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iAbstra
t
We 
ombine a smoothing spline ANOVA model and a log-linear model to builda partly 
exible model for multivariate Bernoulli data. The joint distribution
onditioning on the predi
tor variables is estimated. The 
onditional log oddsratio is used to measure the asso
iation between out
ome variables. A numer-i
al s
heme based on the blo
k one-step SOR-Newton-Ralphson algorithm isproposed to obtain an approximate solution for the variational problem. It isproved for a spe
ial 
ase that the approximate solution 
an a
hieve the samestatisti
al 
onvergen
e rate as the exa
t solution, but is mu
h more 
omputingeÆ
ient. We extend GACV (Generalized Approximate Cross Validation) tothe 
ase of multivariate Bernoulli responses. Its randomized version is fast andstable to 
ompute. Simulation studies show that it is an ex
ellent 
omputa-tional proxy for the CKL (Comparative Kullba
k-Leibler) distan
e. It is usedto adaptively sele
t smoothing parameters in ea
h blo
k one-step SOR itera-tion. Approximate Bayesian 
on�den
e intervals are obtained for the 
exibleestimates of the 
onditional logit fun
tions. Simulation studies are 
ondu
tedto 
he
k the performan
e of the proposed method. Finally, the model is appliedto two-eye observational data from the Beaver Dam Eye Study to examine theasso
iation of pigmentary abnormalities and various 
ovariates.
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1Chapter 1
Introdu
tion
1.1 MotivationThe original motivation of this study 
omes from many typi
al data from oph-thalmologi
al studies. One 
hara
teristi
 of su
h kind of data set is that wehave out
omes from both eyes of the same person. Usually, they are 
orrelatedBernoulli out
omes, Yij; i = 1; 2; :::; n; j = 1; 2. Yij = 1 indi
ates that the jtheye of the ith person has a 
ertain disease. Both person-spe
i�
 and eye-spe
i�

ovariates may be available as predi
tor variables.As in many medi
al data, it is not suÆ
ient to dire
tly predi
t the out
omebased on the available 
ovariates, sin
e even people with the same 
ovariatevalues do not ne
essarily have the same medi
al out
omes. Instead, we areinterested in �nding the relation between out
ome variables and predi
tor vari-ables, i.e. (1) what is the probability p of a 
ertain out
ome 
onditioning onsome given predi
tor variable values; (2) how will the 
hanges of predi
tor vari-ables a�e
t the 
onditional probability p; (3) how strong are the 
orrelationsbetween those multiple out
omes.The �rst question is to build a predi
tive model for future observations.



2Their 
ovariate variable values may not appear in the training set. Consequentlywe need some smoothing te
hnique whi
h not only provides estimate of p onthose data points available for model building, but also provides predi
tionbetween those data points.The se
ond question is related to interpretability of our model. Unlike abla
k box, it should have readily interpretable result for multivariate fun
tionestimate and reasonable assessment of a

ura
y after the model has been �tted.This property is espe
ially important for medi
al resear
hers, sin
e the inves-tigators are usually interested in understanding the 
ause of 
ertain out
omes.In 
omputer s
ien
es, neural networks have been one of the most popular te
h-niques for predi
tive model building, but the result is diÆ
ult to interpret.The third question is related to the spe
ial stru
ture of typi
al ophthalmol-ogy data sets and many other data sets. When analyzing data from a typi
alophthalmology study, we must take into a

ount the fa
t that the measure-ments made on both eyes of the same person are highly 
orrelated. Hen
e, we
an not treat them as independent out
omes. Multiple out
omes for the sameperson (or group) may also arise from two-period 
ross-over designs (Jones &Kenward 1989), twin studies (Cessie & Houwelingen 1994) and typi
al longitu-dinal studies. It is also of interest to model several 
losely related endpointssimultaneously. For example, in Liang, Zeger & Qaqish (1992), two endpointsfrom the Indonesian Children's Study, respiratory and diarrheal infe
tions were
onsidered in the same model. To address the third question, it is not enough



3to simply estimate the marginal distribution separately for individual out
omevariables. Instead, we want to treat those out
ome variables together and esti-mate their joint distribution. The dependen
e stru
ture 
an be useful for theeÆ
ient estimation of the mean values, or it 
an be of dire
t s
ienti�
 interest.Numerous s
hemes have been proposed to study it. For example, Cox (1972)expressed the likelihood fun
tion in terms of the multivariate exponential familydistribution. Qu, Williams, Be
k & Goormasti
 (1987) 
onsidered 
onditionallogisti
 models. M
Cullagh & Nelder (1989) proposed multivariate marginallogisti
 regression model. Lipsitz, Laird & Harrington (1991) and Williamson,Kim & Lipsitz (1995) 
onsidered marginal models and used the (global) oddsratio as a measurement of asso
iation. Liang et al. (1992) had a dis
ussionabout the di�eren
e between log-linear and marginal models. Molenberghs &Ritter (1996) proposed a likelihood based marginal model and established the
onne
tion with the se
ond order generalized estimating equations (GEE2).Classi
al log-linear models have been widely used to estimate joint 
ondi-tional probabilities. See Bishop, Fienberg & Holland (1975). People used toassume linear parametri
 forms for all the 
onditional logit fun
tions to be es-timated. However, it is not always adequate to make linear or even quadrati
or 
ubi
 assumptions. When the linear assumption is far away from the truth,the result obtained under su
h an assumption may even be misleading.On the other hand, the nonparametri
 approa
h 
an give us more 
exibility



4for model building. In the past time, one fa
t prevented nonparametri
 re-gression from wide appli
ation was the limited 
omputing resour
e. However,the 
omputing speeds of modern 
omputers have been improved dramati
ally,and they are equipped with mu
h larger high speed random a

ess memory(RAM) nowadays. Various new algorithms have also been developed to speedup the 
omputation. The nonparametri
 approa
h will be very useful when aparametri
 model is not suÆ
ient. In the mean time, it 
an also serve as anautomated diagnosti
 tool for parametri
 �tting. We will not review the generalliterature here, other than to note that the additive smoothing spline has beenused by Heagerty & Zeger (1998) and Lin & Zhang (1999) for this purpose.Heagerty & Zeger (1998) used log odds ratio as a measurement of dependen
eand smoothing splines with �xed degrees of freedom. Their model was �tted byusing Generalized Estimating Equation. Lin & Zhang (1999) proposed gener-alized additive mixed e�e
t model and used smoothing splines to estimate theadditive �xed e�e
t terms.Smoothing spline analysis of varian
e (SS-ANOVA) provides a general frame-work for multivariate nonparametri
 fun
tion estimation. It allows both maine�e
ts and intera
tion terms. These models have been studied extensively forGaussian data. Re
ently, Lin (1998b) obtained some general 
onvergen
e re-sults for tensor produ
t spa
e ANOVA model and showed that smoothing splineANOVA model a
hieves the optimal 
onvergen
e rate. Wahba, Wang, Gu, Kleinand Klein (1995, referred as WWGKK) gave a general setting for applying



5smoothing spline ANOVA to data from exponential families. They su

ess-fully applied their method to analyze demographi
 medi
al data with Bernoulliout
omes. Lin (1998a) proposed to use SS-ANOVA to model data with poly-
hotomous responses. Wang (1998a) developed mixed e�e
t smoothing splinemodel for 
orrelated Gaussian data. In this thesis, we will explore how to usesmoothing spline ANOVA to model 
orrelated multivariate Bernoulli data.We will 
ombine log-linear model and smoothing spline ANOVAmodel to ob-tain a partly 
exible estimate of the joint distribution for multivariate Bernoullidata. It is of parti
ular interest to us to explore the nonlinearity of the 
on-ditional logit fun
tions. Conditional log odds ratio will be used to model theasso
iation among multivariate Bernoulli out
omes. We will still let log oddsratio take a simple parametri
 form and estimate it by using maximum likeli-hood estimation. An extension of GACV proposed by Xiang & Wahba (1996)to multivariate responses will be used to 
hoose smoothing parameters. Wewill iteratively estimate the 
onditional logit fun
tions and log odds ratio until
onvergen
e.1.2 Outline of the ThesisIn Chapter 2, we will review the log-linear model for multivariate Bernoulliobservations and propose a smoothing spline ANOVA model to relax the para-metri
 assumption. The existen
e and uniqueness of the nonlinear solution isinvestigated.



6In Chapter 3, we dis
uss how to �t the penalized multivariate logisti
 re-gression model for a large data set. A numeri
al method 
ombining the blo
kone-step SOR-Newton-Ralphson algorithm and approximate smoothing splineis used to solve the variational problem for �xed smoothing parameters. Wealso proposed to use the iterated ranGACV for multivariate Bernoulli data tosele
t smoothing parameters adaptively. Simulation studies are 
ondu
ted toillustrate the reasonable performan
e of the proposed algorithm.In Chapter 4, we apply the proposed method to investigate the asso
iationbetween the pigmentary abnormalities and some risk fa
tors for women in theBeaver Dam Eye Study. Finally, some dis
ussions are given in Chapter 5.



7Chapter 2
Penalized Multivariate Logisti
Regression using SmoothingSpline ANOVA
2.1 Log-linear Model for Multivariate BernoulliDataAssuming there are J di�erent endpoints, and Kj repeated measurements forthe jth endpoint, let Yjk denote the kth measurement of the jth endpoint. Forexample, in ophthalmologi
al studies, we have two repeated measurement forea
h disease: left eye and right eye. In a typi
al longitudinal study, we haverepeated measurements over the time. Y = (Yjk; j = 1; :::; J; k = 1; :::; Kj) isa multivariate Bernoulli out
ome variable. Let Xjk = (Xjk1; Xjk2; :::; XjkD) bea ve
tor of predi
tor variables ranging over the subset X of RD, where Xjkddenotes the dth predi
tor variable for the kth measurement of the jth endpoint.Some predi
tor variables may take di�erent values for di�erent measurements



8while others may be the same for all Yjk's. For example, in ophthalmologystudies, there may be present both person-spe
i�
 predi
tors and eye-spe
i�
predi
tors. The person-spe
i�
 predi
tors are the same for ea
h person whilethe eye-spe
i�
 predi
tors may be di�erent for the left and right eyes. LetX = (Xjk; j = 1; :::; J; k = 1; :::; Kj). Then (X; Y ) is a pair of random ve
tors.For a response ve
tor y = (yjk; j = 1; :::; J; k = 1; :::; Kj), its joint probabilitydistribution 
onditioning on the predi
tor variables X 
an be written asP (Y = yjX) = expf JXj=1 KjXk=1 fjkyjk + JXj=1 Xk1<k2 �jk1;jk2yjk1yjk2+ Xj1<j2 Xk1;k2 �j1k1;j2k2yj1k1yj2k2 + :::+�11;12;:::;JKjy11y12::::yJKj � b(f; �)g (2.1.1)whereb(f; �) = log(1 +Xj;k exp(fjk) +Xj1;k1Xj2;k2 exp(fj1k1 + fj2k2 + �j1k1;j2k2)+::: + exp(Xall f f + Xall ��)) (2.1.2)Let M =PJj=1Kj be the length of the ve
tor Y , there are in total 2M � 1 pa-rameters: (f; �) = (f11; f12; :::; fJKj ; �11;12; :::; �11;12;:::;JKj), whi
h may dependon X. The parameter spa
e is un
onstrained. They have straightforward inter-pretations in terms of 
onditional probabilities. For example,fjk = logit(P (Yjk = 1jY (�jk) = 0; X)) (2.1.3)is the 
onditional logit fun
tion;�j1k1;j2k2 = logOR(Yj1k1 ; Yj2k2 jY (�j1k1;�j2k2) = 0; X) (2.1.4)



9is the 
onditional log odds ratio, whi
h is a meaningful way to measure pairwiseasso
iation; �j1k1;j2k2;j3k3= logOR(Yj1k1 ; Yj2k2jYj3k3 = 1; Y (�j1k1;�j2k2;�j3k3) = 0; X)� logOR(Yj1k1 ; Yj2k2jYj3k3 = 0; Y (�j1k1;�j2k2;�j3k3) = 0; X) (2.1.5)is measuring three way asso
iation. Here Y (��) denotes the subset of ve
tor Yex
ept Y�, and logit(p) = log p1� p; (2.1.6)OR(v; w) = P (v = 1; w = 1)P (v = 0; w = 0)P (v = 1; w = 0)P (v = 0; w = 1) : (2.1.7)Now assume that we have n independent observations (xi; yi); i = 1; :::; n,where yi = (yi11; yi12; :::; yiJKj) and xi = (xi11; xi12; :::; xiJKj). Here yijk andxijk = (xijk1; xijk2; :::; xijkD) are the out
ome variable and predi
tor ve
tor forthe kth measurement of the jth endpoint of the ith subje
t. From now on,we will use fi and �i to denote the parameters for the ith subje
t, while y =(y1; :::; yn), f = (f1; :::; fn) and � = (�1; :::; �n). We 
an write down the negativelog likelihood fun
tion based on the observed data.L(y; f; �) = nXi=1f JXj=1 KjXk=1 fijkyijk + JXj=1 Xk1<k2 �ijk1;ijk2yijk1yijk2+Xj1<j2 Xk1;k2 �ij1k1;ij2k2yij1k1yij2k2 + :::+�i11;i12;:::;iJKjyi11yi12::::yiJKj � b(fi; �i)g (2.1.8)



10We refer to equation (2.1.8) as the log-linear model for multivariate logisti
regression. fijk is the 
onditional logit fun
tion for the kth measurement of thejth endpoint of the ith subje
t. S
ienti�
ally, ex
ept for that they may takedi�erent predi
tor values from measurement to measurement, there is little rea-son to believe they will take di�erent fun
tional form for the same endpoint.Hen
e we 
an assume fijk = fj(xijk). Same reasoning applies to the asso
ia-tion terms. For example, we 
an assume �ij1k1;ij2k2 = �j1j2(xij1k1; xij2k2). Thetraditional parametri
 approa
h to �t the log-linear model is to assume linearrelation between the parameters and predi
torsfijk = fj(xijk) = �j0 + �j1xijk1 + :::+ �jDxijkD (2.1.9)and so on. The model 
an be �tted eÆ
iently by iterative proportional �tting(Bishop et al. 1975).In pra
ti
e, there are many ways to redu
e the number of parameters to beestimated. For example, under many situations, s
ienti�
 interest will be pri-marily fo
used on the 
onditional logit fun
tion fijk and log odds ratio �ij1k1;ij2k2 ,whi
h measures pairwise asso
iation. The existen
e of three way asso
iation�ij1k1;ij2k2;ij3k3 and higher order asso
iations are usually diÆ
ult to verify inpra
ti
al situations, and may attra
t less s
ienti�
 interest. Hen
e it is possi-ble to set all higher order asso
iations to be zero and only �t a parsimoniousmodel instead of the saturated one des
ribed in (2.1.8). The redu
ed model isa member of the quadrati
 exponential model in Zhao & Prenti
e (1990).



