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Abstract

We combine a smoothing spline ANOVA model and a log-linear model to build
a partly flexible model for multivariate Bernoulli data. The joint distribution
conditioning on the predictor variables is estimated. The conditional log odds
ratio is used to measure the association between outcome variables. A numer-
ical scheme based on the block one-step SOR-Newton-Ralphson algorithm is
proposed to obtain an approximate solution for the variational problem. It is
proved for a special case that the approximate solution can achieve the same
statistical convergence rate as the exact solution, but is much more computing
efficient. We extend GACV (Generalized Approximate Cross Validation) to
the case of multivariate Bernoulli responses. Its randomized version is fast and
stable to compute. Simulation studies show that it is an excellent computa-
tional proxy for the C KL (Comparative Kullback-Leibler) distance. It is used
to adaptively select smoothing parameters in each block one-step SOR itera-
tion. Approximate Bayesian confidence intervals are obtained for the flexible
estimates of the conditional logit functions. Simulation studies are conducted
to check the performance of the proposed method. Finally, the model is applied
to two-eye observational data from the Beaver Dam Eye Study to examine the

association of pigmentary abnormalities and various covariates.
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Chapter 1

Introduction

1.1 Motivation

The original motivation of this study comes from many typical data from oph-
thalmological studies. One characteristic of such kind of data set is that we
have outcomes from both eyes of the same person. Usually, they are correlated
Bernoulli outcomes, Yj;,7 = 1,2,...,n,7 = 1,2. Y;; = 1 indicates that the jth
eye of the ith person has a certain disease. Both person-specific and eye-specific
covariates may be available as predictor variables.

As in many medical data, it is not sufficient to directly predict the outcome
based on the available covariates, since even people with the same covariate
values do not necessarily have the same medical outcomes. Instead, we are
interested in finding the relation between outcome variables and predictor vari-
ables, i.e. (1) what is the probability p of a certain outcome conditioning on
some given predictor variable values; (2) how will the changes of predictor vari-
ables affect the conditional probability p; (3) how strong are the correlations
between those multiple outcomes.

The first question is to build a predictive model for future observations.



Their covariate variable values may not appear in the training set. Consequently
we need some smoothing technique which not only provides estimate of p on
those data points available for model building, but also provides prediction
between those data points.

The second question is related to interpretability of our model. Unlike a
black box, it should have readily interpretable result for multivariate function
estimate and reasonable assessment of accuracy after the model has been fitted.
This property is especially important for medical researchers, since the inves-
tigators are usually interested in understanding the cause of certain outcomes.
In computer sciences, neural networks have been one of the most popular tech-
niques for predictive model building, but the result is difficult to interpret.

The third question is related to the special structure of typical ophthalmol-
ogy data sets and many other data sets. When analyzing data from a typical
ophthalmology study, we must take into account the fact that the measure-
ments made on both eyes of the same person are highly correlated. Hence, we
can not treat them as independent outcomes. Multiple outcomes for the same
person (or group) may also arise from two-period cross-over designs (Jones &
Kenward 1989), twin studies (Cessie & Houwelingen 1994) and typical longitu-
dinal studies. It is also of interest to model several closely related endpoints
simultaneously. For example, in Liang, Zeger & Qaqish (1992), two endpoints
from the Indonesian Children’s Study, respiratory and diarrheal infections were

considered in the same model. To address the third question, it is not enough



to simply estimate the marginal distribution separately for individual outcome
variables. Instead, we want to treat those outcome variables together and esti-
mate their joint distribution. The dependence structure can be useful for the
efficient estimation of the mean values, or it can be of direct scientific interest.
Numerous schemes have been proposed to study it. For example, Cox (1972)
expressed the likelihood function in terms of the multivariate exponential family
distribution. Qu, Williams, Beck & Goormastic (1987) considered conditional
logistic models. McCullagh & Nelder (1989) proposed multivariate marginal
logistic regression model. Lipsitz, Laird & Harrington (1991) and Williamson,
Kim & Lipsitz (1995) considered marginal models and used the (global) odds
ratio as a measurement of association. Liang et al. (1992) had a discussion
about the difference between log-linear and marginal models. Molenberghs &
Ritter (1996) proposed a likelihood based marginal model and established the
connection with the second order generalized estimating equations (GEE2).

Classical log-linear models have been widely used to estimate joint condi-
tional probabilities. See Bishop, Fienberg & Holland (1975). People used to
assume linear parametric forms for all the conditional logit functions to be es-
timated. However, it is not always adequate to make linear or even quadratic
or cubic assumptions. When the linear assumption is far away from the truth,
the result obtained under such an assumption may even be misleading.

On the other hand, the nonparametric approach can give us more flexibility



for model building. In the past time, one fact prevented nonparametric re-
gression from wide application was the limited computing resource. However,
the computing speeds of modern computers have been improved dramatically,
and they are equipped with much larger high speed random access memory
(RAM) nowadays. Various new algorithms have also been developed to speed
up the computation. The nonparametric approach will be very useful when a
parametric model is not sufficient. In the mean time, it can also serve as an
automated diagnostic tool for parametric fitting. We will not review the general
literature here, other than to note that the additive smoothing spline has been
used by Heagerty & Zeger (1998) and Lin & Zhang (1999) for this purpose.
Heagerty & Zeger (1998) used log odds ratio as a measurement of dependence
and smoothing splines with fixed degrees of freedom. Their model was fitted by
using Generalized Estimating Equation. Lin & Zhang (1999) proposed gener-
alized additive mixed effect model and used smoothing splines to estimate the
additive fixed effect terms.

Smoothing spline analysis of variance (SS-ANOVA) provides a general frame-
work for multivariate nonparametric function estimation. It allows both main
effects and interaction terms. These models have been studied extensively for
Gaussian data. Recently, Lin (1998b) obtained some general convergence re-
sults for tensor product space ANOVA model and showed that smoothing spline
ANOVA model achieves the optimal convergence rate. Wahba, Wang, Gu, Klein

and Klein (1995, referred as WWGKK) gave a general setting for applying



smoothing spline ANOVA to data from exponential families. They success-
fully applied their method to analyze demographic medical data with Bernoulli
outcomes. Lin (1998a) proposed to use SS-ANOVA to model data with poly-
chotomous responses. Wang (1998a) developed mixed effect smoothing spline
model for correlated Gaussian data. In this thesis, we will explore how to use
smoothing spline ANOVA to model correlated multivariate Bernoulli data.

We will combine log-linear model and smoothing spline ANOVA model to ob-
tain a partly flexible estimate of the joint distribution for multivariate Bernoulli
data. It is of particular interest to us to explore the nonlinearity of the con-
ditional logit functions. Conditional log odds ratio will be used to model the
association among multivariate Bernoulli outcomes. We will still let log odds
ratio take a simple parametric form and estimate it by using maximum likeli-
hood estimation. An extension of GACV proposed by Xiang & Wahba (1996)
to multivariate responses will be used to choose smoothing parameters. We
will iteratively estimate the conditional logit functions and log odds ratio until

convergence.

1.2 Outline of the Thesis

In Chapter 2, we will review the log-linear model for multivariate Bernoulli
observations and propose a smoothing spline ANOVA model to relax the para-
metric assumption. The existence and uniqueness of the nonlinear solution is

investigated.



In Chapter 3, we discuss how to fit the penalized multivariate logistic re-
gression model for a large data set. A numerical method combining the block
one-step SOR-Newton-Ralphson algorithm and approximate smoothing spline
is used to solve the variational problem for fixed smoothing parameters. We
also proposed to use the iterated ranG ACV for multivariate Bernoulli data to
select smoothing parameters adaptively. Simulation studies are conducted to
illustrate the reasonable performance of the proposed algorithm.

In Chapter 4, we apply the proposed method to investigate the association
between the pigmentary abnormalities and some risk factors for women in the

Beaver Dam Eye Study. Finally, some discussions are given in Chapter 5.



Chapter 2

Penalized Multivariate Logistic

Regression using Smoothing

Spline ANOVA

2.1 Log-linear Model for Multivariate Bernoulli

Data

Assuming there are J different endpoints, and K; repeated measurements for
the jth endpoint, let Y}, denote the kth measurement of the jth endpoint. For
example, in ophthalmological studies, we have two repeated measurement for
each disease: left eye and right eye. In a typical longitudinal study, we have
repeated measurements over the time. Y = (Yj,j = 1,...,J,k = 1,..., Kj) is
a multivariate Bernoulli outcome variable. Let Xz = (Xx1, Xjk2, ..., Xjep) be
a vector of predictor variables ranging over the subset X of R?, where X4
denotes the dth predictor variable for the kth measurement of the jth endpoint.

