994), Ritter, Klein, Klein, Mares-Perlman & Jensen(1995) and Moss, Klein, Klein, Jensen & Meuer (1998) for referenes. We usedmultiple linear logisti regression and ontingeny tables for the preliminaryanalysis. First, one preditor variable was examined at a time. Only those



101variables whose p-values are below some threshold (0.1) were kept for furtheranalysis. A forward seletion proedure was then arried out for the linearlogisti regression. Afterwards, several possible forms of the model were loselyexamined by the nonparametri method. If the �tted value of any term hadno signi�ant visual e�et to the overall �t, that term was onsidered to haveno pratial importane. The six \preditor" variables seleted for the �nalnonparametri model are listed in Table 4.Variable units odeurrent usage of hormone replaement therapy yes/no hormhistory of heavy drinking yes/no drinbody mass index kg=m2 bmiage years agesystoli blood pressure mmHg sysserum holesterol mg=dL holTable 4: Preditor variables for the Beaver Dam Pigmentary abnormalitiesmodel.The model �tted there isf(x) = C + f1(sys) + f2(hol) + f12(sys,hol)+dageage + dbmibmi + dhormI1(horm) + ddrinI1(drin): (4.2.1)I1 and I2 are indiator variables. Originally, age and bmi were �tted as smoothmain e�ets, however visual inspetion indiated that they are indistinguishablefrom linear terms, so that they were set to be linear in the �nal model. Thus,there are 5 smoothing parameters in the model, one for eah of the main e�ets



102of sys and hol, another 3 for the interation term (linearsys 
 smoothhol,smoothsys 
 linearhol, smoothsys 
 smoothhol). The results were reported inLin et al. (1998).In this setion, we will re-examine the assoiation by using the proposedpenalized multivariate logisti regression. n = 2495 women with outomesavailable for both eyes are inluded in the analysis. For referene, the perentilesof the ontinuous preditor variables are given in Table 5.Perentile Min 12.5 25 37.5 50 62.5 75 87.5 Maxsys(mmHg) 71 108 116 122 129 136 145 157 221hol(mg=dL) 102 191 210 225 237 252 266.5 290 503bmi(kg=m2) 15 22.5 24.25 25.9 27.4 29.5 31.55 35.2 68.4age(years) 43 48 52 58 62 66 71 76 86Table 5: Perentiles of the preditor variables.In Table 6, we summarize the relation between the outome variable and theategorial preditor variables.We apply the penalized multivariate logisti regression to analyze these data.Here J = 1 and K1 = 2. All preditor variables took the same values for botheyes of the same person. The assoiation between fellow eyes is assumed tobe a onstant � = log P (1; 1jxi)P (1; 1jxi)P (1; 0jxi)P (0; 1jxi) . The �nal model takes the samefuntional form as in (4.2.1), although this time on the onditional logit sale.Only 50 basis funtions seleted by the lustering method is used to �t the�nal model. To estimated the ranGACV , the number of repliates R is takento be 20. Upon onvergene, the estimated �̂ = 2:8269. The naive estimate



103pigmentary abnormalitieshorm no one eye both eyesno 1953 184 104yes 245 6 3pigmentary abnormalitiesdrin no one eye both eyesno 2073 174 100yes 125 16 7Table 6: Summaries of the relation between the pigmentary abnormalities andthe urrent usage of hormone replaement therapy and the heavy drinking his-toryof odds ratio without adjustment for any ovariates is 26.06. The estimatedodds ratio from the multivariate model goes down to OR = e2:8269 = 16:89.Obviously, the ommon preditor values for the same person explain partly thestrong assoiation between fellow eyes. We plot the estimated main e�ets ofall preditor variables in onditional logit sale in Figure 23. Not surprisingly,age turns out to be the most inuential preditor.From the estimated joint probability, we an alulate the probability ofat least one eye developing the pigmentary abnormalities. Figures 24 and 25give the estimated probability of �nding pigmentary abnormalities in at leastone eye as a funtion of hol, for various values of sys, age and bmi. InFigure 24, (horm, drin)=(no, no) and in Figure 25, (horm, drin)=(yes, no).A suggestion of a nonlinear protetive e�et of holesterol, partiularly for thosewho were older in the horm=no group, may be seen as a result of �tting this
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105model. Figures 26 and 27 give the estimated probability of �nding pigmentaryabnormalities in at least one eye as a funtion of sys, for various values of hol,age and bmi. In Figure 26, (horm, drin)=(no, no) and in Figure 27, (horm,drin)=(yes, no). A protetive e�et of hormone replaement therapy is stillevident from this bivariate model. Figure 28 gives ross setional plots of theestimated probabilities along with the 90% Bayesian on�dene intervals as afuntion of hol for both values of horm and four values of age, whih are takento be the middle of the four age groups de�ned in the Beaver Dam Eye Study.The new analysis basially on�rms the result obtained in Lin et al. (1998).The trend of the e�et for eah preditor variable remains the same. Comparedto Figures 9-11 in Lin et al. (1998), we do notie some small di�erene betweenthese two models. From the simulation studies, we expet that the new modelis loser to the underlying truth. Besides, we notie that the outomes for botheyes of the same person are highly orrelated (OR = e2:8269 = 16:89), even afteradjusted for all the preditor variables in this model. This partly explains whythe results from the two models look very similar. When the outomes are lessorrelated, or there are more repeated measurements for the same person, the\multivariate" method estimating the joint distribution is expeted to extratmore information from the data.Another merit of this new approah is to estimate the probability P (Yk =1jY (�k) = 1; X). Figure 29 shows this onditional probability as a funtion ofhol. This onditional probability is medially meaningful to a patient who has
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Figure 24: Estimated probability of at least one eye having the pigmentary ab-normalities as a funtion of holesterol by three levels of age and bmi. horm=no,drin=no.
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Figure 25: Estimated probability of at least one eye having the pigmentary ab-normalities as a funtion of holesterol by three levels of age and bmi. horm=yes,drin=no.
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Figure 26: Estimated probability of at least one eye having the pigmentaryabnormalities as a funtion of systoli blood pressure by three levels of age andbmi. horm=no, drin=no.
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Figure 27: Estimated probability of at least one eye having the pigmentaryabnormalities as a funtion of systoli blood pressure by three levels of age andbmi. horm=yes, drin=no.
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Figure 28: Bayesian on�dene intervals for the probability of at least one eyehaving the pigmentary abnormalities. bmi and sys are �xed at their median.drin=no.