112.2 The Variational ProblemIn this thesis, we are interested in building 
exible log-linear models. We areparti
ularly interested in exploring the nonlinearity of the 
onditional logit fun
-tions fj's. On the other hand, sin
e it will take a very large number of obser-vations to estimate many multivariate smooth fun
tions simultaneously, thisapproa
h will still let the �'s take a simple parametri
 form. In this se
tion, tosimplify the notation, we will 
onsider a parsimonious model. Without loss ofgenerality, ex
ept for the pairwise asso
iation, we will assume all higher orderasso
iations to be zero. Then the negative log likelihood fun
tion 
an be writtenas L(y; f; �)= � nXi=1 li(f(xi); �(xi))= �Xi=1f JXj=1 KjXk=1 fj(xijk)yijk + JXj=1 Xk1<k2 �jj(xijk1 ; xijk2)yijk1yijk2+Xj1<j2 Xk1;k2 �j1j2(xij1k1 ; xij2k2)yij1k1yij2k2 � b(fi; �i)g (2.2.1)where b(fi; �i)= log(1 +Xj;k exp(fj(xijk))+Xj1;k1Xj2;k2 exp(fj1(xij1k1) + fj2(xij2k2) + �j1j2(xij1k1; xij2k2))+ � � �+ exp(Xj;k fj(xijk) +Xj1k1Xj2k2 �j1j2(xij1k1 ; xij2k2))) (2.2.2)



12We propose to use the penalized likelihoodmethod to a
hieve greater 
exibil-ity in log-linear models. To relax the linear assumption, the penalized likelihoodmethod (O'Sullivan 1983) only assumes the fun
tion to be estimated is smoothin some sense and imposes a 
ertain roughness penalty on the fun
tion. Te
hni-
ally, a reprodu
ing kernel Hilbert spa
e (RKHS) is a Hilbert spa
e of fun
tionson X in whi
h the evaluation fun
tional is 
ontinuous (Aronszajn 1950). Wewill then assume fj 2 Hj, where Hj is a reprodu
ing kernel Hilbert spa
e.The penalized multivariate logisti
 regression estimate of f = (f1; f2; :::; fJ) and� = (�11; �12; :::; �J;J) is the minimizer of the following variational problemL�(y; f; �) = � nXi=1 li(f(xi); �(xi)) + n2J�(f1; :::; fJ); (2.2.3)where the �rst part is the negative log likelihood and the se
ond part is theroughness penalty. We will assume additive form of the penalty fun
tion forsimpli
ity and easy interpretation:J�(f1; :::; fJ) = JXj=1 �jJj(fj) (2.2.4)We 
onsider the orthogonal de
omposition Hj = Hj0 � Hj1. Here Hj0 is�nite dimensional (the \parametri
" part, usually polynomials), and Hj1 (the\smooth" part) is the ortho-
omplement of Hj0 in Hj. The penalty fun
tion willonly be related to the smooth part of the fun
tion: Jj(fj) = jjP j1fjjj2, where P j1is the orthogonal proje
tion operator in Hj onto Hj1. The penalized likelihood



13has the following expression:L�(y; f; �) = � nXi=1 li(f(xi); �(xi)) + JXj=1 �jjjP j1fjjj2 (2.2.5)The following theorem will show the existen
e and uniqueness of the solutionto the variational problem (2.2.3). Denoting H0 = H10 � � � � � HJ0 be the nullspa
e of H1 � � � � � HJ with respe
t to the penalty fun
tion J�, the followingtheorem is true.Theorem 2.1 If the minimizer of (2.2.5) exists in H0, it uniquely exists inH1 � � � � � HJBefore we prove this theorem, we will �rst state two lemmas.Lemma 2.1 Let fijk denote fj(xijk) and �ij1k1;ij2k2 denote �j1j2(xij1k1; xij2k2).L(y; f; �) in (2.2.1) is a stri
tly 
onvex fun
tion of fijk's and �ij1k1;ij2k2 's.Proof We need to show the Hessian is positive de�nite. To simplify the no-tation, we will relabel Yi = (Yijk) to be (Yi1; :::; YiM), where M = PJj=1Kj.We simplify the notation for f 's and �'s similarly. From the property of ex-ponential families, we know the Hessian with respe
t to f 's and �'s is H =diagfH1; H2; :::; Hng, where Hi is the 
ovarian
e matrix of ~Yi = (Yi1; Yi2; :::;YiM ; Yi1Yi2; Yi1Yi3; :::; Yi;M�1YiM)T . Denoting ai = (ai1; ai2; :::; aiM ; ai12; ai13; :::;ai;M�1;M)T , if aTi Hiai = var(aTi ~Yi) = 0, then we have aTi ~Yi = 
onstant. We willshow ai must be a zero ve
tor. First, the 
onstant here must be zero sin
e we
an let all Yim's be zero. To show aim = 0, we will let Yim = 1 and the rest



14of ve
tor ~Yi be zeroes. Afterwards, to derive aim1m2 = 0, we will let the onlynonzero elements of the ~Yi ve
tor be Yim1 = 1; Yim2 = 1 and Yim1Yim2 = 1. Thisproof also extends to the saturated model.The following Lemma is Theorem 4.1 from Gu & Qiu (1993)Lemma 2.2 Suppose L(g) is a 
ontinuous and stri
tly 
onvex fun
tional in aHilbert spa
e H = H0 � H1, where H1 has a square norm J(g) and H0 is thenull spa
e of J(g) of �nite dimension. If L(g) has a minimizer in H0, thenL(g) + J(g) has a unique minimizer in H.Proof of Theorem 2.1De�ne
g(xi; j1; k1; j2; k2) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
fj(xijk); 1 � j = j1 = j2 � J;1 � k = k1 = k2 � Kj; fj 2 Hj�jj(xijk1; xijk2) 1 � j = j1 = j2 � J;1 � k1 < k2 � Kj�j1j2(xij1k1; xij2k2) 1 � j1 < j2 � J;1 � k1 � Kj1; 1 � k2 � Kj2

:
Let H = fg(xi; j1; k1; j2; k2) : xijk 2 X ; 1 � j1 � j2 � J; 1 � k1 � Kj1;1 � k2 � Kj2g. Then H is a Hilbert spa
e with square semi-norm J�(g) =J�(f1; : : : ; fJ). Let L�(g) = L(y; f; �). By Lemma 2.2, it suÆ
es to show thatL�(g) is 
ontinuous and stri
tly 
onvex in H. Continuity is obvious. Stri
t
onvexity follows from Lemma 2.1.



152.3 Smoothing Spline Analysis of Varian
eGiven a smooth multivariate fun
tion f on some domain X , we are interested inde
ompose it into some 
omponent fun
tions for the reason of easy interpreta-tion and model building. A general ANOVA type de
omposition is des
ribed inChapter 10 of Wahba (1990) and Wahba, Wang, Gu, Klein & Klein (1995). Tomake any de
omposition well de�ned, we assume thatM, a linear spa
e of fun
-tions of x (the model spa
e) whi
h we assume 
ontains f , 
an be de
omposedas a dire
t sum of its subspa
es.M = H0 �H1 � :::�Hq (2.3.1)Hen
e the de
omposition of any f 2 M into 
omponent fun
tions in thesesubspa
es is unique.A unique ANOVA type de
omposition 
an always be de�ned provided fsatis�es some measurability 
onditions. Let X (�) be a measurable spa
e. d��be a probability measure on X (�). De�ne the averaging operator E� on X =X (1) 
 � � � 
 X (D) as(E�)(x) = ZX (�) f(x1; x2; :::; xD)d��(x�) (2.3.2)Then the identity is de
omposed asI = Y� (E� + (I � E�))= Y� E� +X� (I � E�)Y� 6=� E� +X�<�(I � E�)(I � E�) Y
 6=�;� E
+:::+Y� (I � E�) (2.3.3)



16The 
omponents of this de
omposition generate the ANOVA de
ompositionof f in the following formf(x1; :::; xd) = �+ dX�=1 f�(x�) +X�<� f��(x�; x�) + :::+ f1;:::;D(x1; :::; xD);(2.3.4)where we have � = (Q� E�)f , f� = ((I � E�)Q� 6=� E�)f , f�� = ((I � E�)(I �E�)Q
 6=�;� E
)f , and so forth.The idea behind Smoothing Spline ANOVA is to 
onstru
t a Reprodu
ingKernel Hilbert Spa
e (RHKS) H of fun
tions on X so that the 
omponents ofthe SS-ANOVA de
omposition represent an orthogonal de
omposition of f inH. Let H(�) be an RKHS of fun
tions on X (�) with RX (�) f�(x�)d�� = 0 forf�(x�) 2 H(�), and let [1(�)℄ be the one dimensional spa
e of 
onstant fun
tionson X (�). Constru
t H as the tensor produ
t spa
eH = DYj=1(f[1(�)℄g � fH(�)g) = [1℄�X� H(�) �X�<�[H(�) 
H(�)℄� : : : (2.3.5)where [1℄ denotes the 
onstant fun
tion on X . With some abuse of notation,fa
tors of the form [1�℄ are omitted whenever they multiply a term of a di�erentform. Thus H(�) is a shorthand for [1(1)℄
� � �
[1(��1)℄
H(�)[1(�+1)℄
� � �
[1(D)℄(whi
h is a subspa
e of H). The 
omponents of the ANOVA de
omposition arenow in mutually orthogonal subspa
es of H. Note that the 
omponents willdepend on the measures d�� and these should be 
hosen in spe
i�
 appli
ation sothat the �tted mean, main e�e
ts, two fa
tor intera
tions, et
. have reasonableinterpretations.



17Next, H(�) is de
omposed into a parametri
 part and a smooth part, byletting H(�) = H(�)� �H(�)S , where H(�)� is �nite dimensional (the \parametri
"part) and H(�)S (the \smooth" part) is the ortho-
omplement of H(�)� in H(�).Elements of H(�)� are not penalized through the devi
e of letting J�(f�) =kP (�)S f�k2 where P (�)S is the orthogonal proje
tor onto H(�)S . Now [H(�) 
H(�)℄is a dire
t sum of four orthogonal subspa
es: [H(�) 
 H(�)℄ = [H(�)� 
 H(�)� ℄ �[H(�)� 
 H(�)S ℄ � [H(�)S 
 H(�)� ℄ � [H(�)S 
 H(�)S ℄. By 
onvention the elements ofthe �nite dimensional spa
e [H(�)� 
 H(�)� ℄ will not be penalized. Continuingthis way results in an orthogonal de
omposition of H into sums of produ
ts ofunpenalized �nite dimensional subspa
es, plus main e�e
ts \smooth" subspa
es,plus two fa
tor intera
tion spa
es of the form parametri

 smooth [H(�)� 
H(�)S ℄,smooth 
 parametri
 [H(�)S 
 H(�)� ℄ and smooth 
 smooth [H(�)S 
 H(�)S ℄ andsimilarly for three and higher fa
tor subspa
es.In pra
ti
e, the series of ANOVA de
omposition in (2.3.4) will be trun
atedat some point. Assuming that we have already de
ided whi
h subspa
es will bein
luded in our modelM(� H), we 
an regroup and write the model spa
e as in(2.3.1). Usually we will letH0 be a �nite dimensional spa
e 
ontaining fun
tionswhi
h are not going to be penalized. The norms on the 
omposite Hl; 1 � l � qare the tensor produ
t norms indu
ed by the norms on the 
omponent subspa
es,and jjf jj2 = jjP0f jj2 +Pql=1 jjPlf jj2, where Pl is the orthogonal proje
tor inM onto Hl. Now we 
an use RKHS methods to expli
itly impose roughnesspenalties. The smoothing spline ANOVA estimate of f in the Gaussian 
ase is



18the solution to the following variational problemminf2Mf nXi=1 (yi � f(xi))2 + n2 qXl=1 �ljjPlf jj2g: (2.3.6)The �rst term in (2.3.6) is the sum of squared residuals whi
h measures thegoodness of �t while the se
ond part is the penalty on roughness of the estimate.The �l's are smoothing parameters 
ontrolling the trade-o� between goodnessof �t and roughness. These smoothing parameters 
an be estimated from thedata by the generalized 
ross validation (GCV ) method or by the unbiased riskmethod (UBR) (see Wahba 1990).2.4 Penalized Log-linear Model using Smooth-ing Spline ANOVAWe will use tensor produ
t spa
e and Smoothing Spline ANOVA to obtain amultivariate fun
tion estimate based on the variational problem (2.2.3). It is adire
t generalization of (2.3.6) to multivariate Bernoulli observations.Assume that we have already 
hosen a model spa
eMj = Hj0�Pqjl=1Hjl forea
h 
onditional logit fun
tion fj in (2.2.3), we 
an rewrite (2.2.5) asminfj2Mj ;�j1j2f� nXi=1 li(f(xi); �(xi)) + n2 JXj=1 qjXl=1 �jljjP jl fjjj2g (2.4.1)The �rst part in (2.4.1) measures the goodness of �t while the se
ond partis roughness penalty in SS-ANOVA model. In the se
ond part, P jl denotesthe orthogonal proje
tor inMj onto the penalized subspa
e Hjl . The roughness



19penalty for that subspa
e is the squared norm de�ned on that subspa
e jjP jl f jj2.The �jl's are the smoothing parameters whi
h 
ontrols the bias-varian
e trade-o�. Larger smoothing parameters will for
e the estimate into the parametri
subspa
e while smaller ones will lead to more 
exible estimate.Let's de�ne jjf jj2�j = jjP j0f jj2 + qjXl=1 �jljjP jl fjjj2: (2.4.2)This is a modi�ed but topologi
ally equivalent norm on Mj. indexed by �j.Denoting the reprodu
ing kernel for the subspa
eHjl asso
iated with the originalnorm is Rjl , we 
an show that ��1jl Rjl is the RK for Hjl asso
iated with themodi�ed norm.The RK of the dire
t sum of orthogonal subspa
es is the sum of the individualRK's. The RK of the tensor produ
t spa
e is the produ
t of the RK's of the
omponent spa
es. Hen
e the 
omputation for ea
h Rjl is straightforward. Forexample, if RH(d1)� (�; �) and RH(d2)S (�; �) are the RK 
orresponding to the Hilbertspa
es H(d1)� and H(d2)S respe
tively, the RK 
orresponding to the tensor produ
tspa
e H(d1)� 
H(d2)S isRH(d1)� (xd1(i1); xd1(i2))RH(d2)S (xd2(i1); xd2(i2));where xu(v) denotes the uth 
oordinate of the vth design point. Consequently,it 
an be shown that the RK for Mj under the modi�ed norm is equal toRj;�j = Rj0(�; �) + qjXl=1 ��1jl Rjl (�; �): (2.4.3)



20In prin
iple any positive-de�nite fun
tion may play the role of a reprodu
ingkernel. Conditionally positive-de�nite fun
tions as o

ur in thin plate spline 
analso be a

ommodated. One of the most 
ommonly used penalty on [0; 1℄ is thesquare integral of the se
ond derivative R 10 (f 00(x))2dx. LetH denote the Sobolevspa
e ff jf; f 0absolutely 
ontinuous,f 00 2 L2g. We 
an de
ompose H into thedire
t sum of the unpenalized subspa
e H0 and the penalized subspa
e H1. Areprodu
ing kernel of H1 with respe
t to the above penalty fun
tion 
an bewritten as R(x; x0) = k2(x)k2(x0)� k4([x� x0℄); (2.4.4)here [�℄ takes the fra
tional part of a number andk1(x) = x� 1=2k2(x) = (k21(x)� 1=12)k4(x) = (k41(x)� k21(x)=2 + 7=240)=24: (2.4.5)Furthermore, we have the relationZ 10 ( d2dx2 ( nXi=1 
iR(x; xi)))2dx = nXi1=1 nXi2=1 
i1
i2R(xi1; xi2): (2.4.6)Let �1(x) = 1, �2(x) = k1(x), then H0 = spanf�1(x); �2(x)g. This penaltyfun
tion and reprodu
ing kernel is parti
ularly useful in biostatisti
al appli
a-tions. In pra
ti
e, we 
an always res
ale the original data points to the interval[0; 1℄.Next, we will show that the minimizer of the variational problem (2.4.1) isa
tually within a �nite dimensional linear spa
e.



21Theorem 2.2 The solution to (2.4.1) has the formfj(x) = �j(x)Tdj + �j(x)T 
j; (2.4.7)where 
j and dj are ve
tors of 
oeÆ
ients. Here f�jvgpjv=1 is a set of basisfun
tions spanning the null spa
e Hj0. �j(�)T = (�j1(�); � � � ; �jpj(�)). �j(�)T =(Rj;�j(x1j1; �); � � � ; Rj;�j(x1jKj ; �), Rj;�j(x2j1; �); � � � ; Rj;�j(xnjKj ; �)).Proof See Wahba (1990).The above theorem states the fa
t that the minimizer in an in�nite dimen-sional fun
tion spa
e is a
tually a linear 
ombination of a �nite number of basisfun
tions. Hen
e the 
omputation of the minimizer is feasible. Substituting(2.4.7) into (2.4.1), we 
an estimate 
i and di by minimizingI�(
; d; �)= � nXi=1 li(�1(xi)Td1 + �1(xi)T 
1; :::; �J(xi)TdJ + �J(xi)T 
J ;�11(xi); �12(xi); :::; �J;J(xi)) + n2 JXj=1 
jTQj;�j
j (2.4.8)where Qj;�j is an (nKj � nKj) matrix
Qj;�j = 0BBBBBBBB�

Qj;11 Qj;12 : : : Qj;1nQj;21 Qj;22 : : : Qj;2n... ... . . . ...Qj;n1 Qj;n2 : : : Qj;nn
1CCCCCCCCA : (2.4.9)



22The de�nition of the Kj �Kj submatrix Qj;i1i2 is as following
Qj;i1i2 = 0BBBBBBBB�

Rj;�j(xi1j1; xi2j1) Rj;�j(xi1j1; xi2j2) : : : Rj;�j(xi1j1; xi2jKj)Rj;�j(xi1j2; xi2j1) Rj;�j(xi1j2; xi2j2) : : : Rj;�j(xi1j2; xi2jKj)... ... . . . ...Rj;�j(xi1jKj ; xi2j1) Rj;�j(xi1jKj ; xi2j2) : : : Rj;�j(xi1jKj ; xi2jKj)
1CCCCCCCCA(2.4.10)Sin
e li's are not quadrati
, solution of (2.4.8) does not have a 
losed form. Inthe next 
hapter, we will dis
uss how to obtain the estimate numeri
ally. Whenthe sample size is large, an approximate solution instead of the exa
t one willbe obtained.