Some predictor variables may take different values for different measurements



while others may be the same for all Yj;’s. For example, in ophthalmology
studies, there may be present both person-specific predictors and eye-specific
predictors. The person-specific predictors are the same for each person while
the eye-specific predictors may be different for the left and right eyes. Let
X =Xk,j=1,...,J,k=1,..,K;). Then (X,Y) is a pair of random vectors.
For a response vector vy = (yjx,j = 1,...,J,k = 1,..., Kj), its joint probability

distribution conditioning on the predictor variables X can be written as

J Kj J
PY =ylX) = exp{D D itk + D D QkrjkaYir Uik

7j=1 k=1 71=1 k1<ks
T Z Z QjikyjokaYirks Yiaka T oo
J1<J2 k1,k2
‘e, kY12 Yok, — b(f, )} (2.1.1)

where

b(f? a) = lOg(l + Zexp(fjk) + Z Z exp(fjlkl + fj2k2 + aj1k1,j2k2)

J.k Ji.k1 j2,k2
totexp( ) f+ Y ) (2.1.2)
all all o

Let M = ijl K be the length of the vector Y, there are in total 2 — 1 pa-

rameters: (f,a) = (fi1, fi2, ---;fJKjaall,l%'-'7a11,12,...,JK]-)7 which may depend

on X. The parameter space is unconstrained. They have straightforward inter-

pretations in terms of conditional probabilities. For example,
fir = logit(P (Y = 1]y 79 = 0, X)) (2.1.3)
is the conditional logit function;

Qjyky,joks = 10g OR(}/}II‘H? }/}zkz |Y(7jlkl’7j2k2) = 07 X) (214)



is the conditional log odds ratio, which is a meaningful way to measure pairwise

association;
ik ,jok,jaks
= . . S (—drkr,—j2ka,—jsks) _
- lOgOR(YﬁkUYVkaY%% =LY - OaX)

- lOgOR(}le17}/}2k2|}/}3k3 _O Y( Tk ok, sks) — =0 X) (2'1'5)

is measuring three way association. Here Y(=*) denotes the subset of vector ¥’

except Y, and

. p
logit(p) = lo , 2.1.6
git(p) = log i (2.1.6)
_ Pv=1Lw=1)Pv=0,w=0)
OR(v, w) = Plv=1Lw=0)Pv=0w=1) (2.1.7)

Now assume that we have n independent observations (z;,v;),7 = 1,...,n
where y; = (yillainZ;---;yiJKj) and z; = ($¢11,$¢12,---,$iJKj)- Here y;;, and
Tije = (@ijk1, Tijk2, ---, Tijkp) are the outcome variable and predictor vector for
the kth measurement of the jth endpoint of the i¢th subject. From now on,
we will use f; and «; to denote the parameters for the ¢th subject, while y =
(Y1 ey Yn)s [ = (f1y -y fr) and o = (v, ..., ay,). We can write down the negative

log likelihood function based on the observed data.

y f Oé Z{ZZfZ]kyz]k +Z Z ijkyijkaYijki Yijks

i=1 j=1 k=1 J=1 ki<k»
+ E : E Qg kyigaks Yijiks Yijaky + -
J1<j2 ki1,k2

Firn i, i K Y Yiz--Yisk; — b(fi, i)} (2.1.8)
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We refer to equation (2.1.8) as the log-linear model for multivariate logistic
regression. f;j; is the conditional logit function for the A£th measurement of the
jth endpoint of the ith subject. Scientifically, except for that they may take
different predictor values from measurement to measurement, there is little rea-
son to believe they will take different functional form for the same endpoint.
Hence we can assume f;jx = fj(@;jx). Same reasoning applies to the associa-
tion terms. For example, we can assume j i, ijoks = @jrjs (Tijikys Tijak,)- Lhe
traditional parametric approach to fit the log-linear model is to assume linear

relation between the parameters and predictors

fije = Fi(ziji) = Bjo + BiaZijkn + ... + BipTijkp (2.1.9)

and so on. The model can be fitted efficiently by iterative proportional fitting
(Bishop et al. 1975).

In practice, there are many ways to reduce the number of parameters to be
estimated. For example, under many situations, scientific interest will be pri-
marily focused on the conditional logit function f;;, and log odds ratio aj, k; ijsks
which measures pairwise association. The existence of three way association
Qijiky ijoksijsks @Dd higher order associations are usually difficult to verify in
practical situations, and may attract less scientific interest. Hence it is possi-
ble to set all higher order associations to be zero and only fit a parsimonious
model instead of the saturated one described in (2.1.8). The reduced model is

a member of the quadratic exponential model in Zhao & Prentice (1990).
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2.2 The Variational Problem

In this thesis, we are interested in building flexible log-linear models. We are
particularly interested in exploring the nonlinearity of the conditional logit func-
tions f;’s. On the other hand, since it will take a very large number of obser-
vations to estimate many multivariate smooth functions simultaneously, this
approach will still let the o’s take a simple parametric form. In this section, to
simplify the notation, we will consider a parsimonious model. Without loss of
generality, except for the pairwise association, we will assume all higher order
associations to be zero. Then the negative log likelihood function can be written

as

Ly, f,a)

_ —Zli(f(xi);a(xi))

J Kj J
= =) DD Filwunyge + Y D s(@iges Tigks) Yige, Yige,

i=1 j=1 k=1 J=1 k1<ks

+ 0> i (ks Tk Vi, Yioks — O(fir i)} (2.2.1)

J1<g2 k1,k2

where

b(fi, )
= log(l+ Z exp(f;(wijr))

Ik

+ 30 exp(fis (@irs) + Fio (@igaha) + o Tk Tiiars))

J1,k1 g2,k

+otexp(D filwie) + ) @ik Tiks)) (2.2.2)
7,k

Jik1 joko
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We propose to use the penalized likelihood method to achieve greater flexibil-
ity in log-linear models. To relax the linear assumption, the penalized likelihood
method (O’Sullivan 1983) only assumes the function to be estimated is smooth
in some sense and imposes a certain roughness penalty on the function. Techni-
cally, a reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions
on X in which the evaluation functional is continuous (Aronszajn 1950). We
will then assume f; € H’, where H’ is a reproducing kernel Hilbert space.
The penalized multivariate logistic regression estimate of f = (fi, fo, ..., fs) and

a = (a1, 042, ..., @y y) is the minimizer of the following variational problem

NN A Zz ;) + JA(fl,...,f ), (2.2.3)

where the first part is the negative log likelihood and the second part is the
roughness penalty. We will assume additive form of the penalty function for

simplicity and easy interpretation:

NE Z)\ JI(f;) (2.2.4)

We consider the orthogonal decomposition H’ = ’H% ® HJ. Here ’Hé is
finite dimensional (the “parametric” part, usually polynomials), and #H? (the
“smooth” part) is the ortho-complement of 7—[% in H’. The penalty function will
only be related to the smooth part of the function: J7(f;) = ||P} f;||?, where P/

is the orthogonal projection operator in H’ onto H{ The penalized likelihood
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has the following expression:

n J
La(y, f,a) = — Zli(f(ffi); a(z;)) + Z)\jHPffjHZ (2.2.5)

i=1 j=1
The following theorem will show the existence and uniqueness of the solution
to the variational problem (2.2.3). Denoting Ho = H} X -+ x HJ be the null
space of H' x --- x H’ with respect to the penalty function .Jy, the following

theorem is true.

Theorem 2.1 If the minimizer of (2.2.5) exists in Hy, it uniquely ezists in

HE X x H
Before we prove this theorem, we will first state two lemmas.

Lemma 2.1 Let fijk denote fg(ngk) and Qi ky igaks denote Q5 g, (.l‘ijlkl,.l‘iijQ).