111been diagnosed to have a ertain disease for one eye. It provides a guideline ashow to redue the risk of the same disease for the other healthy eye.
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Figure 29: Estimated probability of one eye developing pigmentary abnormal-ities onditioning on the other eye already having this disease as a funtion ofholesterol by three levels of age and bmi. horm=no, drin=no.



113Chapter 5
Summarizing Remarks
5.1 ConlusionPenalized multivariate logisti regression using smoothing spline ANOVA modelhas been proposed to estimate the joint distribution for multivariate Bernoullidata, given the values of the preditor variables. The estimate is obtained bysolving a variational problem involving the penalized likelihood.Numerially, an approximate solution of the minimization problem is ob-tained by using the blok one-step SOR-Newton-Ralphson algorithm. It hasbeen proved in some speial ase, the approximate solution requires muh lessomputing resoures to ahieve the same statistial onvergene rate as theexat solution. Extensive Monte-Carlo experiments demonstrate that the per-formane of the approximate solution is very lose to the exat one. Hene, wean deal with muh larger data set by using the approximate solution insteadof the exat one. GACV for multivariate Bernoulli data has been derived. Itsrandomized version has been used to adaptively selet smoothing parameters inevery step of the blok one-step SOR iteration. From the simulation studies, theiterated ranGACV is an exellent omputational proxy for the CKL distane.



114The assoiation terms are still kept as simple parametri forms in this model.They are estimated iteratively by maximum likelihood estimation in eah blokone-step SOR updating step.By taking the dependene struture into onsideration, we an obtain apartly exible estimate of the joint probability, onditioning on the preditorvariables. This approah is partiular useful when the orret form of the fun-tion to be estimated is unknown. We suessfully applied this method to analyzea medial data set. Some interesting features of this data set are brought toour attention by the nonparametri model, while more onventional parametriapproah is unlikely to reveal suh a relationship without more prior knowledgeof the data set.5.2 Log-linear vs. Marginal Model, and FutureResearhThe model we onsidered in this thesis is a onditional logisti regression model.The parameters f 's and �'s in our model have straightforward interpretationsin terms of onditional probabilities. They are the anonial parameters in thelog-linear model. Another lass of model is the marginal model. The jointdistribution is parameterized in terms of marginal means and odds ratio ratherthan onditional means and odds ratio.



115The onditional model is very useful for predition. In pratie, for a ve-tor of orrelated outomes, we may not observe all of them at the same time.However, we want to predit the outomes of the unobserved variables on-ditioning on the preditor variables and observed outomes. The onditionalmodel addresses this problem more diretly than the marginal model.The omputation of the marginal model is more diÆult than the ondi-tional model, sine it involves re-parameterization of the anonial parameters.However, it also enjoys the reproduibility property, espeially when the num-bers of repeated measurements for eah subjet vary. Although it is arguedthat when the assoiation fator is of interest, this will be most likely genuinemultivariate data of equal luster size, it will be interesting to build a marginalmodel by using a SS-ANOVA model. When the luster sizes are unequal, likesome longitudinal studies, the assoiation fator an be viewed as a nuisaneparameter. Data-driven method to selet the smoothing parameters need to bedeveloped.Another interesting problem is to develop a semi-parametri model for time-to-event data using a smoothing spline model. We will assume a nonparametriform for baseline hazard funtion. The outome variable ould be orrelatedmultivariate responses, for example, the time to developing a ertain eye dis-ease for eah eye of the same person. Alternatively, there may exist orrelatedompeting or semi-ompeting risks or informative ensoring. Full penalized like-lihood may be useful for model building. As always, a entral question is how



116to adaptively hoose the amount of smoothing.
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