23Chapter 3
Fitting the PenalizedMultivariate Logisti
 Regression
3.1 Introdu
tionIn this 
hapter, we will dis
uss how to numeri
ally obtain the solution to thepenalized multivariate logisti
 regression. Te
hni
ally, Newton-Raphson algo-rithm 
an be used to obtain the solution be
ause it is a quadrati
 
onvergentalgorithm. However, the 
omputational burden is extremely heavy. The param-eters to be estimated a

ording to Theorem 2.2 is aboutPJj=1(pj +nKj). Con-sequently, the 
omplexity for one step in Newton-Ralphson iteration is aboutO((PJj=1(pj + nKj)3), and the memory required to store the matrix is aboutO((PJj=1(pj + nKj)2). To redu
e the 
omputational burden, two methods areproposed here. The �rst one (Se
tion 3.2) is an iterative method 
alled blo
kone-step SOR-Newton-Ralphson method. The 
onvergen
e is super-linear. The
omplexity for one iteration is about O(PJj=1(pj+nKj)3). We sa
ri�
e the 
on-vergent rate a little to redu
e the 
omputational 
omplexity in ea
h iteration.The se
ond method (Se
tion 3.4) is to obtain an approximate solution. Only a



24small number of basis fun
tions will be 
hosen for the �nal penalized regressionstep. It is shown in some spe
ial 
ase that the approximate solution by usinga subset of basis fun
tions 
an a
hieve the same statisti
al 
onvergen
e rate asthe exa
t solution.We will dis
uss a data-driven method to 
hoose smoothing parameters inSe
tion 3.5. For Gaussian data, two of the 
ommonly re
ognized methods arethe generalized 
ross validation (GCV ) and the unbiased risk (UBR) methods(Wahba 1990). For general exponential family, Wahba et al. (1995) used iteratedUBR method to 
hoose smoothing parameters. Xiang & Wahba (1996) pro-posed generalized approximate 
ross validation (GACV ). They reported thatGACV outperformed iterated UBR. This is further 
on�rmed in Lin (1998a).In this thesis, we will extend GACV to the 
ase of multivariate Bernoulli re-sponses. A randomized version for easy 
omputation is also proposed. Com-bined with the blo
k one-step SOR-Newton-Ralphson algorithm, GACV will beused to 
hoose smoothing parameters iteratively. Simulation studies show thatit is an ex
ellent 
omputational proxy for the Comparative Kullba
k-Leibler(CKL) distan
e.Bayesian \
on�den
e intervals" were �rst proposed for smoothing spline withGaussian data by Wahba (1983) and their properties were studied by Ny
hka(1988, 1990). Silverman (1985) provided another look at the Bayesian problem.Wahba et al. (1995) developed the 
omponentwise approximate Bayesian \
on-�den
e intervals" for the non-Gaussian SS-ANOVA model. In Se
tion 3.6, we



25will identify the penalized likelihood estimation for multivariate logisti
 regres-sion with a Bayesian problem. Based on this observation, approximate Bayesian\
on�den
e intervals" were proposed for 
ross-validated smoothing spline esti-mates.In the last se
tion, to demonstrate the reasonable performan
e of smoothingspline estimates, we will show results from some simulation studies.3.2 Blo
k One-Step SOR IterationWe will review how to use blo
k one-step Su

essive Overrelaxation (SOR)method to solve a large nonlinear system in this se
tion. Some 
onvergen
eproperties will also be dis
ussed.Assuming a large linear or nonlinear system we want to solve hasm equationsand m variables 8>>>><>>>>: f1(x1; � � � ; xm) = 0... ... ...fm(x1; � � � ; xm) = 0: (3.2.1)First let us assume this is a linear system. The Su

essive OverrelaxationMethod, or SOR, is devised by applying extrapolation to the Gauss-Seidelmethod. This extrapolation takes the form of a weighted average between theprevious iterate and the 
omputed Gauss-Seidel iterate su

essively for ea
h



26
omponent: x(k+1)i = !�x(k+1)i + (1� !)x(k)i (3.2.2)where �x(k+1)i is from a Gauss-Seidel iterate. This algorithm redu
es to Gauss-Seidel algorithm when the relaxation (extrapolation) fa
tor ! = 1.To derive the blo
k SOR method, we need regroup the unknown x = (x1; x2,� � � ; xm) into p groups (x1; x2; � � � ; xp). Correspondingly, the m equations arealso regrouped into p groups8>>>><>>>>: F1(x1; � � � ; xp) = 0... ... ...Fp(x1; � � � ; xp) = 0: (3.2.3)The updating formula for blo
k SOR algorithm is(xi)(k+1) = !(�xi)(k+1) + (1� !)(xi)(k) (3.2.4)where (�xi)(k+1) is the su

essive Gauss-Seidel update for the ith linear systemin (3.2.3)Fi((x1)(k+1); � � � ; (xi�1)(k+1); xi; (xi+1)(k); � � � ; (xp)(k)) = 0: (3.2.5)In ea
h iteration, we su

essively update the blo
k 
omponent of x by the abovemethod. This is repeated until some 
onvergen
e 
riteria is met.Now assuming that (3.2.1) is a nonlinear system. Hen
e in the updatingformula (3.2.4), the su

essive Gauss-Seidel solution (�xi)(k+1) of (3.2.5) 
an notbe obtained expli
itly. To solve the smaller nonlinear system (3.2.5), we need to



27use some iterative method like Newton-Ralphson method. In this 
ase, the pro-
ess to solve a nonlinear system is 
alled blo
k nonlinear SOR-Newton-Ralphsonmethod. See Ortega & Rheinboldt (1970) for details.To simplify the nonlinear algorithm, we may only run the Newton-Ralphsoniteration for one step to approximate the exa
t solution of (3.2.5), and use thatas (�xi)(k+1) in (3.2.4). This nonlinear SOR pro
ess is 
alled blo
k one-step SOR-Newton-Ralphson method. Spe
i�
ally, the updating formula (3.2.4) now hasthe following expression(xi)(k+1) = (xi)(k) � ! ��Fi�xi (y(k;i))��1 Fi(y(k;i)); (3.2.6)where y(k;i) = ((x1)(k+1); � � � ; (xi�1)(k+1); (xi)(k); � � � ; (xl)(k)):In the statisti
s literature, the nonlinear system usually arises from a mini-mization or maximization problem in whi
h we need to �nd a set of parametersto minimize (or maximize) a fun
tion. Spe
i�
ally, suppose we are going to�nd x 2 Rm to minimize a twi
e di�erentiable multivariate fun
tion g(x), thenthe updating formula for the blo
k one-step SOR-Newton-Raphson method willbe
ome (xi)(k+1) = (xi)(k) � ![r2iig(y(k;i))℄�1rig(y(k;i)); (3.2.7)where r2iig is the submatrix of the Hessian and rig is the sub-ve
tor of thegradient.



28In the next part, we will dis
uss some 
onvergen
e properties for the gen-eral blo
k nonlinear SOR and the blo
k one-step SOR-Newton method. De-�ne F 0(x) = D(x) � L(x) � U(x) to be the de
omposition of F 0(x) = �F=�xinto blo
k diagonal, stri
tly blo
k lower-triangular and stri
tly blo
k upper-triangular parts, where
D(x) = 0BBBBBBBB�

�F1�x1 0 � � � 00 �F2�x2 ...... . . . 00 � � � 0 �Fp�xp
1CCCCCCCCA : (3.2.8)

For ! > 0, letH!(x) = [D(x)� !L(x)℄�1[(1� !)D(x) + !U(x)℄: (3.2.9)The lo
al 
onvergen
e of the blo
k nonlinear SOR pro
edures is stated in thefollowing lemma. The proof of this lemma 
an be found in Ortega & Rheinboldt(1970).Lemma 3.3 (Lo
al Convergen
e and Rate of Convergen
e) Assume F :Rm ! Rm be 
ontinuously di�erentiable over a 
ompa
t set S0, and x� 2 S0su
h that F (x�) = 0. If D(x�) is nonsingular and �(H!(x�)) < 1, then thereexists an open ball S = S(x�; Æ) in S0 su
h that for any x0 2 S, both the Blo
knonlinear SOR and the Blo
k one-step SOR-Newton sequen
e 
onverge to x�,and they share the same 
onvergent fa
tor R1(xk; x�) = �(H!(x�)).We will state the global 
onvergen
e result in term of the minimization problem.



29Lemma 3.4 (Global Convergen
e) Assume g 2 C2(Rm) , r2g(x) > 0 andS0 = fxjg(x) � g(x0)g is bounded, then for suitable 
hosen relaxation parameter!, the iterative sequen
e from the blo
k one-step SOR-Newton method 
onvergesto the unique solution x�.The proof of the above lemma 
an be found in S
he
hter (1968). Fromthe above lemma, we 
an see that in general the blo
k one-step SOR-Newton-Raphson method with �xed ! is not guaranteed to 
onverge globally. In pra
-ti
e, we 
an either 
hange the initial value or tune the relaxation parameter tomake the algorithm 
onverge. The following lemma adapted from Varga (1984)
an be used to 
he
k the 
onditions for the lo
al 
onvergen
e.Lemma 3.5 Let A = D�E�ET be a symmetri
 positive de�nite matrix, andD is also positive de�nite. Denote H! = (D�!E)�1((1�!)D+!E). If D�!Eis nonsingular for 0 � ! � 2, then �(H!) < 1 for 0 < ! < 2.The following Corollary is from Lin (1998a). It is obtained by dire
tly applyingthe above lemma.Corollary 3.1 If A = D�E �ET is symmetri
 positive de�ne and D is blo
kdiagonal matrix, E is stri
tly blo
k lower triangular matrix. If D is nonsingular,then for 0 < ! < 2, we have �(H!) < 1.A

ording to Corollary 3.1, we note that if A is Hessian of a twi
e di�erentiable
onvex fun
tion, we will always have �(H!) < 1 for 0 < ! < 2. Spe
i�
ally, thelo
al 
onvergent property holds if we use blo
k nonlinear SOR-Newton-Raphson



30or blo
k one-step SOR-Newton-Raphson method to �nd the minimizer of a twi
edi�erentiable 
onvex fun
tion.3.3 ImplementationIn our implementation, we will keep �j1j2's as simple parametri
 forms. Con-sequently, we assume �j1j2's are depending on a set of parameters �'s, whi
hare to be estimated. Re
all fj depends on the 
oeÆ
ient ve
tors 
j and dj. Forsimpli
ity reason, ! will be taken to be 1. The blo
k one-step SOR-Newton-Ralphson algorithm for minimizing (2.4.8) is as following:�
jdj�  initial values , j = 1; :::; J�  initial valuesdo do j=1 to J�
jdj�  one-step Newton-Ralphson update for �
jdj�end�  Newton-Ralphson update for �until (
onvergen
e)Table 1: Blo
k one-step SOR-Newton-Ralphson AlgorithmNoti
e that we only utilize one-step updating formula for fj part in thisimplementation. Compared to the smoothing fun
tions fj's, the 
omputationalburden for the parametri
 part �'s is relatively low. Therefore, we de
ide to runthe Newton-Ralphson iteration until 
onvergen
e in ea
h step for �'s.



31Sin
e the implementation of updating �'s is straightforward, we will mainlydes
ribe how to update 
j and dj in ea
h step. To update 
j and dj, the onlyrelevant part of the likelihood in (2.2.1) islj(fj) = � nXi=1f KjXk=1 fj(xijk)yijk � b(fi; �i)g: (3.3.1)The only relevant penalty term in (2.4.8) isJj�j (fj) = n2 
jTQj;�j
j: (3.3.2)With some abuse of notations, let fijk = fj(xijk), bi = b(fi; �i) and Qj;�j = Qj.A

ording to the property of exponential family, the following relations are true�ijk= �bi�fijk = EYijk= (efijk +Xk3 6=k efijk+fijk3+�ijk;ijk3 +Xj3 6=jXk3 efijk+fij3k3+�ijk;ij3k3 + � � �+ePj3;k3 fij3k3+Pj3;k3Pj4;k4 �ij3k3;ij4k4 )=(1 +Xj3;k3 efij3k3 +Xj3;k3Xj4;k4 efij3k3+fij4k4+�ij3k3;ij4k4 + � � �+ePj3;k3 fij3k3+Pj3;k3Pj4;k4 �ij3k3;ij4k4 ) (3.3.3)wijk;ijk= �2bi�f 2ijk = V arYijk= �ijk(1� �ijk); (3.3.4)



32wijk1;ijk2= �2bi�fijk1�fijk2 = Cov(Yijk1; Yijk2)= E(Yijk1Yijk2)� EYijk1 � EYijk2 = �bi��ijk1;ijk2 � �ijk1�ijk2= (efijk1+fijk2+�ijk1 ;ijk2 + � � �+ ePj3;k3 fij3k3+Pj3;k3Pj4;k4 �ij3k3;ij4k4 )=(1 +Xj3;k3 efij3k3 +Xj3;k3Xj4;k4 efij3k3+fij4k4+�ij3k3;ij4k4 + � � �+ePj3;k3 fij3k3+Pj3;k3Pj4;k4 �ij3k3;ij4k4 )� �ijk1�ijk2: (3.3.5)We introdu
e the following notationsuijk = dljdfijk = �yijk + �ijk;uj = (u1j1; u1j2; :::; u1jKj ; u2j1; :::; unjKj)TWij = 0BBBBBBBB�
wij1;ij1 wij1;ij2 � � � wij1;ijKjwij2;ij1 wij2;ij2 � � � wij2;ijKj... ... . . . ...wijKj ;ij1 wijKj;ij2 � � � wijKj;ijKj

1CCCCCCCCA ;
Wj = diag(W1j;W2j; :::;Wnj);
Sj =

0BBBBBBBBBBBBBBB�
�j1(x1j1) �j1(x1j1) : : : �jpj(x1j1)... ... . . . ...�j1(x1jKj) �j1(x1jKj) : : : �jpj(x1jKj)�j1(x2j1) �j1(x2j1) : : : �jpj(x2j1)... ... . . . ...�j1(xnjKj) �j1(xnjKj) : : : �jpj(xnjKj)

1CCCCCCCCCCCCCCCA : (3.3.6)
To update 
j and dj, we only need to minimize part of the penalized likelihood



33in (2.4.8), whi
h is a summation of (3.3.1) and (3.3.2)Ij = � nXi=1f KjXk=1 fijkyijk � big+ n2 
jTQj
j: (3.3.7)Noti
e that in this expression, the smoothing parameters have already beenabsorbed into Qj. This is a 
onvex problem. A

ording to Theorem (2.1), theminimizer of the above equation has the representation fj = Sjdj +Qj
j. Herefj = (f1j1; f1j2; :::; f1jKj ; f2j1; :::; fnjKj)T and Sj de�ned above is the 
olle
tionof the parametri
 basis fun
tions in (2.4.7). For one-step Newton-Ralphsonupdating formula, we need the following derivatives�Ij�
j = Qjuj + nQj
j;�Ij�dj = STj uj;�2Ij�
j�
jT = QjWjQj + nQj;�2Ij�dj�djT = STj WjSj;�2Ij�
j�djT = QjWjSj: (3.3.8)Hen
e the Blo
k one-step SOR-Newton-Ralphson updating formula for 
o-eÆ
ients (
j; dj) is0B�
jdj1CA = 0B�
j�dj�1CA�0B�QjWj�Qj + nQj QjWj�SjSTj Wj�Qj STj Wj�Sj1CA�10B�Qjuj� + nQj
j�STj uj� 1CA ;(3.3.9)where the subs
ript minus indi
ates the quantities evaluated at the latest up-date. By rearranging the above formula, 
j and dj is the solution of the following



34linear system0B�QjWj�Qj + nQj QjWj�SjSTj Wj�Qj STj Wj�Sj1CA0B�
j � 
j�dj � dj�1CA = 0B��Qjuj� � nQj
j��STj uj� 1CA :(3.3.10)Another equivalent representation is0B�QjWj�Qj + nQj QjWj�SjSTj Wj�Qj STj Wj�Sj1CA0B�
jdj1CA = 0B�QjWj�fj� �Qjuj�STj Wj�fj� � STj uj�1CA : (3.3.11)A

ording to Theorem (2.1), fj = Sjdj + Qj
j is always unique as long asSj's are of full 
olumn rank. If Qj is nonsingular, the above linear systems areequivalent to0B�Wj�Qj + nI Wj�SjSTj 0 1CA0B�
jdj1CA = 0B�Wj�fj� � uj�0 1CA : (3.3.12)If Qj is singular, any solution to (3.3.12) is also a solution to (3.3.10) and(3.3.11). De�ne ~Qj = W 1=2j� QjW 1=2j� , ~Sj = W 1=2j� Sj, ~
j = W�1=2j� 
j, ~dj = dj and~~yj =W 1=2j� (fj� �W�1j� uj�), (3.3.12) 
an be simpli�ed as8><>: ( ~Qj + nI)~
j + ~Sj ~dj = ~~yj~STj ~
j = 0 (3.3.13)It is easy to see that the solution of (3.3.12) gives the minimizer of1n nXi=1 ( ~~yij �W 1=2ij�fij)T ( ~~yij �W 1=2ij�fij) + ~
jT ~Qj~
j= 1n nXi=1 (~yij � fij)TWij�(~yij � fij) + 
jTQj
j: (3.3.14)