L(y, f,a) in (2.2.1) is a strictly convex function of fijr’s and qijik, ijsk, 'S-

Proof We need to show the Hessian is positive definite. To simplify the no-
tation, we will relabel Y; = (Yj;x) to be (Y, ..., Yin), where M = Z]‘.le K;.
We simplify the notation for f’s and «’s similarly. From the property of ex-
ponential families, we know the Hessian with respect to f’s and a’s is H =
diag{H,, H,, ..., H,}, where H; is the covariance matrix of ¥; = (Yj1,Yj, ...,
Yiar, Y Yio, YirYis, ooy Yiar 1Yiar)T. Denoting a; = (a1, Gigy -y Gidgy Girz, Qit3y -y
ainr )’ if al Hia; = var(al'Y;) = 0, then we have a!'Y; = constant. We will
show a; must be a zero vector. First, the constant here must be zero since we

can let all Y;,,’s be zero. To show a;,, = 0, we will let Y;,, = 1 and the rest
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of vector }N/; be zeroes. Afterwards, to derive @y, m, = 0, we will let the only
nonzero elements of the }N/l vector be Yj,,, = 1,Y},,, =1 and Y;,,, Vi, = 1. This

proof also extends to the saturated model. |

The following Lemma is Theorem 4.1 from Gu & Qiu (1993)

Lemma 2.2 Suppose L(g) is a continuous and strictly convex functional in a
Hilbert space H = Ho & Hy, where Hy has a square norm J(g) and Hy is the
null space of J(g) of finite dimension. If L(g) has a minimizer in H,, then

L(g) + J(g) has a unique minimizer in .

Proof of Theorem 2.1

Define

4
fi(@ijr), 1<j=h=j <,
1§k:k1:k2§Kj,ijHj
. . i (Tijh, Tigr,) 1< j=j1=17J2 < J,
9(%:]1;%;]2;@) = ' ’
1<k <k < Kj

Wiy (Tijrkrs Tijoks) 1 < J1 < Jo <,

1<k <Kj, 1<k <K,

17
\

Let H = {g(xi,jr, k1, Jo k) t wijp € X, 1 < i < jp < J, 1 < by < K,
1 < ky < Kj,}. Then H is a Hilbert space with square semi-norm J,(g) =
Ix(fi,..., fs). Let £L*(g9) = L(y, f, ). By Lemma 2.2, it suffices to show that

L*(g) is continuous and strictly convex in 7. Continuity is obvious. Strict

convexity follows from Lemma 2.1. |
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2.3 Smoothing Spline Analysis of Variance

Given a smooth multivariate function f on some domain X', we are interested in
decompose it into some component functions for the reason of easy interpreta-
tion and model building. A general ANOVA type decomposition is described in
Chapter 10 of Wahba (1990) and Wahba, Wang, Gu, Klein & Klein (1995). To
make any decomposition well defined, we assume that M, a linear space of func-
tions of x (the model space) which we assume contains f, can be decomposed

as a direct sum of its subspaces.
M=HOH,D... OH, (2.3.1)

Hence the decomposition of any f € M into component functions in these
subspaces is unique.

A unique ANOVA type decomposition can always be defined provided f
satisfies some measurability conditions. Let X(® be a measurable space. diq
be a probability measure on X(®. Define the averaging operator £, on X =

X(1)®®X(D) as

(Ea)(x) = . f(z1, 2, oy xp)dpa(zs) (2.3.2)

Then the identity is decomposed as
I = J[(a+ (U -£)
= [[&+D U-)][&+D T-c)I-6) ] &

[37505 Oé<6 7750576
+o+ ] - &) (2.3.3)
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The components of this decomposition generate the ANOVA decomposition

of f in the following form

d

(@1, 2q) = p+ Zfa(xa) + Zfaﬂ(xaaxﬂ) + ... + fi...p(21, ., TD),

a=1 a<f

(2.3.4)

where we have p = ([, €a)f, fo = (I = &) [1p20 €8) S5 fap = (I = Ea)(I -
Es) 1,205 €7) S+ and so forth.

The idea behind Smoothing Spline ANOVA is to construct a Reproducing
Kernel Hilbert Space (RHKS) H of functions on X" so that the components of
the SS-ANOVA decomposition represent an orthogonal decomposition of f in
H. Let H be an RKHS of functions on X with [, fa(2e)dpe = 0 for
fa(2s) € H, and let [1(¥] be the one dimensional space of constant functions
on X(@ . Construct H as the tensor product space

H=[[{1De ) =1Hed HYa ) HIeHD|o... (235)

j=1 a<p

where [1] denotes the constant function on X. With some abuse of notation,
factors of the form [1%] are omitted whenever they multiply a term of a different
form. Thus H(®) is a shorthand for [1V]®- - - @1 V]@H @ [1(H)]®- . .®[1(P)]
(which is a subspace of H). The components of the ANOVA decomposition are
now in mutually orthogonal subspaces of 7. Note that the components will
depend on the measures dji, and these should be chosen in specific application so

that the fitted mean, main effects, two factor interactions, etc. have reasonable

interpretations.
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Next, H(® is decomposed into a parametric part and a smooth part, by
letting H(®) = #® @ ’Hf;‘), where H' is finite dimensional (the “parametric”
part) and H(Sa) (the “smooth” part) is the ortho-complement of #® in M@,
Elements of H'* are not penalized through the device of letting J,(f,) =
1PS f.||2 where P is the orthogonal projector onto H'®. Now [H(®) @ H®)]
is a direct sum of four orthogonal subspaces: [H(® @ H¥)] = [nga) ® ngﬁ)] ®
HY o 1D o 1Y @ #HP) o 1Y @ #P]. By convention the elements of
the finite dimensional space [’nga) ® ’ngﬂ)] will not be penalized. Continuing
this way results in an orthogonal decomposition of H into sums of products of
unpenalized finite dimensional subspaces, plus main effects “smooth” subspaces,
plus two factor interaction spaces of the form parametric ® smooth [’nga) ®’Hgﬁ)],
smooth ® parametric [Hg") ® HY] and smooth ® smooth [Hg") ® H(Sﬂ)] and
similarly for three and higher factor subspaces.

In practice, the series of ANOVA decomposition in (2.3.4) will be truncated
at some point. Assuming that we have already decided which subspaces will be
included in our model M(C #), we can regroup and write the model space as in
(2.3.1). Usually we will let #; be a finite dimensional space containing functions
which are not going to be penalized. The norms on the composite H;,1 <1 <g¢q
are the tensor product norms induced by the norms on the component subspaces,
and ||f]1* = ||PofI]? + 2L, [|P.f]]?, where P, is the orthogonal projector in
M onto H;. Now we can use RKHS methods to explicitly impose roughness

penalties. The smoothing spline ANOVA estimate of f in the Gaussian case is
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the solution to the following variational problem

min{ 3 (v — £ ()" + 5 D MIIPIP (2:3.6)

The first term in (2.3.6) is the sum of squared residuals which measures the
goodness of fit while the second part is the penalty on roughness of the estimate.
The \;/’s are smoothing parameters controlling the trade-off between goodness
of fit and roughness. These smoothing parameters can be estimated from the
data by the generalized cross validation (GC'V') method or by the unbiased risk

method (UBR) (see Wahba 1990).

2.4 Penalized Log-linear Model using Smooth-
ing Spline ANOVA

We will use tensor product space and Smoothing Spline ANOVA to obtain a
multivariate function estimate based on the variational problem (2.2.3). It is a
direct generalization of (2.3.6) to multivariate Bernoulli observations.

Assume that we have already chosen a model space M; = H) @ S, H‘l’ for

each conditional logit function f; in (2.2.3), we can rewrite (2.2.5) as
n n J 4 )
[ omin {— D Llf@s) @) +5 Y > MallP £ (2.4.1)
J JJ1I2 i=1 ]:1 =1
The first part in (2.4.1) measures the goodness of fit while the second part
is roughness penalty in SS-ANOVA model. In the second part, Plj denotes

the orthogonal projector in M, onto the penalized subspace ’H{ The roughness
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penalty for that subspace is the squared norm defined on that subspace || P/ f||2.
The Aj;’s are the smoothing parameters which controls the bias-variance trade-
off. Larger smoothing parameters will force the estimate into the parametric
subspace while smaller ones will lead to more flexible estimate.

Let’s define

a5
AR, = [1PSFIP+ ) B P (2.4.2)
=1

This is a modified but topologically equivalent norm on M;. indexed by A;.
Denoting the reproducing kernel for the subspace ’Hlj associated with the original
norm is R{, we can show that )\j’llle is the RK for 7—[{ associated with the
modified norm.

The RK of the direct sum of orthogonal subspaces is the sum of the individual
RK’s. The RK of the tensor product space is the product of the RK’s of the
component spaces. Hence the computation for each R{ is straightforward. For
example, if R,ngdl) (+,-) and RHng)(-, -) are the RK corresponding to the Hilbert
spaces Hsrdl) and Hgfb) respectively, the RK corresponding to the tensor product

space H) & Hgfb) is

R, @) (@4, (i1), Ty (i2)) R, ) (T, (01), Tay (42)),
m s

where x,(v) denotes the uth coordinate of the vth design point. Consequently,

it can be shown that the RK for M, under the modified norm is equal to

4aj
Rjn, = R, )+ ) A RI( ). (2.4.3)
=1
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In principle any positive-definite function may play the role of a reproducing
kernel. Conditionally positive-definite functions as occur in thin plate spline can
also be accommodated. One of the most commonly used penalty on [0, 1] is the
square integral of the second derivative fol(f”(:r))Qd:r. Let H denote the Sobolev
space {f|f, f'absolutely continuous, f” € Ly}. We can decompose H into the
direct sum of the unpenalized subspace H, and the penalized subspace H;. A
reproducing kernel of H; with respect to the above penalty function can be

written as
R(z,z") = ko(2)k2(2") — ko[ — 2']), (2.4.4)
here [-] takes the fractional part of a number and
ki(x) = o—1/2
kao(z) = (ki(2) —1/12)
ko(z) = (Ki(x) — ki(z)/2 4+ 7/240)/24. (2.4.5)

Furthermore, we have the relation

A (dd—;(z CiR(J’I, CUz)))Qd;E = Z Z CilciQR(:Eih xi?)- (246)

i=1 11=142=1

Let ¢1(x) = 1, ¢o(x) = ki(z), then Hy = span{¢p1(x), p2(x)}. This penalty
function and reproducing kernel is particularly useful in biostatistical applica-
tions. In practice, we can always rescale the original data points to the interval
[0, 1].

Next, we will show that the minimizer of the variational problem (2.4.1) is

actually within a finite dimensional linear space.
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Theorem 2.2 The solution to (2.4.1) has the form
filz) = ¢ (a)'d + € (x)"¢, (2.4.7)

where ¢ and &’ are vectors of coefficients. Here {¢J}7 | is a set of basis
functions spanning the null space H}. ¢'()T = ($1(), -+, ;37]()) gt =

(Rj:Aj( 151, ')7 T 7Rj7Aj( 17K;» ')7 Rj:Aj( 2515 ')7 T JRJ';A]‘( njK;» ))
Proof See Wahba (1990). |

The above theorem states the fact that the minimizer in an infinite dimen-
sional function space is actually a linear combination of a finite number of basis
functions. Hence the computation of the minimizer is feasible. Substituting

(2.4.7) into (2.4.1), we can estimate ¢’ and d* by minimizing

I)\(C, da CY)
= =) Lo @) d + N w) e ¢ ()T + € ()T
=1
0111((171'), 19 (331), ceey O{J,J(:Ei)) + 5 Z ¢ ijAjCJ (248)
7=1
where Q;4; is an (nk; x nk;) matrix
Qi Qjiz - Qjn

Qj21 Qj22 .- Qj2n

Qja, = (2.4.9)

Qjan]- Q.’]:TZZ e Q_’),nn
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The definition of the K; x K; submatrix (), is as following

Rjn; (Tigj1, Tiyjn)  Rya (Tiggn, Ting2) -0 Bya (Tiggn, Tigjik;)
Rjn; (Tigjo, Tinj1)  Rja (Tigge, Ting2) oo By (Tigje, Tigjk;)
Qjaili2 =
Rj:Aj( ilej7$’i2j1) Rj,l\j( ileijizﬂ) Rj:Aj( ileijléjKj)
(2.4.10)

Since [;’s are not quadratic, solution of (2.4.8) does not have a closed form. In
the next chapter, we will discuss how to obtain the estimate numerically. When
the sample size is large, an approximate solution instead of the exact one will

be obtained.
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Chapter 3

Fitting the Penalized

Multivariate Logistic Regression

3.1 Introduction

In this chapter, we will discuss how to numerically obtain the solution to the
penalized multivariate logistic regression. Technically, Newton-Raphson algo-
rithm can be used to obtain the solution because it is a quadratic convergent
algorithm. However, the computational burden is extremely heavy. The param-
eters to be estimated according to Theorem 2.2 is about ijl(pj +nkK;). Con-
sequently, the complexity for one step in Newton-Ralphson iteration is about
O((Z]‘-Izl(pj + nkKj)?), and the memory required to store the matrix is about
O((ijl(pj + nK;)?). To reduce the computational burden, two methods are
proposed here. The first one (Section 3.2) is an iterative method called block
one-step SOR-Newton-Ralphson method. The convergence is super-linear. The
complexity for one iteration is about O(ijl(pj +nK;)?). We sacrifice the con-
vergent rate a little to reduce the computational complexity in each iteration.

The second method (Section 3.4) is to obtain an approximate solution. Only a
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small number of basis functions will be chosen for the final penalized regression
step. It is shown in some special case that the approximate solution by using
a subset of basis functions can achieve the same statistical convergence rate as
the exact solution.

We will discuss a data-driven method to choose smoothing parameters in
Section 3.5. For Gaussian data, two of the commonly recognized methods are
the generalized cross validation (GCV') and the unbiased risk (UBR) methods
(Wahba 1990). For general exponential family, Wahba et al. (1995) used iterated
UBR method to choose smoothing parameters. Xiang & Wahba (1996) pro-
posed generalized approximate cross validation (GACV'). They reported that
GACYV outperformed iterated UBR. This is further confirmed in Lin (1998a).
In this thesis, we will extend GACV to the case of multivariate Bernoulli re-
sponses. A randomized version for easy computation is also proposed. Com-
bined with the block one-step SOR-Newton-Ralphson algorithm, GAC'V will be
used to choose smoothing parameters iteratively. Simulation studies show that
it is an excellent computational proxy for the Comparative Kullback-Leibler
(CKL) distance.

Bayesian “confidence intervals” were first proposed for smoothing spline with
Gaussian data by Wahba (1983) and their properties were studied by Nychka
(1988, 1990). Silverman (1985) provided another look at the Bayesian problem.
Wahba et al. (1995) developed the componentwise approximate Bayesian “con-

fidence intervals” for the non-Gaussian SS-ANOVA model. In Section 3.6, we
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will identify the penalized likelihood estimation for multivariate logistic regres-
sion with a Bayesian problem. Based on this observation, approximate Bayesian
“confidence intervals” were proposed for cross-validated smoothing spline esti-
mates.

In the last section, to demonstrate the reasonable performance of smoothing

spline estimates, we will show results from some simulation studies.

3.2 Block One-Step SOR Iteration

We will review how to use block one-step Successive Overrelaxation (SOR)
method to solve a large nonlinear system in this section. Some convergence
properties will also be discussed.

Assuming a large linear or nonlinear system we want to solve has m equations
and m variables

fl(xla"'axm) = 0
(3.2.1)

(1, ) = 0.
First let us assume this is a linear system. The Successive Overrelaxation
Method, or SOR, is devised by applying extrapolation to the Gauss-Seidel
method. This extrapolation takes the form of a weighted average between the

previous iterate and the computed Gauss-Seidel iterate successively for each
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component:
xEkH) = wfz(kﬂ) +(1— w)xz(k) (3.2.2)
where :I"EHI) is from a Gauss-Seidel iterate. This algorithm reduces to Gauss-

Seidel algorithm when the relaxation (extrapolation) factor w = 1.
To derive the block SOR method, we need regroup the unknown x = (x4, z,,
-, Ty, into p groups (z!,2?%,---  2?). Correspondingly, the m equations are

also regrouped into p groups

(3.2.3)
Fy(z',---,a?) = 0.
The updating formula for block SOR algorithm is
(:L'i)(k+1) _ w(j‘i)(k+1) + (1 B w)(xz')(k) (3.2.4)

where (z')k+1) is the successive Gauss-Seidel update for the ith linear system

in (3.2.3)
Fi((xl)(k-i-l)7 . (xi—l)(k-i-l)7 xi) (xi—l-l)(k)7 . (xp)(k)) —0. (3'2'5)

In each iteration, we successively update the block component of x by the above
method. This is repeated until some convergence criteria is met.