35With abuse of notations, we use uij to denote (uij1; :::; uijKj)T and fij to de-note (fij1; :::; fijKj)T , et
. ~yij = fij� �W�1ij�uij� are 
alled the pseudo-data.The blo
k one-step SOR-Newton-Ralphson pro
edure iteratively reformulatesthe problem to estimate fj from the pseudo-data by weighted penalized leastsquares.The following theorem will show the pseudo-data approximately have theusual data stru
ture if fj� are not far away from fj. This observation will laterbe used to 
onstru
t the approximate Bayesian 
on�den
e intervals.Theorem 3.3 For �xed j, if jfijk� � fijkj = o(1) uniformly in i = 1; 2; :::; nand k = 1; :::; Kj, j�� � �j = o(1) uniformly, �j(x) is uniformly bounded awayfrom 0 and 1, �'s are uniformly bounded away from �1 and 1, then~yij = fij + �ij + op(1)where �ij = (�ij1; :::; �ijKj)T has mean 0 and 
ovarian
e matrix W�1ij , and�1j; � � � ; �nj are independent.Proof Denote E(yijk) = �ijk, V ar(yij) = Wij and uij = �yij+�ij. Here �ijk isthe shorthand for �j(xijk). Then we have E(W�1ij uij) = 0 and V ar(W�1ij uij) =W�1ij . Take the di�eren
e
 = (fij� �W�1ij�uij�)� (fij �W�1ij uij)= (fij� � fij)� (W�1ij�(�yij� + �ij�)�W�1ij (�yij + �ij))The expe
tation of 
 is (fij�� fij)�W�1ij�(�ij���ij). Sin
e �j(x) is uniformlybounded away from 0 and 1, �'s are uniformly bounded away from �1 and



361, it is easy to see that fijk's are also uniformly bounded away from �1and 1. From jfijk� � fijkj = o(1), j�� � �j = o(1) uniformly, we also havej�ijk� � �ijkj = o(1) uniformly. The element of Wij� also 
onverges to the
orresponding element of Wij uniformly jwijk1;ijk2� � wijk1;ijk2j = o(1).Next, we will show there exist two 
onstants 0 < 
1 < 
2 < 1 su
h thatall eigenvalues of Wij are in the interval (
1; 
2). Wij as a 
ovarian
e matrix ispositive de�nite. All of its eigenvalues are positive. Its tra
e is less than Kj=4.Note the tra
e of a matrix equals the summation of all of its eigenvalues. Hen
eits largest eigenvalue is also less than Kj=4. The smallest eigenvalue of Wij asa fun
tion of f and � is 
ontinuous and always greater than zero. Its domain(F ;A) is bounded and 
losed hen
e a 
ompa
t set. There exists 
1 > 0 su
hthat the smallest eigenvalue of Wij is greater than 
1 for all (f; �) 2 (F ;A).Hen
e for n > n1 (n1 does not depend on f and �), the smallest eigenvalueof Wij� is also greater than 
1=2. Consequently the largest eigenvalue of W�1ij�is bounded away from 1. As a result, we have E(
) = o(1). Meanwhile,V ar(
k) < tr(Cov(
)) < KjjjCov(
)jj. And for n > n1,jjCov(
)jj = jj(W�1ij� �W�1ij )Wij(W�1ij� �W�1ij )jj= jjW�1ij�(Wij �Wij�)W�1ij �Wij �W�1ij (Wij �Wij�)W�1ij�jj� jjW�1ij�jj2 � jjW�1ij jj � jjWij �Wij�jj2� 4
31 jj(Wij �Wij�)2jj� 4
31 tr(Wij �Wij�)2 = o(1): (3.3.15)



37Hen
e the diagonal elements of Cov(
) go to zero uniformly. Consequently,~yij = fij� �W�1ij�uij� = fij �W�1ij uij + 
 = fij + �ij + op(1);where �ij = �W�1ij uij has mean 0 and 
ovarian
e matrix W�1ij . The indepen-den
e of �ij's follows from the independen
e of yij's.All of the previous dis
ussions assume no spe
ial stru
ture in the designpoints. The algorithm is spe
i�
ally designed to handle the unstru
tured 
ase.However, when spe
ial stru
ture is available, the above algorithm 
an be simpli-�ed. One 
ommon 
ase is the presen
e of person-spe
i�
 
ovariates only. Hen
exijk = xij for all k = 1; :::; Kj. Similarly fijk = fj(xijk) = fj(xij) = fij. Toupdate fj, the part of the penalized likelihood needs to be minimized has thesimpli�ed form Ij = � nXi=1f( KjXk=1 yijk)fij � big+ n2 
jTQj
j: (3.3.16)Now de�ne
Qj = 0BBBBBBBB�

Rj;�j(x1j; x1j) Rj;�j(x1j; x2j) : : : Rj;�j(x1j ; xnj)Rj;�j(x2j; x1j) Rj;�j(x2j; x2j) : : : Rj;�j(x2j ; xnj)... ... . . . ...Rj;�j(xnj; x1j) Rj;�j(xnj; x2j) : : : Rj;�j(xnj; xnj)
1CCCCCCCCA ;

Sj = 0BBBBBBBB�
�j1(x1j) �j2(x1j) : : : �jpj(x1j)�j1(x2j) �j2(x2j) : : : �jpj(x2j)... ... . . . ...�j1(xnj) �j2(xnj) : : : �jpj(xnj)

1CCCCCCCCA : (3.3.17)



38The minimizer of (3.3.16) has the representation fj = Sjdj +Qj
j, too. Denoteyij =PKjk=1 yijk, �ij = E(PKjk=1 Yijk),Wij = V ar(PKjk=1 Yijk), uij = �PKjk=1 yijk+�ij and uj = (u1j; u2j; � � � ; unj)T . Ex
ept for the above 
hanges, all of the pre-vious formulae and dis
ussions remain true. But in the ea
h iteration, we onlyneed to solve an n� n system instead of an (nKj � nKj) one.3.4 Approximate Smoothing Spline for LargeData SetsAs mentioned before, in ea
h blo
k-one-step SOR-Newton-Ralphson iteration,we need about O(n3) 
omputing time and O(n2) memory spa
e. However, the\true" fun
tion fj to be estimated may not be very \
omplex". Hen
e it may bewell approximated in the span of a mu
h smaller subset of the basis fun
tions.Therefore, this approa
h will take mu
h smaller 
omputer memory and shorterrunning time. This approa
h is parti
ularly useful for analyzing medi
al data,where the underlying truth is believed to be quite \smooth".3.4.1 An Approximate SolutionTo obtain an approximate solution, a subset of basis fun
tions needs to be 
hosen
arefully. The variational problem is then solved in this lower dimensionalsubspa
e. This approa
h was proposed by Wahba (1980) for thin-plate splines.Luo & Wahba (1997) proposed hybrid adaptive spline. Xiang (1996) proposed



39to use 
lustering method to 
hoose the subset of basis fun
tions. We will followXiang's approa
h here for sele
ting basis fun
tions.The basis fun
tion �jijk(�) = Rj;�j(xijk; �) in (2.4.7) is the representer of designpoint xijk in the Reprodu
ing Kernel Hilbert Spa
e M1j . Usually, when thedesign points are 
lose, their representers are also very 
lose. Hen
e, whenthe data set is large, it is very likely that lots of the basis fun
tions will benearly linearly dependent. On the other hand, if by some \prior" knowledge,it is believed that the stru
ture of the true fj is not very 
ompli
ated, then itmay be well approximated by a small number of basis fun
tions. As a result,if we sele
t the design points having maximum separation, their 
orrespondingrepresenters are expe
ted to have less 
orrelation.Considering this problem from another point of view, the obje
t is to groupdesign points into several groups. Ideally, those groups should be spa
ed as faras possible from ea
h other. Thus, we 
an borrow the 
lassi
al 
luster analysiste
hnique to solve this problem. There are many algorithms for 
lustering thedata. Even though there is no natural separation among design points in our
ase, we still 
an for
e the algorithm to run. SAS pro
edure FASTCLUS isdesigned for the disjoint 
lustering of very large data sets in minimum time. Wewill use it to separate the data sets into several 
lusters. Within ea
h 
luster,we randomly sele
t the representer of one data point to form the approximatingsubspa
e.Hen
e, as an iterative pro
edure, the algorithm for approximate spline is



40as follows. When the number of basis fun
tions V in
reases, the approximatesolution 
onverges to the exa
t solution.V  initial valuedo Cluster the data points into V groupsRandomly sele
t one data point from ea
h groupGenerate the 
orresponding basis fun
tionsfj  initial values, j = 1; 2; :::; J�  initial valuesdo do j = 1 to Jfj  updated values in the approximating subspa
eend�  Newton-Ralphson update for �until (
onvergen
e)V  2� Vuntil ( jjfnew�foldjjjjfoldjj < pre
1 and jj�new��oldjjjj�oldjj < pre
2 )Table 2: Iterative Algorithm for Approximate SplineHere pre
1 and pre
2 are pre-spe
i�ed thresholds. We suggest that the initialvalue for V be at least 25. The above algorithm usually 
onverge very rapidly.From our experien
e, for medi
al data, 50 to 100 basis fun
tions usually yieldvery good approximation.Next, we will dis
uss the blo
k one-step SOR updating formula for approx-imate spline. Assume for �xed V , we have sele
ted V data points, whi
hare indexed as xj;v for v = 1; :::; V . Their 
orresponding basis fun
tions are�j;v(�) = Rj;�j(xj;v; �). We will still use Sj to denote the 
olle
tion of basis



41fun
tions for parametri
 subspa
e. For approximating smooth subspa
e, denote
Qj;V = 0BBBBBBBB�

�j;1(x1j1) �j;2(x1j1) � � � �j;V (x1j1)�j;1(x1j2) �j;2(x1j2) � � � �j;V (x1j2)... ... . . . ...�j;1(xnjKj) �j;2(xnjKj) � � � �j;V (xnjKj)
1CCCCCCCCA ;

Q�j;V = 0BBBBBBBB�
�j;1(xj;1) �j;2(xj;1) � � � �j;V (xj;1)�j;1(xj;2) �j;2(xj;2) � � � �j;V (xj;2)... ... . . . ...�j;1(xj;V ) �j;2(xj;V ) � � � �j;V (xj;V )

1CCCCCCCCA : (3.4.1)
Let 
jV = (
j;1; 
j;2; :::; 
j;V )T . With abuse of notation, the approximate solutionhas the representation fj = Sjdj +Qj;V 
jV . It is easy to verify that the penaltyfor fj has the quadrati
 form jjP1fjjj2�j = 
jV TQ�j;V 
jV . Therefore, to update fj,the variational problem is to minimizeIj;V = � nXi=1f KjXk=1 fijkyijk � big+ n2 
jV TQ�j;V 
jV : (3.4.2)The one-step updating formula 
orresponding to (3.3.10) is to solve0B�QTj;VWj�Qj;V + nQ�j;V QTj;VWj�SjSTj Wj�Qj;V STj Wj�Sj 1CA0B�
jV � 
jV�dj � dj� 1CA = 0B��QTj;V uj� � nQ�j;V 
jV��STj uj� 1CA :(3.4.3)In pra
ti
e, it is highly possible that the 
oeÆ
ient matrix of the linear sys-tem (3.4.3) would be 
omputationally singular even if it is nonsingular in theory.In order to obtain a numeri
ally stable solution, QR fa
torization with pivoting



42is performed. In the meantime, a 
uto� parameter � (su
h as the ma
hine pre-
ision times the largest absolute diagonal element of the R matrix) is spe
i�ed.Let rii denote the diagonal element of the R matrix in the QR de
omposition.Whenever jriij < � , the 
orresponding solution in the 
oeÆ
ients ve
tor 
jV isset to be zero.3.4.2 The Convergen
e RateIn this se
tion, we will prove in a spe
ial 
ase, to a
hieve the same statisti
al
onvergen
e rate, the approximate spline only need a small portion of the basisfun
tions 
ompared to the exa
t solution. More general result is also believedto be true and it is one of my future resear
h topi
.The spe
ial 
ase treated here is the one dimensional smoothing spline esti-mate for Gaussian data. The 
lassi
al variational problem to be solved isminf 1n nXi=1 (yi � f(xi))2 + �jjP1f jj2: (3.4.4)It is well known that for the penalty fun
tion jjP1f jj2 = R 10 f (m)(x)2dx, forroughly equally spa
ed data on (0; 1), the statisti
al 
onvergen
e rate for smooth-ing spline estimate is Op(n� 2m2m+1 ). We will demonstrate that in order to mat
hthe same 
onvergen
e rate, V , the number of basis fun
tions in the approximat-ing spa
e, only need to grow at a rate of O(n 2m(2m+1)(2m�1) ). This is a mu
h smallernumber 
ompared to n when n is large. The proof is based on the following twolemmas. However, these lemmas are more general. They do not require the onedimensional assumption.



43Assume the fun
tional spa
e 
an be de
omposed into the dire
t sum of aparametri
 subspa
e and a smooth subspa
e. H = H0 � H1. We will use thefollowing notations. Let the 
olumns of S be the parametri
 basis fun
tions inH0, the 
olumns ofQ be the smooth basis fun
tions whi
h are the representers ofthe evaluation fun
tionals of all data points in H1. Hen
e the solution of (3.4.4)lies in the �nite dimensional spa
e spanfS;Qg. Let QV denote the 
olle
tion of asubset of all basis fun
tions in Q. The approximating subspa
e is spanfS;QV g.We will use P1 to denote the proje
tion into H1 under the original norm jj � jj.PV � is the proje
tion into the approximating subspa
e spanfS;QV g under themodi�ed norm jj � jj�. We will use < �; � > to denote the inner produ
t indu
edby the original norm while < �; � >� is used to denote the inner produ
t indu
edby the modi�ed norm.The following lemma shows given the exa
t solution, how to 
al
ulate theapproximate solution.Lemma 3.6 For �xed �, denote f = Sd+Q
 to be the exa
t solution of the vari-ational problem (3.4.4). De�ne a new norm jjf jj2� = 1nPni=1 f(xi)2 + �jjP1f jj2.The approximate spline solution of (3.4.4) in the subspa
e spanfS;QV g is f� =PV �(f), where PV � denotes the proje
tion into the subspa
e spanfS;QV g underthe norm jj � jj�.Proof It is easy to 
he
k jj � jj� is a valid norm in the spa
e spanfS;Qg. Underthis norm, we have the following de
omposition f = f����, where < f�; �� >�=



440. Hen
e, 1n nXi=1 (yi � f(xi))2 + �jjP1f jj2= 1n nXi=1 y2i � 2n nXi=1 yif(xi) + 1n nXi=1 f(xi)2 + �jjP1f jj2= 1n nXi=1 y2i � 2n nXi=1 yif(xi) + jjf jj2�= 1n nXi=1 y2i � 2n nXi=1 yi(f�(xi) + ��(xi)) + jjf�jj2� + jj��jj2�= (1n nXi=1 y2i � 2n nXi=1 yif�(xi) + jjf�jj2�)+( 1n nXi=1 y2i � 2n nXi=1 yi��(xi) + jj��jj2�)� 1n nXi=1 y2i= (1n nXi=1 y2i � 2n nXi=1 yif�(xi) + 1n nXi=1 f�(xi)2 + �jjP1f�jj2)+( 1n nXi=1 y2i � 2n nXi=1 yi��(xi) + 1n nXi=1 ��(xi)2 + �jjP1��jj2)� 1n nXi=1 y2i= (1n nXi=1 (yi � f�(xi))2 + �jjP1f�jj2)+( 1n nXi=1 (yi � ��(xi))2 + �jjP1��jj2)� 1n nXi=1 y2i (3.4.5)Therefore if f is the minimizer of (3.4.4) in spanfS;Qg, then f� must be theminimizer of (3.4.4) in spanfS;QV g, �� must be the minimizer of (3.4.4) in inH�, where spanfS;Qg = spanfS;QV g � H� w.r.t. the norm jj � jj�.



45The next lemma gives an easy to handle upper bound for the di�eren
e ��appeared in the above lemma.Lemma 3.7 For �xed �, suppose f is the exa
t solution of (3.4.4), f� = PV �(f)is the approximate solution in the subspa
e spanfS;QV g, let f � = PV (f) wherePV is the proje
tion of f into the subspa
e spanfS;QV g under the original normjj � jj. Let �� = f � f �, �� = f � f�, we have the following relation:1n nXi=1 ��(xi)2 � 1n nXi=1 ��(xi)2Proof From Lemma 3.6, we know that f� = PV �f . Sin
e f = f� + ��, let��0 = PV (��) and ��1 = �� � ��0, then f = (f� + ��0) + ��1, where (f� + ��0) 2spanfS;QV g, ��1 is orthogonal to spanfS;QV g under the original norm jj � jj.Hen
e by a di�erent way, we obtain the same de
omposition as f = f � + ��.Therefore, a
tually ��1 = �� and �� = ��0 � �� under the original norm. Thuswe 
on
lude jj��jj2 � jj��jj2. In fa
t, jjP1(��)jj2 � jjP1(��)jj2 is also true sin
eP1(��) = P1(��0)� P1(��) under the original norm.Similarly, we have jj��jj2� � jj��jj2�. By 
ombining these two fa
ts, we have1n nXi=1 ��(xi)2 + �jjP1(��)jj2 � 1n nXi=1 ��(xi)2 + �jjP1(��)jj2jjP1(��)jj2 � jjP1(��)jj2 (3.4.6)Hen
e (1=n)Pni=1 ��(xi)2 � (1=n)Pni=1 ��(xi)2.Before we prove the next theorem, we will review some basi
 properties ofthe proje
tion f �.



46Let Q = (�1; �2; :::; �n). Without loss of generality, let QV = (�1; �2; :::; �V )be the 
olle
tion of �rst V 
olumns in Q. �i is the representer of the evaluationfun
tional of the ith data point in the reprodu
ing kernel Hilbert spa
e H1.�i = P1�i, where �i is the representer of the evaluation fun
tional of the ithdata point in the reprodu
ing kernel Hilbert spa
e H. Hen
e for any fun
tionf 2 H, f(xi) =< f; �i > and P1f(xi) =< f; �i >.In the above lemma, f is de
omposed into the dire
t sum of f � and ��,where �� is orthogonal to the approximate subspa
e spanfS;QV g. Hen
e, wehave < �i; �� >= 0 for i = 1; 2; :::; V . Meanwhile, sin
e �� 2 H1,��(xi) =< �i; �� >=< �i; P1�� >=< P1�i; �� >=< �i; �� >= 0:Hen
e the values of f at the data point xi (1 � i � V ) remain un
hanged afterthe proje
tion. However, jjP1f �jj � jjP1f jj. Intuitively, f � is smoother than f .Some detail is lost during the proje
tion, while the values of f on 
ertain 
hosendesign points are preserved. So it raises an interesting question as how to sele
ta good subset of representers.In the following proof, without any knowledge of the underlying true fun
-tion, we will sele
t V roughly equally spa
ed design points in [0; 1℄.Theorem 3.4 Assume f 2 W2[0; 1℄ and jjP1f jj2 = R 10 [f 00(x)℄2dx. For n roughlyequally spa
ed design points, by sele
ting V basis fun
tions 
orresponding to Vroughly equally spa
ed design points, we only need V = O(n 415 ) to a
hieve thesame 
onvergen
e rate as the exa
t 
ubi
 spline estimate.



47Proof Let f be the exa
t solution. f = f � � ��, where �� is orthogonal tospanfS;QV g. Hen
e, we have ��(xi) = 0 for i = 1; 2; :::; V . Without loss ofgenerality, we assume xi � i=V for 1 � i � V .The following relation is true for any xi � a � b � xi+1, i = 0; 2; :::; V � 1,Z xi+1xi ��00(x)2dx � Z ba ��00(x)2dx � �Z ba ��00(x)dx�2 = (��0(a)� ��0(b))2:(3.4.7)Sin
e ��(xi) = 0 for i = 1; 2; :::; V and � is smooth, there must be some pointb 2 (xi; xi+1) su
h that ��0(b) = 0. Therefore, for any point a 2 (xi; xi+1), wehave ��0(a)2 � R xi+1xi ��00(x)2dx. Combining with the fa
t ��(xi) = 0, we have��(a)2 � � 1V �2� maxx2(xi;xi+1) ��0(x)�2 � � 1V �2 Z xi+1xi ��00(x)2dx (3.4.8)for all a 2 (xi; xi+1). Consequently,1n nXi=1 ��(xi)2dx = 1n VXi=1 0� Xxi<xj<xi+1 ��(xj)21A� 1n VXi=1 nV � 1V �2 Z xi+1xi ��00(x)2dx= 1V 3 Z 10 ��00(x)2dx� 1V 3 Z 10 f 00(x)2dx (3.4.9)Meanwhile, we know when n is large, R 10 f 00(x)2dx is bounded in probability bysome 
onstant. Hen
e, to mat
h the same 
onverge rate of 
ubi
 spline O(n�4=5),we only need 1V 3 = O(n�4=5). Hen
e, it is suÆ
ient for V = O(n4=15).



48From Lemma 3.7, we know that �� is an upper bound for ��, whi
h is thedi�eren
e between the exa
t solution and the approximate solution. Hen
e theresult is proved.The following 
orollary extends the above result to f 2 Wm, m � 2 
ase.Corollary 3.2 For f 2 Wm[0; 1℄, let the penalty J(f) = R 10 f (m)(x)2dx. Forroughly equally spa
ed design points on [0; 1℄, to mat
h the same 
onvergen
erate rate as the exa
t solution, V only needs to grow at a rate of O(n 2m(2m+1)(2m�1) ).Proof Noti
e that there will be a point su
h that �� has zero ith derivative(1 � i � m) with i adja
ent intervals separated by the grid points x1; x2; :::; xV .Hen
e the maximum absolute value of �� within the interval (xi; xi+m�1) isbounded. maxxi<x<xi+m�1 ��(x)2 � (m� 1V )2 maxxi<x<xi+m�1 ��0(x)2 � � � �� (m� 1V )2(m�1) maxxi<x<xi+m�1 ��(m�1)(x)2� (m� 1V )2(m�1) Z xi+m�1xi f (m)(x)2dx (3.4.10)The proof of the above theorem extends immediately here. To a
hieve the same
onvergen
e rate, we must have1V �m� 1V �2(m�1) = O(n 2m2m+1 ):Therefore, V = O(n 2m(2m+1)(2m�1) ).



493.5 Adaptive Choi
e of the Smoothing Param-etersSo far, all smoothing parameters are 
onsidered as �xed. When � is small,the estimate tends to follow the data and hen
e appears to be wiggly. Theestimated value has small bias but large varian
e. As � ! 1, fj is for
edinto the null spa
e Hj0 of the penalty fun
tion, whi
h is usually a parametri
spa
e. Hen
e it has small varian
e but large bias. When � varies, we have afamily of 
exible models. Tuning the smoothing parameters manually in lowdimensional situations may be possible. Alternatively, pre-spe
i�ed generalizeddegrees of freedom may be useful. However, to make this method more pra
ti
al,an automated data-driven method to 
hoose smoothing parameters is highlydesirable.3.5.1 Comparative Kullba
k-Leibler Distan
eCertain risk fun
tion has to be 
hosen to measure the average 
loseness of anestimator to the truth. In Gaussian 
ase, a popular 
hoi
e is the expe
tedsquared loss fun
tion. L(�; �̂) = E�(�̂� �)2: (3.5.1)Here, the observed data are distributed as N(�; �2) with �2 known. It 
an beshown the above loss fun
tion is in fa
t a spe
ial 
ase of the more general so
alled Kullba
k-Leibler distan
e.



50Let p(y) denote the true density fun
tion to be estimated. p̂(y) is our esti-mated density fun
tion. The Kullba
k-Leibler distan
e is de�ned byKL(p; p̂) = Ep log�p(y)p̂(y)� : (3.5.2)where Ep denotes the expe
tation under the truth p. Note the Kullba
k-Leiblerdistan
e is not a distan
e in fa
t sin
e it is not symmetri
. The 
omparativeKullba
k-Leibler distan
e CKL is de�ned byCKL(p; p̂) = KL(p; p̂)� Ep log p(y)= �Ep log p̂(y); (3.5.3)whi
h di�ers from the Kullba
k-Leibler distan
e by a quantity whi
h does notdepend on the estimator. One way to look at the 
omparative Kullba
k-Leiblerdistan
e is to view it as the expe
ted negative log-likelihood based on the esti-mated density fun
tion. To minimize the CKL distan
e is equivalent to maxi-mize the expe
ted log-likelihood for the future observations.In many pra
ti
al problems, ex
ept for the observed out
ome variable yi, wealso observe a set of 
ovariates xi 2 X � RD, whi
h 
an be used as predi
tors.Considering the random pair (Yi; Xi), we are interested in estimating the 
on-ditional probability p(yjx). Hen
e, 
onditioning on the value of X, the CKLdistan
e of p(yjX) and p̂(yjX) isCKL(p; p̂jX) = �Ep (log p̂(yjX)jX)= � Z log p̂(yjX)p(yjX)dy (3.5.4)



51Hen
e, the obje
t fun
tion desired to be minimized should be the expe
tationof CKL(p; p̂jX) with respe
t to XE(CKL(p; p̂jX)) = �E(Ep(log p̂(yjX)jX))= � Zx�Zy log p̂(yjx)p(yjx)dy�p(x)dx= � Zx Zy log p̂(yjx)p(y; x)dydx: (3.5.5)Unfortunately, this quantity is unknown if we do not know the true p(y; x).If we have n pairs of observed data (yi; xi), a 
onsistent estimate of the abovequantity isCKL = 1n nXi=1 Ep(log p̂(yjxi)jxi) = 1n nXi=1 Zy log p̂(yjxi)p(yjxi)dy: (3.5.6)This expression is useful when we are not interested in the distribution of X.However, it still depends on the unknown quantity p(yjxi). Therefore, it is de-sired to have a good estimate or proxy for it. In the Gaussian 
ase, we 
an showthat the UBR and AIC 
riterias are equivalent to the unbiased risk estimatesfor the above quantities. For 
omplex modeling pro
edures, Ye (1998) de�nesthe generalized degrees of freedom (GDF ), and by an interesting theorem showsthat it is the key to model �tting and sele
tion when the goal is to minimize theCKL. The GDF generalizes the degrees of freedom for signal for the Gaussianpenalized likelihood estimates, given in Wahba (1983). Interesting examplesof Gaussian Case are given in Ye (1998), where randomization te
hniques areused in the estimation pro
ess. However, for Bernoulli data, it is known thatno exa
t unbiased risk estimate exists (Wong 1992). Thus we 
an only have



52approximately unbiased estimates. This, no doubt, explains why smoothingparameter sele
tion with Bernoulli data has resisted a �nal, de�nitive answerso far.Xiang & Wahba (1996) proposed the generalized approximate 
ross valida-tion (GACV ). Simulation studies show that it is an ex
ellent 
omputationalproxy for CKL distan
e. We will give a heuristi
 argument here to supportthis observation. For Bernoulli out
omes, the CKL distan
e has the form(1=n)Pni=1(��if̂i + b(f̂i)), where f̂i is the estimated logit fun
tion for the ithobservation. However, the true mean �i is unknown. One approa
h is to sub-stitute it with the observed yi and 
al
ulate OBS = (1=n)Pni=1(�yif̂i + b(f̂i)),whi
h is the observed negative log-likelihood fun
tion for f̂ . But it is wellknown that OBS tends to underestimate CKL be
ause that yi and f̂i areusually positively 
orrelated for any meaningful modeling pro
edure. Hen
eE(CKL � OBS) = (1=n)PE(yi � �i)f̂i = (1=n)PCov(yi; f̂i), whi
h tendsto be a positive number. See Efron (1986) for referen
e. To 
orre
t this bias,leave-out-one 
ross validation will also substitute f̂i by f̂ (�i)i in CKL, whi
honly depends on the observations other than yi. Thus f̂ (�i)i is independent ofyi, and for large n, is expe
ted to be 
lose to f̂i. Eyif̂ (�i)i = EyiEf̂ (�i)i � �iEf̂i.Therefore we expe
t CV to be a 
omputable proxy for CKL distan
e.



533.5.2 GACV for Multivariate Bernoulli ResponsesWe will extend GACV to multivariate Bernoulli distribution to 
hoose smooth-ing parameters adaptively. Before we pro
eed, we need to generalize the leave-out-one lemma in Craven & Wahba (1979) �rst. This time, we need to leaveout one independent unit at a time.Lemma 3.8 (Leave-out-one-subje
t lemma) Let �lj(yij; fij) = �Pk yijkfijk +b(fij) be the part of likelihood fun
tion related to the jth endpoint. All other partsof the likelihood fun
tion are 
onsidered as �xed. I�j (fj; Yj) = �Pi lj(yij; fij)+n2J�j(fj). Suppose h(i; z; �) is the minimizer of I�j(fj; Z), where Z = (yT1j; :::;yTi�1;j; zT ; yTi+1;j; :::; yTnj)T , thenh(i; �(�i)(xij); �) = f (�i)�j (�);where f (�i)�j is the minimizer of Pi1 6=i l(yi1j; fi1;j) + n2J�j(fj), and �(�i)(xij) =(�(�i)(xij1); :::; �(�i)(xijKj))T is the ve
tor of means 
orresponding to f (�i)�j (�).Proof We have�lj(�(�i)(xij); f (�i)�j (xij)) � �lj(�(�i)(xij); fj(xij)): (3.5.7)This follows sin
e setting��lj(�(�i)(xij); �)��k = ��(�i)(xijk) + �b(�)��k = 0and using the fa
t �2b(�)��T �� > 0, implies that �lj(�(�i)(xij); �) a
hieves its unique



54minimum for �b(�)��k = �(�i)(xijk), hen
e �k = f (�i)�j (xijk). Therefore, for any fj,I�j (fj; Z) = �lj(�(�i)(xij); fij)�Xi1 6=i lj(yi1j; fi1j) + n2J�j(fj)� �lj(�(�i)(xij); f (�i)�j (xij))�Xi1 6=i lj(yi1j; fi1j) + n2J�j(fj)� �lj(�(�i)(xij); f (�i)�j (xij))�Xi1 6=i lj(yi1j; f (�i)�j (xi1j)) + n2J�j(f (�i)�j )The �rst inequality is due to (3.5.7), the se
ond one is due to the fa
t thatf (�i)�j (�) is the minimizer of �Pi1 6=i l(yi1j; fi1;j) + n2J�j(fj). Therefore we haveh(i; �(�i)(xij); �) = f (�i)�j (�).Let Y (�i)j = (yT1j; :::; yTi�1;j; �(�i)(xij)T ; yTi+1;j; :::; yTnj)T . Be
ause that (f�j ; Yj)and (f (�i)�j ; Y (�i)j ) are two lo
al minimizers of I�j (f; Z), �I�j=�fj is equal to zeroon those two points. Thus,�I�j�fj (f�j ; Yj) = 0; �I�j�fj (f (�i)�j ; Y (�i)j ) = 0: (3.5.8)It is also easy to verify that�2I�j�fj�fTj = Wj(f) + n��j ; �2I�j�Yj�fTj = �I; (3.5.9)where Wj(f) = diag(W1j;W2j; :::;Wnj) is de�ned in (3.3.6). ��j is the semi-positive de�nite matrix satisfying J�j (fj) = fTj ��jfj.