Now assuming that (3.2.1) is a nonlinear system. Hence in the updating
formula (3.2.4), the successive Gauss-Seidel solution (z%)**+1 of (3.2.5) can not

be obtained explicitly. To solve the smaller nonlinear system (3.2.5), we need to
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use some iterative method like Newton-Ralphson method. In this case, the pro-
cess to solve a nonlinear system is called block nonlinear SOR-Newton-Ralphson
method. See Ortega & Rheinboldt (1970) for details.

To simplify the nonlinear algorithm, we may only run the Newton-Ralphson
iteration for one step to approximate the exact solution of (3.2.5), and use that
as (z')*+Y in (3.2.4). This nonlinear SOR process is called block one-step SOR-
Newton-Ralphson method. Specifically, the updating formula (3.2.4) now has

the following expression

or;
oxt

(xi)(k+1) — (xi)(k) —w [ (y(k,z’))] B Fvi(y(k,i)), (3.2.6)

where

y Bt = ((h)EHD Lo (@D ()R L (gh k),

In the statistics literature, the nonlinear system usually arises from a mini-
mization or maximization problem in which we need to find a set of parameters
to minimize (or maximize) a function. Specifically, suppose we are going to
find x € R™ to minimize a twice differentiable multivariate function g(x), then
the updating formula for the block one-step SOR-Newton-Raphson method will

become

(xi)(k-i-l) — (xi)(k) _ w[V? (y(k,i))]—lvig(y(k,i))7 (3.2.7)

(1)

where VZg is the submatrix of the Hessian and V;g is the sub-vector of the

gradient.
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In the next part, we will discuss some convergence properties for the gen-
eral block nonlinear SOR and the block one-step SOR-Newton method. De-
fine F'(x) = D(z) — L(z) — U(z) to be the decomposition of F'(z) = 0F/0x
into block diagonal, strictly block lower-triangular and strictly block upper-

triangular parts, where

% 0O --- 0
0 %5 :
D(z) = : (3.2.8)
: . 0
0 0
For w > 0, let
H,(z) = [D(z) — wL(2)]"'[(1 —w)D(z) + wU(z))]. (3.2.9)

The local convergence of the block nonlinear SOR procedures is stated in the
following lemma. The proof of this lemma can be found in Ortega & Rheinboldt

(1970).

Lemma 3.3 (Local Convergence and Rate of Convergence) Assume F :
R™ — R™ be continuously differentiable over a compact set Sy, and x* € Sy
such that F(xz*) = 0. If D(z*) is nonsingular and p(H,(xz*)) < 1, then there
exists an open ball S = S(x*,0) in Sy such that for any 1 € S, both the Block
nonlinear SOR and the Block one-step SOR-Newton sequence converge to x*,

and they share the same convergent factor Ry(x*,2*) = p(H,(z*)).

We will state the global convergence result in term of the minimization problem.
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Lemma 3.4 (Global Convergence) Assume g € C*(R™) , V?g(z) > 0 and
So = {x|g(x) < g(x°)} is bounded, then for suitable chosen relazation parameter
w, the iterative sequence from the block one-step SOR-Newton method converges

to the unique solution x*.

The proof of the above lemma can be found in Schechter (1968). From
the above lemma, we can see that in general the block one-step SOR-Newton-
Raphson method with fixed w is not guaranteed to converge globally. In prac-
tice, we can either change the initial value or tune the relaxation parameter to
make the algorithm converge. The following lemma adapted from Varga (1984)

can be used to check the conditions for the local convergence.

Lemma 3.5 Let A= D — E — ET be a symmetric positive definite matriz, and
D is also positive definite. Denote H, = (D—wFE) Y((1—-w)D+wE). If D—wE

is nonsingular for 0 < w < 2, then p(H,) <1 for 0 <w < 2.

The following Corollary is from Lin (1998a). It is obtained by directly applying

the above lemma.

Corollary 3.1 If A= D — E — ET is symmetric positive define and D is block
diagonal matriz, E is strictly block lower triangular matriz. If D is nonsingular,

then for 0 < w < 2, we have p(H,) < 1.

According to Corollary 3.1, we note that if A is Hessian of a twice differentiable
convex function, we will always have p(H,) < 1 for 0 < w < 2. Specifically, the

local convergent property holds if we use block nonlinear SOR-Newton-Raphson
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or block one-step SOR-Newton-Raphson method to find the minimizer of a twice

differentiable convex function.

3.3 Implementation

In our implementation, we will keep «;, ;,’s as simple parametric forms. Con-
sequently, we assume «; ;,’s are depending on a set of parameters 3’s, which
are to be estimated. Recall f; depends on the coefficient vectors ¢/ and d/. For
simplicity reason, w will be taken to be 1. The block one-step SOR-Newton-

Ralphson algorithm for minimizing (2.4.8) is as following:

J
(fp) < initial values , j = 1,...,.J

B < initial values

do
do j=1to J
¢ c
& < one-step Newton-Ralphson update for &
end

B < Newton-Ralphson update for g
until (convergence)

Table 1: Block one-step SOR-Newton-Ralphson Algorithm

Notice that we only utilize one-step updating formula for f; part in this
implementation. Compared to the smoothing functions f;’s, the computational
burden for the parametric part 3’s is relatively low. Therefore, we decide to run

the Newton-Ralphson iteration until convergence in each step for ’s.
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Since the implementation of updating 3’s is straightforward, we will mainly
describe how to update ¢/ and d’ in each step. To update ¢/ and d’, the only
relevant part of the likelihood in (2.2.1) is

Li(fi) = — Z{ZJ: fi(@iji)vijr — 0(fi, i)} (3.3.1)

The only relevant penalty term in (2.4.8) is
j nogr j
Iy, (f5) = 501 Qja;C (3.3.2)

With some abuse of notations, let fijx = fj(zijk), bi = b(fi, ) and Qjz, = Q;.

According to the property of exponential family, the following relations are true

Hijk
ob;
= = FEY;.
O fijk Y
— (efijk + Z efijk+fijk3+aijk,i]‘k;3 + Z Z efijk+fij3k3+aijk,ij3k3 4.
ks#k J3#j k3

+€Zj3,k3 fij3k3+zj3,k3 ZJ'4J°4 Qijzks,ijakg )/

(1+ Z eliisks 4 Z Z eliiakatFijarytijghgijaky 4 ...

Ja.k3 J3,k3 ja,ka
_|_ezj3,k3 fi13k3+2j3,k3 2j47k4 O‘ij3k3’ij4k4) (333)

Wijk.ijk
2
= Ih vy,
= grz VM tik

ijk
= pije(1 — piji), (3.3.4)
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Wijky ijks
0%b;
= = Co(Yi, Vs,
8fz]klafz]k2 ( Jk1 ]k2)
ob;
= E(Yijk, Yijk,) — EYijr, - EYiju, = Do . Mgk Higks
1JR1,1)R2

= (efmtumteurnin 4. 4 o2k Jiiska 205 ks 2oy kg Cijghyiiske)) /

(1 + Z 6fij3k3 + Z Z efij3k3+fij4k4+aii3k3vi14k4 + ...

Js,ks J3,k3 jarka
+6213sk3 fi13k3+2j3,k3 Zj4,k4 aij3k3’ij4k4) — HZ]kl /,kaz (335)

We introduce the following notations

dl;

Uije = m:—yijk‘i‘,uijk,

u; = (U1j1,U1j2,---;Ulej,U2j1,---;Uanj)T
Wij1,ij1 Wijiaj2 - WijljK;

mj _ Wij2,i51 Wij2ii52 " W25 K; 7
WijK;ij1  WijK;i52 ©°  WijK; ijK;

Wj == diag(le,ng,...,an),
Slripn)  dley) o B (@)
J ) J ) j )

g o |l o) )|
¢ (z21)  dl(21) oo O (T251)
&1 (wnj;) O (Tnjr;) - B (nji;)

To update ¢/ and d’, we only need to minimize part of the penalized likelihood
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in (2.4.8), which is a summation of (3.3.1) and (3.3.2)

n K;
n . .
I = — Z{Z fijkYige — bi} + §C]TQ3'CJ- (3.3.7)

=1 k=1

Notice that in this expression, the smoothing parameters have already been
absorbed into @;. This is a convex problem. According to Theorem (2.1), the
minimizer of the above equation has the representation f; = S;d’ + Q;c’. Here
fi = (fun, fije - Juk;, foji, - fanj)T and S; defined above is the collection
of the parametric basis functions in (2.4.7). For one-step Newton-Ralphson

updating formula, we need the following derivatives

% = Qju; +nQ;c,
% = SJ-Tu],
83;2; = Q;W;Q; +nQy,
8;?3ng = WS
80‘?;3],T — QWS (33.9)

Hence the Block one-step SOR-Newton-Ralphson updating formula for co-

efficients (¢/, d’) is

-1

o ¢! QiW;-Q; +nQ; Q;W;_5; Qjuj- +nQ;c.
&’ & SIW;_Q;  STW;_S; ST,
(3.3.9)
where the subscript minus indicates the quantities evaluated at the latest up-

date. By rearranging the above formula, ¢/ and d’ is the solution of the following
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linear system

Qjo_Qj + TLQj Qjo_Sj Cj - CJ, —QjUj_ - ’H/Q]C{

SJTW]',Q]' SJTW]',SJ' dj —d’ —STUJ',

(3.3.10)

Another equivalent representation is

QiW;-Q; +nQ; Q;W;-S; | (¢ _ | Qi tim = @y . (3.3.11)

SJTW]'_Q]' SJTW]'_S]' dj SJTWj_fj_ - SJTUJ]'_
According to Theorem (2.1), f; = S;d? + Q;¢’ is always unique as long as

S;’s are of full column rank. If (); is nonsingular, the above linear systems are

equivalent to

Wj_Qj +nl Wj_Sj Cj B Wj—fj— — Uj— (3 5 12)

ST 0 di 0
If @; is singular, any solution to (3.3.12) is also a solution to (3.3.10) and
(3.3.11). Define Q; = W, 2Q;W, %, S; = W}/?S;, & = W, /?d, & = & and

y:j = lef(fj, — Wj’_luj,), (3.3.12) can be simplified as

Q; +nl)&@ + S;d = 4
(@5 +nD) o ’ (3.3.13)
STe = 0

It is easy to see that the solution of (3.3.12) gives the minimizer of
1~ = 1/2 - 1/2 T A
o Z(yz] - I/I/ij/_ fii) (i — Wij/_ fij) +@TQ;¢
i=1

= %Z(gz] — [V Wiy (i — fi) + &7 Qs (3.3.14)
im1
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With abuse of notations, we use w;; to denote (u1, ...,uinj)T and f;; to de-
note (fiji, ..., fijx,)"s ete. i = fij— — Wiﬁuij, are called the pseudo-data.
The block one-step SOR-Newton-Ralphson procedure iteratively reformulates
the problem to estimate f; from the pseudo-data by weighted penalized least
squares.

The following theorem will show the pseudo-data approximately have the
usual data structure if f;_ are not far away from f;. This observation will later

be used to construct the approximate Bayesian confidence intervals.

Theorem 3.3 For fized j, if |fije— — fijx] = o(1) uniformly in i = 1,2,...,n
and k=1,...,K;, |a_ — af = o(1) uniformly, p,;(zx) is uniformly bounded away
from 0 and 1, a’s are uniformly bounded away from —oo and oo, then

Uij = fij + €ij + 0p(1)

where €;; = (eijl,...,einj)T has mean 0 and covariance matrizc VVJl , and
€1, ,€nj are independent.

Proof Denote E(y”k) = Hijk, Var(yij) = Wij and Uij = —Yij +[LZ] Here Hijk is
the shorthand for p;(z;jx). Then we have E(W;; u;;) = 0 and Var(W;; uy;) =

I/VZ;1 Take the difference
v o= (fy = Wiyluig) = (fig — Wi tuy)
= (fij— — fig) = Wi (=i + pig—) — Wi (=yig + pag))
The expectation of v is (fi;— — fij) — Wi]_-i(,uij_ — pij). Since pj(x) is uniformly

bounded away from 0 and 1, o’s are uniformly bounded away from —oo and
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oo, it is easy to see that f;;z’s are also uniformly bounded away from —oo
and oo. From |fix— — fijr] = o(1), |a— — a| = o(1) uniformly, we also have
|pijk— — pijk] = o(1) uniformly. The element of W;;_ also converges to the
corresponding element of W;; uniformly |w;jk, ijko— — Wijkyijks| = 0(1).

Next, we will show there exist two constants 0 < ¢; < ¢y < 00 such that
all eigenvalues of W;; are in the interval (¢, c2). Wi; as a covariance matrix is
positive definite. All of its eigenvalues are positive. Its trace is less than K;/4.
Note the trace of a matrix equals the summation of all of its eigenvalues. Hence
its largest eigenvalue is also less than K;/4. The smallest eigenvalue of W;; as
a function of f and « is continuous and always greater than zero. Its domain
(F,A) is bounded and closed hence a compact set. There exists ¢; > 0 such
that the smallest eigenvalue of W;; is greater than ¢, for all (f,«) € (F,.A).

Hence for n > n; (n; does not depend on f and «), the smallest eigenvalue
of Wj;_ is also greater than ¢; /2. Consequently the largest eigenvalue of I/VZ;E
is bounded away from oco. As a result, we have E(y) = o(1). Meanwhile,

Var(y) < tr(Cov(y)) < K;||Cov(7)||. And for n > ny,

ICov(MI] = [[(W5" = Wiz hHWy (W5t — W3]

AR i

= Wit (Wi — Wy ) Wit Wiy - Wi (Wi — Wi )WL |

L

< WL W I W = W [P
4
< Sy =Wy )l
1
4
S —3t7”(Wij — Wij,)Q = 0(1) (3315)

&1
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Hence the diagonal elements of C'ov(7y) go to zero uniformly. Consequently,

gzy fzyf U_U/l]* = flj W Ujj + 7 = fl] + € + Op(]-)
where ¢;; = W u;; has mean 0 and covariance matrix I/VZ;1 The indepen-
dence of ¢;;’s follows from the independence of y;;’s. |

All of the previous discussions assume no special structure in the design
points. The algorithm is specifically designed to handle the unstructured case.
However, when special structure is available, the above algorithm can be simpli-
fied. One common case is the presence of person-specific covariates only. Hence
Tijp = xi; for all k = 1,..., K;. Similarly fijx = fj(@ije) = fij(xi;) = fij. To
update f;, the part of the penalized likelihood needs to be minimized has the

simplified form

n .t -
Z{ Zymk fig = b} + 5 Qs (3.3.16)
=1 =
Now define
Ria, (z1j,215) Rja,(215,225) .. Rja, (1), Tnj))
Rj A, (225, 715) RjA; (z25, w25) - .. Rj A, (225, Tnj)
QR = ,
Rin, (Tnj, 015) Rjn,(Tnj x25) .. Rja, (Tnj, Tnj)
$l(y) dhxy) .. B ()
& (x2;) Dw2) ... & (v
S; = () 0hs) ) | (3.3.17)

O (2n;) OY(Tnj) - D) (Tng)
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The minimizer of (3.3.16) has the representation f; = S;d’ + Q;¢, too. Denote
Yis = Yonly Yk s = B2y Yige), Wy = Var(352, Yige), wig = = 302 vignt
pij and u; = (uyj, usj, - -+, uy;)’ . Except for the above changes, all of the pre-
vious formulae and discussions remain true. But in the each iteration, we only

need to solve an n x n system instead of an (nK; x nkj;) one.

3.4 Approximate Smoothing Spline for Large
Data Sets

As mentioned before, in each block-one-step SOR-Newton-Ralphson iteration,
we need about O(n?) computing time and O(n?) memory space. However, the
“true” function f; to be estimated may not be very “complex”. Hence it may be
well approximated in the span of a much smaller subset of the basis functions.
Therefore, this approach will take much smaller computer memory and shorter
running time. This approach is particularly useful for analyzing medical data,

where the underlying truth is believed to be quite “smooth”.

3.4.1 An Approximate Solution

To obtain an approximate solution, a subset of basis functions needs to be chosen
carefully. The variational problem is then solved in this lower dimensional
subspace. This approach was proposed by Wahba (1980) for thin-plate splines.

Luo & Wahba (1997) proposed hybrid adaptive spline. Xiang (1996) proposed
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to use clustering method to choose the subset of basis functions. We will follow
Xiang’s approach here for selecting basis functions.

The basis function ff]k() = R, (2ijk, -) in (2.4.7) is the representer of design
point z;, in the Reproducing Kernel Hilbert Space ./\/lj1 Usually, when the
design points are close, their representers are also very close. Hence, when
the data set is large, it is very likely that lots of the basis functions will be
nearly linearly dependent. On the other hand, if by some “prior” knowledge,
it is believed that the structure of the true f; is not very complicated, then it
may be well approximated by a small number of basis functions. As a result,
if we select the design points having maximum separation, their corresponding
representers are expected to have less correlation.