55Using a �rst order Taylor expansion, we have the following equation0 = �I�j�fj (f (�i)�j ; Y (�i)j )= �I�j�fj (f�j ; Yj) + �2I�j�fj�fTj (f �; Y �)(f (�i)�j � f�j )+ �2I�j�Yj�fTj (f �; Y �)(Y (�i)j � Yj)= �2I�j�fj�fTj (f �; Y �)(f (�i)�j � f�j ) + �2I�j�Yj�fTj (f �; Y �)(Y (�i)j � Yj):(3.5.10)Equivalently, this is(f�j � f (�i)�j ) = (Wj(f �) + n��j )�1(Yj � Y (�i)j ); (3.5.11)where (f �; Y �) is a point somewhere between (f�j ; Yj) and (f (�i)�j ; Y (�i)j ). Ap-proximateW (f �) byW (f�j) and note that Y�Y (�i) = (0; :::; 0; (yij��(�i)(xij))T ;0; :::; 0)T . We have0BBBBBBBBBBBBBBBBBB�
f�j(x1j1)� f (�i)�j (x1j1)...f�j (xij1)� f (�i)�j (xij1)...f�j (xijKj)� f (�i)�j (xijKj)...f�j (xnjKj)� f (�i)�j (xnjKj)

1CCCCCCCCCCCCCCCCCCA
� (Wj(f�j ) + n��j )�1

0BBBBBBBBBBBBBBBBBB�
0...yij1 � �(�i)(xij1)...yijKj � �(�i)(xijKj)...0

1CCCCCCCCCCCCCCCCCCA(3.5.12)



56Denote Hj = [Wj(f�j) + n��j ℄�1, whi
h is the inverse Hessian of I�j (fj; Yj)with respe
t to fj evaluated at f�j . Hj has the following stru
ture
Hj = 0BBBBBBBB�

Hj11 Hj22 ** . . . Hjnn
1CCCCCCCCA ; (3.5.13)

where Hjii is the Kj �Kj submatrix on the diagonal. Hen
e, we have0BBBB� f�j(xij1)� f (�i)�j (xij1)...f�j (xijKj)� f (�i)�j (xijKj)
1CCCCA � Hjii0BBBB� yij1 � �(�i)(xij1)...yijKj � �(�i)(xijKj)

1CCCCA : (3.5.14)Starting with the ordinary leave-out-one 
ross validation fun
tion CV (�j),we will use the above relation and several �rst order Taylor expansions in ourderivation.CV (�j) = 1n nXi=1 [� KjXk=1 yijkf (�i)ijk + b(fij)℄= 1n nXi=1 [� KjXk=1 yijkfijk + b(fij) + KjXk=1 yijk(fijk � f (�i)ijk )℄= OBS(�j) + 1n nXi=1 KjXk=1 yijk(fijk � f (�i)ijk )
= OBS(�j) + 1n nXi=1 �yij1 � � � yijKj�0BBBB� fij1 � f (�i)ij1...fijKj � f (�i)ijKj

1CCCCA(3.5.15)



57Next, we need to show the following relation is true. The �rst approximation isdue to Taylor expansion for a fun
tion with ve
tor responses.0BBBB� yij1 � �ij1...yijKj � �ijKj
1CCCCA

= 0BBBB� yij1 � �(�i)ij1...yijKj � �(�i)ijKj
1CCCCA+0BBBB� �(�i)ij1 � �ij1...�(�i)ijKj � �ijKj

1CCCCA
= 0BBBB� yij1 � �(�i)ij1...yijKj � �(�i)ijKj

1CCCCA+0BBBBB� �b�fij1 (f (�i)�j (xij))� �b�fij1 (f�j(xij))...�b�fijKj (f (�i)�j (xij))� �b�fijKj (f�j (xij))
1CCCCCA

� 0BBBB� yij1 � �(�i)ij1...yijKj � �(�i)ijKj
1CCCCA+Wij0BBBB�f (�i)�j (xij)� f�j(xij)...f (�i)�j (xij)� f�j(xij)

1CCCCA
� 0BBBB� yij1 � �(�i)ij1...yijKj � �(�i)ijKj

1CCCCA�WijHjii0BBBB� yij1 � �(�i)ij1...yijKj � �(�i)ijKj
1CCCCA

= (I �WijHjii)0BBBB� yij1 � �(�i)ij1...yijKj � �(�i)ijKj
1CCCCA (3.5.16)



58Hen
e, we have the following approximate relation. We will use it to de�ne theapproximate 
ross validation (ACV ) fun
tion.CV (�j)= OBS(�j) + 1n nXi=1 �yij1 � � � yijKj�0BBBB� fij1 � f (�i)ij1...fijKj � f (�i)ijKj
1CCCCA

� OBS(�j) + 1n nXi=1 �yij1 � � � yijKj�Hjii0BBBB� yij1 � �(�i)ij1...yijKj � �(�i)ijKj
1CCCCA

� OBS(�j) + 1n nXi=1 �yij1 � � � yijKj�Hjii(I �WijHjii)�10BBBB� yij1 � �ij1...yijKj � �ijKj
1CCCCA� ACV (�j): (3.5.17)Now de�ne Gjii = (I �WijHi). In a step reminis
ent of that used to get fromleave-out-one 
ross validation to GCV in the Gaussian 
ase, we will obtaina generalized form of the approximate 
ross validation. There, the diagonalelements of 
ertain matrix was repla
ed by 1=n times its tra
e. Here, for anymatri
es Aii; 1 � i � n,Ai = �ai;k1k2�K�K ; 1 � k1; k2 � K;



59we de�ne
�A = (Æ � 
)IK�K + 
 � eeT = 0BBBBBBBB�

Æ 
 � � � 

 Æ � � � 
... ... . . . ...
 
 � � � Æ
1CCCCCCCCA ; (3.5.18)

where e = (11 � � �1)T is the unit ve
tor, and Æ and 
 are the average values of
orresponding elements in the matri
es Aii's.Æ = 1nK nXi=1 KXk=1 ai;kk;
 = 1n �K(K � 1) nXi=1 Xk1 6=k2 ai;k1k2: (3.5.19)Sin
e �A has a very spe
ial stru
ture, it is very easy to obtain the 
losed form ofits inverse�A�1 = 1Æ � 
 IK�K � 
(Æ � 
)(Æ + (K � 1)
)eeT0BBBBBBBB�
Æ+(K�2)
(Æ�
)(Æ+(K�1)
) � 
(Æ�
)(Æ+(K�1)
) � � � � 
(Æ�
)(Æ+(K�1)
)� 
(Æ�
)(Æ+(K�1)
) Æ+(K�2)
(Æ�
)(Æ+(K�1)
) � � � � 
(Æ�
)(Æ+(K�1)
)... ... . . . ...� 
(Æ�
)(Æ+(K�1)
) � 
(Æ�
)(Æ+(K�1)
) � � � Æ+(K�2)
(Æ�
)(Æ+(K�1)
)

1CCCCCCCCA(3.5.20)



60Hen
e, we de�ne the generalized form of approximate 
ross validation (GACV )for multivariate Bernoulli distribution as followingGACV (�j)= OBS(�j) + 1n nXi=1 �yij1 � � � yijKj� �Hj( �Gj)�10BBBB� yij1 � �ij1...yijKj � �ijKj
1CCCCA= 1n nXi=1 [� KjXk=1 yijkfijk + b(fij)℄+1n nXi=1 �yij1 � � � yijKj� �Hj( �Gj)�10BBBB� yij1 � �ij1...yijKj � �ijKj :

1CCCCA (3.5.21)We remark that the above formula is redu
ed to (2.9) in Xiang & Wahba(1996) when j = 1 and K1 = 1. In pra
ti
e, we will iteratively 
hoose smoothingparameters in ea
h Blo
k nonlinear SOR iteration in order to minimize GACV .When only person-spe
i�
 
ovariates exist, following the notation de�ned atthe end of se
tion (3.3), we 
an rewrite the above formula to a simpler formGACV (�j)= OBS(�j) + tr(Hj)=n �Pni=1 yij(yij � �ij)n� tr(W 1=2j HjW 1=2j )= 1n nXi=1 [�yijfij + b(fij)℄ + tr(Hj)=n �Pni=1 yij(yij � �ij)n� tr(W 1=2j HjW 1=2j ) (3.5.22)



613.5.3 The One-Step Randomized EstimateThe GACV de�ned in the last se
tion is very 
omputing intensive. It involvesthe 
omputation of the inverse Hessian, whi
h is a large matrix in our 
ase.However, this expli
it 
al
ulation 
an be avoided by using a te
hnique in thespirit of the randomized tra
e method, provided a solution, either exa
t orapproximate, of the variational problem 
an be obtained at a lower 
ost. Inthis se
tion, we will propose a one-step randomized estimate of GACV , whi
his fast and 
heap to 
al
ulate.The randomized tra
e te
hnique was proposed in Girard (1987), Girard(1991), Girard (1998). Given any square matrix A, and � is a zero mean randomve
tor with independent 
omponents with varian
e �2, then tr(A) = 1�2E�TA�.Hen
e we 
an estimate the tra
e of A by 1�2 � �TA�. In pra
ti
e, �2 is repla
edby 1nPni=1 �2i .Given a square matrix A with Aii(1 � i � n) being the K � K sub-matri
es on the diagonal, we dis
uss how to obtain a randomized estimate of�A. First, a ve
tor of i:i:d: random variables distributed as N(0; 1) is gener-ated. �i = (�i1; :::; �iKj)T and � = (�T1 ; :::; �Tn )T . Hen
e, Æ = tr(A)=(nK) 
anbe estimated by (�TA�)=(nK). On the other hand, 
 = (PiPk1;k2 ai;k1k2 �tr(A))=(nK(K � 1)). To estimate PiPk1;k2 ai;k1k2 , let ��i = (1=pK)PKk=1 �ik,�� = (��1; :::; ��1; ��2; :::; ��n)T . �� is a 
olumn ve
tor with K repli
ates of ��i for ea
h1 � i � n. We noti
e that E��TA�� =PiPk1;k2 ai;k1k2. Hen
e, we 
an estimate
 by (��TA��� �TA�)=(nK(K � 1)). Therefore, a randomized estimate of �A 
an



62be obtained.In pra
ti
e, the randomized estimate of GACV is 
al
ulated by solving thenonlinear system on the perturbed data Yj + � and Yj + ��. Denote fYj�j as thesolution of (3.3.7) by using the original data and fYj+��j as the solution by usingthe perturbed data. If we take fYj�j as the initial value to a Newton-Ralphson
al
ulation of fYj+��j , and we run the iteration only on
e by using all matrixde
ompositions whi
h have already been performed for 
al
ulating fYj�j in thelast step, we obtain the one step solution fYj+�;1�j . Sin
e �I�j�fj (fYj�j ; Yj) = 0 and�2I�j�fTj �fj (fYj�j ; Yj) = �2I�j�fTj �fj (fYj�j ; Yj + �), we observe the simple relationfYj+�;1�j = fYj�j � [ �2I�j�fTj �fj (fYj�j ; Yj + �)℄�1�I�j�fj (fY�j ; Yj + �)= fYj�j � [ �2I�j�fTj �fj (fYj�j ; Y )℄�1(�� + �I�j�fj (fYj�j ; Yj))= fYj�j + (Wj + n��j )�1�: (3.5.23)Hen
e, we have fYj+�;1�j � fYj�j = Hj�: (3.5.24)Thus, �T (fYj+�;1�j � fYj�j ) = �THj� and ��T (fYj+��;1�j � fYj�j ) = ��THj��, we 
an obtaina randomized estimate of �Hj. Similarly �TGj� = �T �+ �TWj(fYj+�;1�j � fYj�j ), and��TGj�� = ��T ��+��TWj(fYj+��;1�j �fYj�j ). We 
an 
al
ulate the randomized estimate of�Gj. This approa
h avoids the expli
it 
al
ulation of inverse Hessian Hj, whi
h is
omputational expensive and tends to be unstable for ill 
onditioned matrix. Arandomized estimate 
an always be obtained provided a 
heap and stable \bla
k



63box" exists to 
al
ulate the (approximate) one-step solution for perturbed data.The resulting ranGACV fun
tion isranGACV (�j)= 1n nXi=1 [� KjXj=1 yijkfijk + b(fij)℄+1n nXi=1 �yij1 � � � yijKj� �̂Hj( �̂Gj)�10BBBB� yij1 � �ij1...yijKj � �ijKj :
1CCCCA ; (3.5.25)where �̂Hj and �̂Gj denote the randomized estimates. To redu
e the varian
e inthe term after \+" in (3.5.25), we may draw R independent random ve
tors�(1);...,�(R), repla
e the term after \+" in (3.5.25) by1nR RXr=1 nXi=1 �yij1 � � � yijKj� �̂Hj(r)( �̂Gj(r))�10BBBB� yij1 � �ij1...yijKj � �ijKj :

1CCCCA (3.5.26)to obtain an R-repli
ated ranGACV fun
tion. Combined with the approximatespline des
ribed in the last se
tion, the 
omputation of ranGACV is fast andstable. We will iteratively minimize ranGACV in ea
h step of blo
k one-stepSOR iteration. This will be done repeatedly until some pre-spe
i�ed 
onvergen
e
riteria is met, or the number of iterations ex
eeds the pre-spe
i�ed limit.The GACV and ranGACV fun
tion is derived by assuming that the mini-mizer of (3.3.7) is 
al
ulated at ea
h blo
k nonlinear SOR iteration. To speedup the algorithm, however, only one-step update will be 
al
ulated. We remark



64that all favorable properties of GACV and ranGACV are preserved for Blo
kone-step SOR algorithm and approximate spline estimate. It is very easy to
arry out the 
omputation as no additional matrix de
omposition is required.By evaluating Hj and Wj at the latest updated value fj�, most of the approxi-mations in the derivation of GACV be
omes exa
t. If we take fj� as the initialvalue, all matrix de
ompositions whi
h have been done for 
al
ulating fYj ;1�j isreadily available for 
omputing the one-step estimate fYj+�;1�j for the perturbeddata. Moreover, the relation in (3.5.24) remains to be true for the blo
k one-stepSOR algorithm, whi
h sets fYj�j = fYj ;1�j in every iteration.Sin
e it is diÆ
ult to write down the derivatives of ranGACV with respe
tto the smoothing parameter(s) �, to sear
h for the minimizer of ranGACVfun
tion, optimization methods whi
h do not require the expli
it 
al
ulation ofthe derivatives are highly desired. For single smoothing parameters, we willuse Golden se
tion method. For multiple smoothing parameters, we will usedownhill simplex method. See Press, Flannery, Teukolsky & Vetterling (1996)for referen
e.3.5.4 Numeri
al Examples(i) ranGACV vs. iterated ranGACVThe �rst experiment is to 
ompare the performan
es of ranGACV and iteratedranGACV . For �xed smoothing parameters, Xiang & Wahba (1996) and Lin,Wahba, Xiang, Gao, Klein & Klein (1998) proposed to �nd the solution of the



65variational problem, then evaluate the GACV fun
tion. However, for multi-variate Bernoulli data, when there present more than one logit fun
tions to beestimated, or we assume the parametri
 form for the asso
iation terms, evalu-ating and minimizing ranGACV for ea
h logit fun
tion at the 
orrespondingstep of the blo
k one-step SOR-Newton-Ralphson algorithm seems to be more
onvenient and natural. In this experiment, we will assume j = 1 and Kj = 1,the situation is redu
ed to the univariate Bernoulli distribution.The �rst three univariate fun
tions are taken from Xiang & Wahba (1996).We de�ne the true logit fun
tions to be estimated asf1(x) = 3� (5x� 2:5)2f2(x) = 2 sin(10x)f3(x) = 0:218� 4:312x: (3.5.27)Figure 1 shows the true probability fun
tions determined by p(x) = ef(x)=(1 +ef(x)). The predi
tor variable x was taken to be uniformly distributed in (0; 1).Two sample sizes n = 100 and n = 400 were used for this simulation. To
ompare the e�e
tiveness of these two methods, 100 independent sets of datafor ea
h 
ombination of logit fun
tion and sample size were generated. We usedthe same random perturbations and set R = 5 and 
omputed the 5-repli
atedranGACV for both methods. Only 50 basis fun
tions 
hosen by 
lusteringmethod were used for approximate spline for all 
ases. The pairwise 
omparisonof CKL distan
e is plotted in Figure 2. From this experiment, the performan
esof ranGACV and iterated ranGACV are almost the same. ranGACV seems



66to be slightly better than its iterated version for small sample sizes. However,this di�eren
e be
omes negligible very qui
kly when the sample size in
reases.The iterated ranGACV method is not guaranteed to 
onverge, although thishappens very rare. From extensive simulation studies, when the algorithm doesnot 
onverge, very often, the value at the last step of the iteration is still ana

eptable estimation.
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Figure 1: True probability fun
tion p(x) determined by the logit fun
tions in(3.5.27): (a) f1 (b) f2 (
) f3The next Monte Carlo simulation uses the WESDR (Wis
onsin Epidemiol-ogy Study of Diabetes Retinopathy) data. See Wahba et al. (1995) and ref-eren
es 
ited there. Three 
ovariates dur, gly and bmi are used as predi
torvariables. The out
ome variable is the progression of retinopathy. The followingANOVA model is �tted by iterated UBR method by GRKPACK (Wang 1997),logit(p(dur; gly; bmi) = 
+ f1(dur) + f2(gly) + f3(bmi) + f12(dur; bmi):
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Figure 2: Pairwise 
omparison of CKL for ranGACV and iterated ranGACVfor the 
ases in (3.5.27). (a) f1; n = 100 (b) f1; n = 400 (
) f2; n = 100 (d)f2; n = 400 (e) f3; n = 100 (f) f3; n = 400



68The �tted logit fun
tion is then treated as the true test fun
tion in our simu-lation. 100 repli
ates of data are generated and �tted for the above ANOVAmodel by both ranGACV and iterated ranGACV methods. The number ofrepli
ates R for randomized estimate of GACV is taken to be 5 for both meth-ods. In the mean time, we used 
lustering method to obtain 50 basis fun
tionsfor the approximate spline. For ea
h run, the CKL distan
e between the trueprobability fun
tion used to generate the data and the estimated probability is
omputed. The pairwise 
omparison of the CKL distan
e is plotted in Figure 3.The ranGACV method seems to be slightly better than the iterated ranGACValgorithm. However, the di�eren
e is very small.
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Figure 3: Pairwise 
omparison of CKL for ranGACV and iterated ranGACVfor 100 runs of the simulated WESDR data.



69In light of the results of the above simulation studies, we prefer to solve thevariational problem for �xed smoothing parameters, then evaluate the ranGACVfun
tion at the solution whenever possible. However, for more 
ompli
ated sit-uations, there may exist more than one logit fun
tions to be estimated, or somefun
tions to be estimated may take simple unpenalized parametri
 form. It isvery diÆ
ult to write down the 
losed form of ranGACV and to 
ompute itdire
tly. On the other hand, 
ombined with some iterative algorithm to solvethe variational problem, iterated ranGACV is the natural alternative whi
h isexpe
ted to be nearly as eÆ
ient as ranGACV itself.(ii) Iterated ranGACV as a proxy for CKL distan
eIn this experiment, we will show that the iterated ranGACV is an ex
ellent
omputational proxy for CKL distan
e for multivariate Bernoulli data. IteratedranGACV is an estimator of CKL distan
e at every updating step of the Blo
kone-step SOR-Newton-Ralphson algorithm.We assume that j = 1 and Kj = 2. There are one endpoint of interest andtwo repeated measurements for it. The �rst example is for the single smoothingparameter 
ase. The predi
tor variable x is assumed to be uniformly distributedon (0; 1). For ea
h subje
t, x is assumed to be the same for both measurements.The true 
onditional logit fun
tion to be estimated isf(x) = logit(P (Yk = 1jY (�k) = 0; x)) = 3 sin(2:7x2)� 2: (3.5.28)Odds ratio is used to measure the asso
iation between 
orrelated observations.



70We will let the 
onditional log odds ratio be a 
onstant� = logOR(Y1; Y2jx) = 1: (3.5.29)The sample size n is taken to be 500. The predi
tor variable x is assumed to beuniformly distributed on (0; 1). The true marginal probability p(x) = P (Yk =1jx) = (ef(x)+e2f(x)+�)=(1+2ef(x)+e2f(x)+�) and one set of randomly generateddata a

ording to the true joint distribution are plotted in Figure 4. This setof data is used in our simulation study. To 
ompute the approximate splineestimate, only 50 basis fun
tions are sele
ted.
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Figure 4: True marginal probability P (Yk = 1jx) and one set of generated data.As proposed early, the algorithm we used to estimate the joint distribution



71will iterative update f and �. We proposed to iteratively minimize ranGACVwhenever updating f by the one-step updating formula. The initial values forboth f and � are taken to be 0. At di�erent stage of this pro
ess, the true CKLdistan
e and the ranGACV fun
tion are 
omputed and plotted in Figure 5-7.Figure 5 shows the 
omparison made at the �rst iteration step while �̂ = 0.Figure 7 shows the 
omparison made at the 
onverged value while �̂ = 1:53.Figure 6 shows the 
omparison made in the middle of this iterative algorithm,while �̂ = 0:91. Three di�erent values are taken for R, the number of repli
atesused to evaluate the randomized estimate of GACV in order to redu
e varian
e.And for ea
h value of R, 10 independent realizations of ranGACV fun
tion are
omputed and plotted. The 
losed 
ir
le is the minimizer of the CKL distan
ewhile the open 
ir
les indi
ate the minimizers for ea
h ranGACV 
urve.In terms of lo
ating the best � whi
h yields the smallest CKL distan
e,ranGACV is an ex
ellent proxy to be minimized. When R in
reases, ranGACVseems to have smaller varian
e and better performan
e. Sin
e the iteratedalgorithm minimizes ranGACV at every step, we really prefer it to have smallervarian
e. In the meanwhile, The 
omputation of ranGACV is in fa
t very fastsin
e no additional matrix de
omposition is ne
essary. Hen
e we suggest to letR be large enough, for example, R = 20.The next example is for multiple smoothing parameters. Still, there is oneendpoint of interest and paired observations for ea
h subje
t. The predi
torvariables (x1; x2) are assumed to be uniformly distributed on the unit square
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ompared to CKL when �̂ = 0. Ris the number of repli
ates used to evaluate the randomized estimate of GACV .Cir
les indi
ate the minimizers for ea
h 
urve.
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ate the minimizers for ea
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75(0; 1) � (0; 1). We assume the true 
onditional logit fun
tion has an additiveformf(x1; x2) = logit(P (Yk = 1jY (�k) = 0; x1; x2)) = 2 sin(2�x1)� sin(2�x2):(3.5.30)As in the previous example, we let the 
onditional log odds ratio be a 
onstant� = logOR(Y1; Y2jx1; x2) = 1:5: (3.5.31)The true marginal probability is plotted in Figure 8(a).
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Figure 8: The true and estimated marginal probability fun
tion p(x1; x2) =P (Yk = 1jx1; x2).



76For this simulation study, 500 pairs of observations are generated a

ordingto the joint distribution. 50 basis fun
tions are sele
ted by 
lustering method.We apply the Blo
k one-step SOR algorithm 
ombined with iterated ranGACVto estimate the joint distribution P (Y1; Y2jx1; x2). R = 20 repli
ates are used forestimating ranGACV . The estimated marginal probability is plotted in Figure8(b). Figure 8 and Figure 9 show the perspe
tive plots and 
ontour plots forboth ranGACV and CKL surfa
es. Three 
omparisons are made during theiteration pro
ess: at the �rst step (when �̂ = 0), in the middle of the iterations(when �̂ = 0:77) and at the 
onverged value (when �̂ = 1:29).From the plots, iterated ranGACV does an ex
ellent job in terms of sear
h-ing for the minimum value of CKL distan
e. Although the minimizers ofranGACV are not the minimizers of CKL distan
e, 
onsidering the 
at na-ture of CKL surfa
e near its minima in this 
ase, we noti
e that the CKLdistan
es a
hieved by the minimizers of ranGACV are very 
lose to the min-imum values of CKL distan
e. The 
omparison of the minimum CKL valuesand the one a
hieved by the minimizers of ranGACV is listed in Table 3.min�1;�2 CKL(�1;�2) CKL(�̂1; �̂2)�̂ = 0 0.88501 0.88912�̂ = 0:77 1.22738 1.23200�̂ = 1:29 1.50359 1.50903Table 3: Comparison of the minimum CKL distan
es and CKL a
hieved by(�̂1; �̂2), the minimizers of ranGACV fun
tion.
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Figure 9: Comparison of iterated ranGACV and CKL surfa
es.
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(f) CKL, Alpha=1.29

Figure 10: Contour plots of iterated ranGACV and CKL. Solid dots denotethe minimizer of CKL distan
e while the triangles denote the minimizer ofranGACV fun
tions.



793.6 Bayesian Inferen
e and Approximate Con-�den
e IntervalsTheorem 3.3 shows that the pseudo-data de�ned in se
tion 3.3 have approxi-mately the usual data stru
ture. We will make use of su
h an observation inthis se
tion to 
onstru
t the approximate Bayesian 
on�den
e interval. An ap-proa
h similar to that used by Silverman (1985) is adapted for the approximatespline solution to the variational problem.First let us 
onsider the Bayesian formulation of the variational problemasso
iated with 
orrelated Gaussian observations. For �xed smoothing param-eter(s), we will identify the variational problem with a Bayesian problem. As-sume there is only one endpoint, J = 1. On domain X , yik = f(xik) + �ik,i = 1; :::; n, k = 1; :::; K, where (�i1; :::; �iK), i = 1; :::; n are i:i:d: distributed asN(0; �2W�1), with W a known positive de�nite matrix. With abuse of nota-tion, the approximate spline solution of f(x) is a 
ombination of the sele
tedbasis fun
tions f = Sd+QV 
; (3.6.1)where QV = (�1; :::; �V ). Let Q�V denote the matrix with (Q�V )ij =< �i; �j >.By assuming an improper prior distribution on the 
oeÆ
ients (
; d), we lettheir log-density fun
tion take the formlprior(
; d) 
= �12b
TQ�V 
; (3.6.2)



80where b = (n�)=�2 and the notation \ 
=" means \equals up to a 
onstant".Following some standard Bayesian manipulation, the posterior log-likelihoodhas the following formlpost(
; d) 
= �12b
TQ�V 
� 12�2 (y �QV 
� Sd)TW (y �QV 
� Sd): (3.6.3)Hen
e by minimizing the posterior negative log-likelihood of (
; d), we obtain ex-a
tly the same solution as solving the variational problem in the approximatingsubspa
e span(S;QV ).From (3.6.3), (
; d) in fa
t has a proper posterior distribution as a multivari-ate normal with mean (
̂; d̂) and 
ovarian
e matrix �2M�1, whereM = 0B�QTVWQV + n�Q�V QTVWSSTWQV STWS1CA (3.6.4)and 0B� 
̂̂d1CA =M�10B�QTVST1CAWY: (3.6.5)Hen
e, for f = Sd+QV 
, the following is trueV ar(f) = �20B�QTVST1CAM�1�QV S� : (3.6.6)De�ne the in
uen
e matrix A(�) satisfying f = A(�)y to beA(�) = 0B�QTVST1CAM�1 �QV S�W: (3.6.7)



81(3.6.6) 
an be re-written as V ar(f) = �2A(�)W�1: (3.6.8)Therefore, Bayesian 
on�den
e intervals 
an be 
onstru
ted on
e the posteriormean and 
ovarian
e matrix are 
omputed for (
; d).The 
onstru
tion of Bayesian 
on�den
e intervals for multivariate Bernoullidata utilizes the fa
t that the pseudo-data have approximately multivariatenormal distribution, whi
h is based on the Taylor expansion of the penalizedlog-likelihood fun
tion 
entered at the mode (
; d). Denote the negative log-density fun
tion of y 
onditioning on f and � as l(yjf; �). To estimate the
onditional logit fun
tion for the jth endpoint fj, we will 
ondition on the otherestimated values for f (�j) and �. fj is the minimizer oflj(fj) + n2�Jj(fj) = lj(fj) + n2�
Tj Q�V 
j: (3.6.9)At the 
onverged step of the blo
k one-step SOR iteration, we are a
tuallysolving a penalized weighted least square problem based on the pseudo-data1n nXi=1 (~yij � fij)TWij�(~yij � fij) + �
jTQ�V 
j: (3.6.10)Here W�1ij� is an estimated value of V ar(Yj) = W�1j . From Theorem 3.3, weknow that ~yj is approximately distributed as N(fj ;W�1j ). Hen
e by dealingwith the pseudo-data ~yj, similar to (3.6.5), we have0B�
̂̂d1CA = M�10B�QTVST1CAW ~yj (3.6.11)



82where M is evaluated at the 
onverged step of the iterations as in (3.6.4). To
al
ulated the posterior varian
e of f , (3.6.6) remains to be true. Therefore,the pseudo-data 
an be used to 
onstru
t the approximate Bayesian 
on�den
einterval for the multivariate Bernoulli data.3.7 Monte Carlo SimulationsIn this se
tion, we will demonstrate results from some Monte Carlo simula-tions to evaluate the performan
e of the proposed method. The 
omparativeKullba
k-Leibler distan
e (CKL) is used to measure the performan
e of theestimated values.3.7.1 Repeated Measurements for the Same EndpointThe �rst example is about the single smoothing parameter situation. We willtry to mimi
 the 
hara
teristi
 of possible ophthalmology data. There is oneendpoint of interest and paired observations for ea
h subje
t. There presents oneobservation-spe
i�
 
ovariate Xik; (k = 1; 2). Xi1's are assumed to be uniformlydistributed on the interval (0:05; 0:95). Xi2 = Xi1 + �i, while �i's are uniformlydistributed on (�0:05; 0:05).The true 
onditional logit fun
tion is assumed to bef(xik) = logit(P (Yik = 1jY (�k)i = 0; xik))= 2[exp(�30(xik � 0:25)2) + sin(�x2ik)℄� 2: (3.7.1)



83And the 
onditional log odds ratio � = logOR(Yi1; Yi2jxi) = 0:8. Three di�erentsample sizes are used in this simulation: n = 125, n = 250, n = 500. For ea
hsample size, 100 independent sets of data are randomly generated a

ording tothe true joint distribution.Figure 11 shows the histogram plots of the estimated �̂ for the three di�erentsample sizes. The dotted lines represent the true value of 0:8. The �tted valuesappear to 
onverge to the truth while the sample size in
reases. The estimatorof � appears to be approximately unbiased and normally distributed from thehistogram.
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Figure 11: Histogram of �̂ for three di�erent sample sizes. The dotted linesrepresent the true value of � = 0:8.In Figure 12, 13 and 14, we plot the true 
onditional probability fun
tion
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Figure 12: True and estimated 
onditional probability fun
tions when n = 125.
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onditional probability fun
tions when n = 250.
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onditional probability fun
tions when n = 500.



87and the estimated 
urves for ea
h sample size, P (Yik = 1jY (�k)i = 0; xik) =ef(xik)=(1 + ef(xik)). For ea
h sample size, the 100 �tted values are ranked a
-
ording to the CKL distan
es between the estimated joint distributions andthe truth. The 5th, 25th, 50th, 75th and 95th best �ts are plotted for ea
hsample size. The true 
onditional logit fun
tion is a bi-modal fun
tion. Thetrend is 
lear that when the sample size in
reases, the estimated 
urves be
omemore and more a

urate. However, for parametri
 model, there might be noprior knowledge about the bi-modal nature of the truth. Hen
e a linear or evenquadrati
 form will miss the true 
urve no matter how large the sample size is.In the next experiment, we will 
ompare the proposed new multivariatemethod to the univariate �t. In the ophthalmology studies, one question ofinterest is to estimate the probability of at least one eye developing a 
ertaindisease given the values of the predi
tor variables for a person. Assuming thereis no eye-spe
i�
 
ovariate. Xi's are uniformly distributed on (0; 1). For ea
hsubje
t, there are paired observations (Yi1; Yi2). We want to estimate the prob-ability P (Yi1 = 1 _ Yi2 = 1jxi) = (2efi + e2fi+�i)=(1 + 2efi + e2fi+�) from theobserved data.For this experiment, we assumep(xi) = P (Yi1 = 1 _ Yi2 = 1jxi) = 0:8 sin(2:7x2i ) + 0:1 (3.7.2)The true p(x) is plotted in Figure 15. Four di�erent values are used for �: 0,0.4, 0.8, 1.2. � = 0 is 
orresponding to the 
ase that Yi1 and Yi2 are indepen-dent. However we pretend that this fa
t is unknown, � is still estimated by the
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Figure 15: True p(xi) = P (Yi1 = 1 _ Yi2 = 1jxi) used for the simulation study.proposed algorithm. Straightforward 
al
ulation yields the following formula to
ompute fi for given � and P (Yi1 = 1 _ Yi2 = 1jxi)fi = log (p(xi)� 1) +p(1� p(xi))2 + e�p(xi)(1� p(xi))e�(1� p(xi)) : (3.7.3)The experiment is 
ondu
ted as follows. First, for the univariate �t, theonly information needed is �Yi whi
h is de�ned to be 0 when both Yi1 = Yi2 = 0and 1 otherwise. P ( �Yi = 1jxi) = p(xi). We generate 100 sets of data a

ordingto the true distribution and �t the data by using univariate penalized logisti
regression. For the bivariate �t, we �rst 
al
ulate the true joint distribution of(Yi1; Yi2) a

ording to the previous formula. For ea
h value of �, 100 sets of dataare randomly generated and the joint distribution is estimated by the proposedmultivariate method. Afterwards, the probability of P (Yi1 = 1_Yi2 = 1jxi) 
an