Considering this problem from another point of view, the object is to group
design points into several groups. Ideally, those groups should be spaced as far
as possible from each other. Thus, we can borrow the classical cluster analysis
technique to solve this problem. There are many algorithms for clustering the
data. Even though there is no natural separation among design points in our
case, we still can force the algorithm to run. SAS procedure FASTCLUS is
designed for the disjoint clustering of very large data sets in minimum time. We
will use it to separate the data sets into several clusters. Within each cluster,
we randomly select the representer of one data point to form the approximating
subspace.

Hence, as an iterative procedure, the algorithm for approximate spline is
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as follows. When the number of basis functions V' increases, the approximate

solution converges to the exact solution.

V' < initial value

do
Cluster the data points into V' groups
Randomly select one data point from each group
Generate the corresponding basis functions

fj < initial values, j = 1,2,...,J
B < initial values
do
doj=1toJ
fj < updated values in the approximating subspace
end
B < Newton-Ralphson update for 3
until (convergence)

V—2xV

until (W < preci and W < precs )

Table 2: Iterative Algorithm for Approximate Spline

Here prec; and prec, are pre-specified thresholds. We suggest that the initial
value for V' be at least 25. The above algorithm usually converge very rapidly.
From our experience, for medical data, 50 to 100 basis functions usually yield
very good approximation.

Next, we will discuss the block one-step SOR updating formula for approx-
imate spline. Assume for fixed V', we have selected V' data points, which
are indexed as x;, for v = 1,...,V. Their corresponding basis functions are

§iw() = Rja, (2j0,-). We will still use S; to denote the collection of basis
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functions for parametric subspace. For approximating smooth subspace, denote

Ealwy)  Galoy) - Gulzy)
Ein(wrj2)  Ealzye) - &v(Te)
Q]’V - . . . . ’
Ein(@nji;)  &2(@njng) 0 &v(Tnjx;)
Galwin)  &alwin) - Gvlwin)
o — fj,l(:fm) fj,z(‘%',z) fj,V(‘W) . (3.4.1)

Gialziyv) Gelziy) - Gvlziv)
Let c(‘, = (¢j1,¢j2, -, ¢jv)'. With abuse of notation, the approximate solution
has the representation f; = S;d’ + ijvc{',. It is easy to verify that the penalty

T

for f; has the quadratic form ||P1fj||?\j =d, Q;yvc‘]“/- Therefore, to update f;,

the variational problem is to minimize

n K;
Iy = — Z{Z fijeVige — bi} + gC’VTQ;Vc]V. (3.4.2)

i=1 k=1
The one-step updating formula corresponding to (3.3.10) is to solve
TWi-Qiv + 0@y QTyW-S; ) [ — ~Qfyuj- —nQ; vl
SIW;_Qjv STW;_S; & —d. —STu;
(3.4.3)
In practice, it is highly possible that the coefficient matrix of the linear sys-
tem (3.4.3) would be computationally singular even if it is nonsingular in theory.

In order to obtain a numerically stable solution, QR factorization with pivoting
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is performed. In the meantime, a cutoff parameter 7 (such as the machine pre-
cision times the largest absolute diagonal element of the R matrix) is specified.
Let r; denote the diagonal element of the R matrix in the QR decomposition.
Whenever |r;| < 7, the corresponding solution in the coefficients vector ¢, is

set to be zero.

3.4.2 The Convergence Rate

In this section, we will prove in a special case, to achieve the same statistical
convergence rate, the approximate spline only need a small portion of the basis
functions compared to the exact solution. More general result is also believed
to be true and it is one of my future research topic.

The special case treated here is the one dimensional smoothing spline esti-

mate for Gaussian data. The classical variational problem to be solved is

min (5~ £()? + AP (3.4.4)

/ i=1
It is well known that for the penalty function ||Pf|]* = fol f)(2)2dw, for
roughly equally spaced data on (0, 1), the statistical convergence rate for smooth-
ing spline estimate is Op(nfﬁil). We will demonstrate that in order to match
the same convergence rate, V', the number of basis functions in the approximat-
ing space, only need to grow at a rate of O(n@"“rlrz)%) This is a much smaller
number compared to n when n is large. The proof is based on the following two
lemmas. However, these lemmas are more general. They do not require the one

dimensional assumption.
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Assume the functional space can be decomposed into the direct sum of a
parametric subspace and a smooth subspace. H = Ho ® H;. We will use the
following notations. Let the columns of S be the parametric basis functions in
Ho, the columns of () be the smooth basis functions which are the representers of
the evaluation functionals of all data points in ;. Hence the solution of (3.4.4)
lies in the finite dimensional space span{S, Q}. Let @)y denote the collection of a
subset of all basis functions in ). The approximating subspace is span{S, Qy }.
We will use P, to denote the projection into #; under the original norm || - ||.
Py, is the projection into the approximating subspace span{S, @y} under the
modified norm || - ||.. We will use < -,- > to denote the inner product induced
by the original norm while < -, - >, is used to denote the inner product induced
by the modified norm.

The following lemma shows given the exact solution, how to calculate the

approximate solution.

Lemma 3.6 For fized \, denote f = Sd+Qc to be the exact solution of the vari-
ational problem (3.4.4). Define a new norm |[f]|2 = L3 f(x;)* 4+ M| Pf]]?
The approzimate spline solution of (3.4.4) in the subspace span{S,Qv} is f. =
Py.(f), where Py, denotes the projection into the subspace span{S,Qy} under

the norm || - ||..

Proof It is easy to check || - ||, is a valid norm in the space span{S,Q}. Under

this norm, we have the following decomposition f = f, @ p,, where < f,, p, >,=
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0. Hence,

LS ) + AP
=1

n

1 — 2 — 1
= Ezy?—gzyz'f(xi)+52f($i)2+)\||P1f||2
=1 =1 =1
Ll ., 29 )
- n;yi n;yzf(xz)—i_HfH*
1 — 2 —
= 5ny—EZyi(f*(xi)+p*(rvz~))+||f*lli+||p*||i
=1 =1
1 — 2 —
= (Y= 2 ) wha) AR
=1 =1
Iem , 2% )
+(ﬁ Zyi T Zyip*(ffi) + ]p[5)
=1 =1
1<,
_E;yz
I, 2 1 — ) )
= G =Dl a) + D fulw) +ARLIP)
=1 =1 =1

1 & 2 — 1 &
D u = =D Swipn(w) + =D pulwi)” + M| P )
=1 =1 =1

1 n

n

1

= ( Z(yz' = fel@)? + AP P)
= @)+ AR - D02 (3.45)

Therefore if f is the minimizer of (3.4.4) in span{S, @}, then f, must be the
minimizer of (3.4.4) in span{S, Qv }, p. must be the minimizer of (3.4.4) in in

H., where span{S,Q} = span{S,Qv} ® H, w.r.t. the norm || -|[.. |
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The next lemma gives an easy to handle upper bound for the difference p,

appeared in the above lemma.

Lemma 3.7 For fized \, suppose f is the exact solution of (3.4.4), f« = Pv.(f)
is the approximate solution in the subspace span{S,Qy}, let f* = Py (f) where
Py is the projection of f into the subspace span{S,Qy} under the original norm

|- ||. Let p* = f — f*, p» = f — [+, we have the following relation:

ISR WACSE
Proof From Lemma 3.6, we know that f, = Py.f. Since f = f, + ps, let
ps0 = Py (ps) and p, = p. — pso, then f = (fi + pso) + pi1, where (fs 4 pao) €
span{S, Qv }, p« is orthogonal to span{S,Qy} under the original norm || - ||.
Hence by a different way, we obtain the same decomposition as f = f* + p*.
Therefore, actually p,; = p* and p. = p,o @ p* under the original norm. Thus
we conclude |[p.]|? > [|p*]|?. In fact, ||Pi(p:)||> > ||Pi(p*)]]? is also true since
Pi(p.) = Pi(ps0) @ Pi(p*) under the original norm.
Similarly, we have ||p*]|? > ||p.||?. By combining these two facts, we have

1 — I~ , i
EZP*(%V"‘)\HH(P*HF < ;Zp (:)” + A|[PL(p")]
=1

1=1

1P < 1P I (3.4.6)
Hence (1/n) S0, pu(w:)? < (1/n) Sy pr ()2,

Before we prove the next theorem, we will review some basic properties of

the projection f*.
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Let @Q = (&,&,...,&,). Without loss of generality, let Qv = (&1, &2, ..., &)

be the collection of first V' columns in Q). &; is the representer of the evaluation
functional of the ith data point in the reproducing kernel Hilbert space H;.
& = Pyn;, where 7); is the representer of the evaluation functional of the ith
data point in the reproducing kernel Hilbert space . Hence for any function
FEeH, flx;)) =< f,m; > and P f(x;) =< [,& >.