89be derived from the estimated joint distribution. For every run, CKL distan
ebetween the estimated p̂(xi) and p(xi) is 
al
ulated.The above pro
edure is performed for three di�erent sample sizes: n = 100,n = 200 and n = 400. In Figure 16, we show the histograms of the estimated�̂'s for di�erent sample sizes and true values of �. Dotted lines represent thetrue values of �. From the plot, the estimated values have an approximatebell-shaped distribution and are approximately unbiased. When sample sizein
reases, the estimated values be
ome 
loser to the true value.In Figure 17, we 
ompare the CKL distan
es between the �tted probabilityand the true probability p(xi) = P (Yi1 = 1 _ Yi2 = 1jxi) for di�erent method.Obviously, for all true values of �, the bivariate �t, whi
h estimates the jointdistribution of (Yi1; Yi2), has a better eÆ
ien
y than the univariate �t, whi
hestimates P ( �Yi = 1) dire
tly. This is not surprising sin
e the univariate �tonly needs to know �Yi, hen
e some information in (Yi1; Yi2) is not used in theestimation pro
edure.The next experiment is similar to the previous one but for multiple smooth-ing parameters. Assume (Xi1; Xi2)'s are uniformly distributed on the unitsquare (0; 1)� (0; 1). The true 
onditional logit fun
tion is taken to bef(xi1; xi2) = 2 sin(3xi1 � 3xi1xi2) + 
os(2� 2xi2)� 3(xi1 � 0:35)2 � 1:5(3.7.4)and the 
onditional log odds ratio � is taken to be a 
onstant 1. Ea
h time, 500
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Figure 16: Histograms of estimated �̂'s for n = 100, n = 200 and n = 400.Dotted lines represent the true values of �.
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92independent pairs of observations (Yi1; Yi2)'s are simulated. The proposed pe-nalized multivariate logisti
 regression is used to estimate the joint distribution.This is repeated for 100 times.We 
an derive p(xi1; xi2) = P ( �Yi = 1jxi1; xi2) from the estimated joint dis-tribution. Figure 18 shows the true p(xi1; xi2) and the 5th, 25th, 50th, 75th and95th best estimated values ranked by the CKL distan
e. The proposed methodgives very good estimations most of the times.To make the 
omparison, we also use the univariate method to estimatep(xi1; xi2) dire
tly for the same 100 sets of data. Only the derived out
omevariable �Yi is used in the estimation pro
edure. Assuming we are only interestedin estimating P ( �Yi = 1jxi1; xi2), the pairwise 
omparison of CKL distan
e isshown in Figure 19. About 2=3 of the times, the bivariate �t yields betterestimation.3.7.2 Di�erent EndpointsIn this example, we assume that there are two 
orrelated endpoints of inter-est. For ea
h subje
t, there are two binary out
ome variables: Yi1 for the �rstendpoint and Yi2 for the se
ond endpoint. The proposed method will estimatethe 
onditional joint distribution of P (Yi1; Yi2jXi). This model is also useful topredi
t the out
ome of one endpoint, given the out
ome of another endpoint isknown. For example, if a person already has one disease, what is the probabilityof getting another disease?
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Figure 18: True p(xi1; xi2) = P ( �Yi = 1jxi1; xi2) and estimated surfa
es.
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Figure 19: Pairwise 
omparison of CKL distan
e for the bivariate �t and theunivariate �t.The true asso
iation fa
tor � = logOR(Yi1; Yi2) is taken to be 1.5 in thissimulation. The true 
onditional logit fun
tions for the two di�erent endpointsare f1(xi) = logit(P (Yi1 = 1jYi2 = 0; xi)) = 10 
os(2xi) + 7ex2i � 16 (3.7.5)and f2(xi) = logit(P (Yi2 = 1jYi1 = 0; xi)) = 2 
os(5xi + 1:4) + x2i : (3.7.6)Two sample sizes (n = 200 and n = 500) are used in this simulation. Forea
h sample size, 100 sets of independent data are generated a

ording to thetrue joint distribution. The predi
tor variables Xi are assumed to have uniformdistribution over (0; 1). Only 50 basis fun
tions are sele
ted to generate the



95approximating subspa
e for the approximate spline solutions. To 
ompute therandomized version of GACV , we use R = 20 repli
ates to redu
e the varian
eof the estimated values.In Figure 20, we present the histogram plots of the estimated �̂ for twodi�erent sample sizes. The dotted lines are the true value of � = 1:5. Theestimated values 
onverge to the truth while sample size in
reases.
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Figure 20: Histograms of estimated �̂ for two di�erent sample sizes. The dottedlines represent the true values of � = 1:5.In Figure 21 and 22, we plot the true and estimated 
onditional probabilityfun
tions for both endpoints. For ea
h sample size, the 100 �tted values areranked a

ording to the CKL distan
e between the estimated joint distributionand the truth. The 5th, 25th, 50th, 75th, 95th best �ts are plotted for bothsample sizes. Figure 21 shows the 
onditional probability for the �rst endpoint



96P (Yi1 = 1jYi2 = 0; xi) = ef1(xi)=(1 + ef1(xi)). Figure 22 shows the 
onditionalprobability for the se
ond endpoint P (Yi2 = 1jYi1 = 0; xi) = ef2(xi)=(1 + ef2(xi)).
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Figure 21: True and estimated 
onditional probability P (Yi1 = 1jYi2 = 0; Xi).Solid lines are the estimated fun
tions while dotted lines represent the truefun
tion.
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onditional probability P (Yi2 = 1jYi1 = 0; Xi).Solid lines are the estimated fun
tions while dotted lines represent the truefun
tion.



99Chapter 4
Appli
ation to the Beaver DamEye Study
4.1 Introdu
tionThe Beaver Dam Eye Study (BDES) is an ongoing population-based 
ohortstudy of age-related eye diseases, 
atara
t and ma
ulopathy. A des
ription ofthe population and details of the study at the baseline may be found in Klein,Klein & Linton (1992). Five-year followup data has now been 
olle
ted andanalyzed, see, for example, Klein, Klein, Jensen & Meuer (1997b), and theten-year followup of the 
ohort is in progress.A private 
ensus of the population of Beaver Dam, Wis
onsin was performedfrom September 15, 1987 to May 4, 1988 to identify the eligible population,whi
h is de�ned as being 43 to 84 years of age at the time of 
ensus. Afterwards,the population was examined over a 30-month period. Of the 5925 eligiblepeople, 4926 (83:1%) parti
ipated in the study. Photographs of ea
h eye weretaken and graded. An examination and a standardized questionnaire were alsoadministrated.



1004.2 The Pigmentary Abnormalities for WomenThe asso
iation of pigmentary abnormalities with six other attributes at thebaseline was studied by the \univariate" penalized logisti
 regression in Lin etal. (1998). Only the n = 2585 women members of the 
ohort in the baseline withno missing values were 
onsidered. Pigmentary abnormalities are an early signof age-related ma
ular degeneration and are de�ned by the presen
e of retinaldepigmentation or in
reased retinal pigmentation in asso
iation with retinaldrusen. Pigmentary abnormalities were found in 11:88% of the n = 2585 
ohortstudied. Here, the question of interest is to estimate the probability of at leastone eye developing pigmentary abnormalities given the values of the predi
torvariables.Based on the previous work, age is known to be a very strong risk fa
tor forthe presen
e of pigmentary abnormalities and other age-related ma
ulopathy inthe Beaver Dam Eye Study. The asso
iation between 
ardiovas
ular disease andits risk fa
tors and the in
iden
e of age-related ma
ulopathy was examined inKlein, Klein & Jensen (1997a). Hormone repla
ement therapy was asso
iatedwith a weak prote
tive e�e
t while a history of heavy al
ohol 
onsumption andbeer drinking was asso
iated with a deleterious e�e
t for some endpoints. SeeKlein, Klein & Ritter (1994), Ritter, Klein, Klein, Mares-Perlman & Jensen(1995) and Moss, Klein, Klein, Jensen & Meuer (1998) for referen
es. We usedmultiple linear logisti
 regression and 
ontingen
y tables for the preliminaryanalysis. First, one predi
tor variable was examined at a time. Only those



101variables whose p-values are below some threshold (0.1) were kept for furtheranalysis. A forward sele
tion pro
edure was then 
arried out for the linearlogisti
 regression. Afterwards, several possible forms of the model were 
loselyexamined by the nonparametri
 method. If the �tted value of any term hadno signi�
ant visual e�e
t to the overall �t, that term was 
onsidered to haveno pra
ti
al importan
e. The six \predi
tor" variables sele
ted for the �nalnonparametri
 model are listed in Table 4.Variable units 
ode
urrent usage of hormone repla
ement therapy yes/no hormhistory of heavy drinking yes/no drinbody mass index kg=m2 bmiage years agesystoli
 blood pressure mmHg sysserum 
holesterol mg=dL 
holTable 4: Predi
tor variables for the Beaver Dam Pigmentary abnormalitiesmodel.The model �tted there isf(x) = C + f1(sys) + f2(
hol) + f12(sys,
hol)+dageage + dbmibmi + dhormI1(horm) + ddrinI1(drin): (4.2.1)I1 and I2 are indi
ator variables. Originally, age and bmi were �tted as smoothmain e�e
ts, however visual inspe
tion indi
ated that they are indistinguishablefrom linear terms, so that they were set to be linear in the �nal model. Thus,there are 5 smoothing parameters in the model, one for ea
h of the main e�e
ts



102of sys and 
hol, another 3 for the intera
tion term (linearsys 
 smooth
hol,smoothsys 
 linear
hol, smoothsys 
 smooth
hol). The results were reported inLin et al. (1998).In this se
tion, we will re-examine the asso
iation by using the proposedpenalized multivariate logisti
 regression. n = 2495 women with out
omesavailable for both eyes are in
luded in the analysis. For referen
e, the per
entilesof the 
ontinuous predi
tor variables are given in Table 5.Per
entile Min 12.5 25 37.5 50 62.5 75 87.5 Maxsys(mmHg) 71 108 116 122 129 136 145 157 221
hol(mg=dL) 102 191 210 225 237 252 266.5 290 503bmi(kg=m2) 15 22.5 24.25 25.9 27.4 29.5 31.55 35.2 68.4age(years) 43 48 52 58 62 66 71 76 86Table 5: Per
entiles of the predi
tor variables.In Table 6, we summarize the relation between the out
ome variable and the
ategori
al predi
tor variables.We apply the penalized multivariate logisti
 regression to analyze these data.Here J = 1 and K1 = 2. All predi
tor variables took the same values for botheyes of the same person. The asso
iation between fellow eyes is assumed tobe a 
onstant � = log P (1; 1jxi)P (1; 1jxi)P (1; 0jxi)P (0; 1jxi) . The �nal model takes the samefun
tional form as in (4.2.1), although this time on the 
onditional logit s
ale.Only 50 basis fun
tions sele
ted by the 
lustering method is used to �t the�nal model. To estimated the ranGACV , the number of repli
ates R is takento be 20. Upon 
onvergen
e, the estimated �̂ = 2:8269. The naive estimate



103pigmentary abnormalitieshorm no one eye both eyesno 1953 184 104yes 245 6 3pigmentary abnormalitiesdrin no one eye both eyesno 2073 174 100yes 125 16 7Table 6: Summaries of the relation between the pigmentary abnormalities andthe 
urrent usage of hormone repla
ement therapy and the heavy drinking his-toryof odds ratio without adjustment for any 
ovariates is 26.06. The estimatedodds ratio from the multivariate model goes down to OR = e2:8269 = 16:89.Obviously, the 
ommon predi
tor values for the same person explain partly thestrong asso
iation between fellow eyes. We plot the estimated main e�e
ts ofall predi
tor variables in 
onditional logit s
ale in Figure 23. Not surprisingly,age turns out to be the most in
uential predi
tor.From the estimated joint probability, we 
an 
al
ulate the probability ofat least one eye developing the pigmentary abnormalities. Figures 24 and 25give the estimated probability of �nding pigmentary abnormalities in at leastone eye as a fun
tion of 
hol, for various values of sys, age and bmi. InFigure 24, (horm, drin)=(no, no) and in Figure 25, (horm, drin)=(yes, no).A suggestion of a nonlinear prote
tive e�e
t of 
holesterol, parti
ularly for thosewho were older in the horm=no group, may be seen as a result of �tting this
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105model. Figures 26 and 27 give the estimated probability of �nding pigmentaryabnormalities in at least one eye as a fun
tion of sys, for various values of 
hol,age and bmi. In Figure 26, (horm, drin)=(no, no) and in Figure 27, (horm,drin)=(yes, no). A prote
tive e�e
t of hormone repla
ement therapy is stillevident from this bivariate model. Figure 28 gives 
ross se
tional plots of theestimated probabilities along with the 90% Bayesian 
on�den
e intervals as afun
tion of 
hol for both values of horm and four values of age, whi
h are takento be the middle of the four age groups de�ned in the Beaver Dam Eye Study.The new analysis basi
ally 
on�rms the result obtained in Lin et al. (1998).The trend of the e�e
t for ea
h predi
tor variable remains the same. Comparedto Figures 9-11 in Lin et al. (1998), we do noti
e some small di�eren
e betweenthese two models. From the simulation studies, we expe
t that the new modelis 
loser to the underlying truth. Besides, we noti
e that the out
omes for botheyes of the same person are highly 
orrelated (OR = e2:8269 = 16:89), even afteradjusted for all the predi
tor variables in this model. This partly explains whythe results from the two models look very similar. When the out
omes are less
orrelated, or there are more repeated measurements for the same person, the\multivariate" method estimating the joint distribution is expe
ted to extra
tmore information from the data.Another merit of this new approa
h is to estimate the probability P (Yk =1jY (�k) = 1; X). Figure 29 shows this 
onditional probability as a fun
tion of
hol. This 
onditional probability is medi
ally meaningful to a patient who has
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Figure 24: Estimated probability of at least one eye having the pigmentary ab-normalities as a fun
tion of 
holesterol by three levels of age and bmi. horm=no,drin=no.
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Figure 25: Estimated probability of at least one eye having the pigmentary ab-normalities as a fun
tion of 
holesterol by three levels of age and bmi. horm=yes,drin=no.
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Figure 26: Estimated probability of at least one eye having the pigmentaryabnormalities as a fun
tion of systoli
 blood pressure by three levels of age andbmi. horm=no, drin=no.
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Figure 27: Estimated probability of at least one eye having the pigmentaryabnormalities as a fun
tion of systoli
 blood pressure by three levels of age andbmi. horm=yes, drin=no.
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Figure 28: Bayesian 
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e intervals for the probability of at least one eyehaving the pigmentary abnormalities. bmi and sys are �xed at their median.drin=no.



111been diagnosed to have a 
ertain disease for one eye. It provides a guideline ashow to redu
e the risk of the same disease for the other healthy eye.
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Figure 29: Estimated probability of one eye developing pigmentary abnormal-ities 
onditioning on the other eye already having this disease as a fun
tion of
holesterol by three levels of age and bmi. horm=no, drin=no.



113Chapter 5
Summarizing Remarks
5.1 Con
lusionPenalized multivariate logisti
 regression using smoothing spline ANOVA modelhas been proposed to estimate the joint distribution for multivariate Bernoullidata, given the values of the predi
tor variables. The estimate is obtained bysolving a variational problem involving the penalized likelihood.Numeri
ally, an approximate solution of the minimization problem is ob-tained by using the blo
k one-step SOR-Newton-Ralphson algorithm. It hasbeen proved in some spe
ial 
ase, the approximate solution requires mu
h less
omputing resour
es to a
hieve the same statisti
al 
onvergen
e rate as theexa
t solution. Extensive Monte-Carlo experiments demonstrate that the per-forman
e of the approximate solution is very 
lose to the exa
t one. Hen
e, we
an deal with mu
h larger data set by using the approximate solution insteadof the exa
t one. GACV for multivariate Bernoulli data has been derived. Itsrandomized version has been used to adaptively sele
t smoothing parameters inevery step of the blo
k one-step SOR iteration. From the simulation studies, theiterated ranGACV is an ex
ellent 
omputational proxy for the CKL distan
e.



114The asso
iation terms are still kept as simple parametri
 forms in this model.They are estimated iteratively by maximum likelihood estimation in ea
h blo
kone-step SOR updating step.By taking the dependen
e stru
ture into 
onsideration, we 
an obtain apartly 
exible estimate of the joint probability, 
onditioning on the predi
torvariables. This approa
h is parti
ular useful when the 
orre
t form of the fun
-tion to be estimated is unknown. We su

essfully applied this method to analyzea medi
al data set. Some interesting features of this data set are brought toour attention by the nonparametri
 model, while more 
onventional parametri
approa
h is unlikely to reveal su
h a relationship without more prior knowledgeof the data set.5.2 Log-linear vs. Marginal Model, and FutureResear
hThe model we 
onsidered in this thesis is a 
onditional logisti
 regression model.The parameters f 's and �'s in our model have straightforward interpretationsin terms of 
onditional probabilities. They are the 
anoni
al parameters in thelog-linear model. Another 
lass of model is the marginal model. The jointdistribution is parameterized in terms of marginal means and odds ratio ratherthan 
onditional means and odds ratio.



115The 
onditional model is very useful for predi
tion. In pra
ti
e, for a ve
-tor of 
orrelated out
omes, we may not observe all of them at the same time.However, we want to predi
t the out
omes of the unobserved variables 
on-ditioning on the predi
tor variables and observed out
omes. The 
onditionalmodel addresses this problem more dire
tly than the marginal model.The 
omputation of the marginal model is more diÆ
ult than the 
ondi-tional model, sin
e it involves re-parameterization of the 
anoni
al parameters.However, it also enjoys the reprodu
ibility property, espe
ially when the num-bers of repeated measurements for ea
h subje
t vary. Although it is arguedthat when the asso
iation fa
tor is of interest, this will be most likely genuinemultivariate data of equal 
luster size, it will be interesting to build a marginalmodel by using a SS-ANOVA model. When the 
luster sizes are unequal, likesome longitudinal studies, the asso
iation fa
tor 
an be viewed as a nuisan
eparameter. Data-driven method to sele
t the smoothing parameters need to bedeveloped.Another interesting problem is to develop a semi-parametri
 model for time-to-event data using a smoothing spline model. We will assume a nonparametri
form for baseline hazard fun
tion. The out
ome variable 
ould be 
orrelatedmultivariate responses, for example, the time to developing a 
ertain eye dis-ease for ea
h eye of the same person. Alternatively, there may exist 
orrelated
ompeting or semi-
ompeting risks or informative 
ensoring. Full penalized like-lihood may be useful for model building. As always, a 
entral question is how



116to adaptively 
hoose the amount of smoothing.
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