In the above lemma, f is decomposed into the direct sum of f* and p*,
where p* is orthogonal to the approximate subspace span{S,Qy}. Hence, we

have < &, p* >=0for:=1,2,...,V. Meanwhile, since p* € H,,
p (i) =< mi, p" >=< i, PLp" >=< Py, p* >=< &, p" >= 0.

Hence the values of f at the data point z; (1 < i < V) remain unchanged after
the projection. However, ||P,f*|| < ||P1f]|. Intuitively, f* is smoother than f.
Some detail is lost during the projection, while the values of f on certain chosen
design points are preserved. So it raises an interesting question as how to select
a good subset of representers.

In the following proof, without any knowledge of the underlying true func-

tion, we will select V' roughly equally spaced design points in [0, 1].

Theorem 3.4 Assume f € W,[0,1] and ||P,f||* = fol[f”(x)]Qd;v. Forn roughly
equally spaced design points, by selecting V' basis functions corresponding to V'
roughly equally spaced design points, we only need V = O(nlis) to achieve the

same convergence rate as the exact cubic spline estimate.
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Proof Let f be the exact solution. f = f* @ p*, where p* is orthogonal to
span{S,Qv}. Hence, we have p*(z;) = 0 for i = 1,2,...,V. Without loss of
generality, we assume x; ~ i/V for 1 <i < V.

The following relation is true for any z; <a < b < 244,1=0,2,...,V — 1,

2

/:+1 p™"(x)*dx > /ab p™"(x)*dx > </ab p*”(x)dx> — ("(a) — p" ()"
(3.4.7)

Since p*(z;) = 0 for i = 1,2,...,V and p is smooth, there must be some point
b € (x;,x;41) such that p*(b) = 0. Therefore, for any point a € (z;,x;41), we

have p*(a)* < [7** p*(x)*dz. Combining with the fact p*(z;) = 0, we have

1\2 2 1\2 e
r@ < (5) (s @) < (3) [T s

for all a € (x;, z;41). Consequently,

ESVACOSEIEES Ol D DR ()

=1 T <xj <Tit1

|4 2 )
1 n < 1 ) /‘Iz-‘,—l " 2
< =)y == p(x)*dx
n <= VAV o
1t
— W p*”(.%')ZdlU
1t
< W/ f(x)?da (3.4.9)
0

Meanwhile, we know when n is large, fol f"(z)?dz is bounded in probability by
some constant. Hence, to match the same converge rate of cubic spline O(n_4/ %),

we only need 55 = O(n~*?). Hence, it is sufficient for V = O(n*/*").
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From Lemma 3.7, we know that p* is an upper bound for p,, which is the
difference between the exact solution and the approximate solution. Hence the

result is proved. |
The following corollary extends the above result to f € W,,, m > 2 case.

Corollary 3.2 For f € W,,[0,1], let the penalty J(f) = fol ) (x)%dx. For
roughly equally spaced design points on [0, 1], to match the same convergence

2m
rate rate as the exact solution, V' only needs to grow at a rate of O(nEFHEm=1)),

Proof Notice that there will be a point such that p* has zero ith derivative
(1 <i < m) with 7 adjacent intervals separated by the grid points xy, zy, ..., Ty.

Hence the maximum absolute value of p* within the interval (z;, z;ym_1) is

bounded.
max p*(x)? < (L—l 2 max  pY(z)* < -
Ti<T<Titrm—1 - Vv i <T<Titm—1 -
m—1.,
< (m—1) *(m—1) 2
< (=) picJBX P (x)
-1 Tidtm—1
< (mT)Q(m—”/ f™(x)%dz (3.4.10)

The proof of the above theorem extends immediately here. To achieve the same

convergence rate, we must have

B 2(m—1) )
% <7mv 1) — O(’n[?m"vzl)_

Therefore, V = O(n(2m+12)T2m—1_) ). |



49

3.5 Adaptive Choice of the Smoothing Param-

eters

So far, all smoothing parameters are considered as fixed. When A is small,
the estimate tends to follow the data and hence appears to be wiggly. The
estimated value has small bias but large variance. As A\ — oo, f; is forced
into the null space ’Hg of the penalty function, which is usually a parametric
space. Hence it has small variance but large bias. When \ varies, we have a
family of flexible models. Tuning the smoothing parameters manually in low
dimensional situations may be possible. Alternatively, pre-specified generalized
degrees of freedom may be useful. However, to make this method more practical,
an automated data-driven method to choose smoothing parameters is highly

desirable.

3.5.1 Comparative Kullback-Leibler Distance

Certain risk function has to be chosen to measure the average closeness of an
estimator to the truth. In Gaussian case, a popular choice is the expected

squared loss function.

Ll i) = By — ). (3.5.1)

Here, the observed data are distributed as N(u,0?) with 0 known. It can be
shown the above loss function is in fact a special case of the more general so

called Kullback-Leibler distance.
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Let p(y) denote the true density function to be estimated. p(y) is our esti-

mated density function. The Kullback-Leibler distance is defined by

KL(p,p) = E,log <Zg;> . (3.5.2)

where E, denotes the expectation under the truth p. Note the Kullback-Leibler
distance is not a distance in fact since it is not symmetric. The comparative

Kullback-Leibler distance C' KL is defined by

CKL(p,p) = KL(p,p)— E,logp(y)

= B, logj(y). (3.5.3)

which differs from the Kullback-Leibler distance by a quantity which does not
depend on the estimator. One way to look at the comparative Kullback-Leibler
distance is to view it as the expected negative log-likelihood based on the esti-
mated density function. To minimize the C' KL distance is equivalent to maxi-
mize the expected log-likelihood for the future observations.

In many practical problems, except for the observed outcome variable y;, we
also observe a set of covariates x; € X C RP, which can be used as predictors.
Considering the random pair (Y;, X;), we are interested in estimating the con-
ditional probability p(y|r). Hence, conditioning on the value of X, the CKL

distance of p(y|X) and p(y|X) is

CKL(p,p|X) = —E,(logp(y|X)|X)

. / log p(y|X)p(y|X)dy (3.5.4)
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Hence, the object function desired to be minimized should be the expectation

of CK L(p,p|X) with respect to X

E(CKL(p,p|X)) = —E(E(logp(y|X)|X))

_ /(/yl p(y|x)p ylx)dy>p(x)dfv

= —//logﬁ(y|x)p(y,x)dydx. (3.5.5)

Unfortunately, this quantity is unknown if we do not know the true p(y, x).
If we have n pairs of observed data (y;,z;), a consistent estimate of the above

quantity is

CKL = ZE (log p(ylw:)|x:) = Z/Ing yle)p(yle)dy.  (3.5.6)

This expression is useful when we are not interested in the distribution of X.
However, it still depends on the unknown quantity p(y|x;). Therefore, it is de-
sired to have a good estimate or proxy for it. In the Gaussian case, we can show
that the UBR and AIC criterias are equivalent to the unbiased risk estimates
for the above quantities. For complex modeling procedures, Ye (1998) defines
the generalized degrees of freedom (GDF'), and by an interesting theorem shows
that it is the key to model fitting and selection when the goal is to minimize the
CKL. The GDF generalizes the degrees of freedom for signal for the Gaussian
penalized likelihood estimates, given in Wahba (1983). Interesting examples
of Gaussian Case are given in Ye (1998), where randomization techniques are
used in the estimation process. However, for Bernoulli data, it is known that

no exact unbiased risk estimate exists (Wong 1992). Thus we can only have



52

approximately unbiased estimates. This, no doubt, explains why smoothing
parameter selection with Bernoulli data has resisted a final, definitive answer
so far.

Xiang & Wahba (1996) proposed the generalized approximate cross valida-
tion (GACYV). Simulation studies show that it is an excellent computational
proxy for CKL distance. We will give a heuristic argument here to support
this observation. For Bernoulli outcomes, the C'K'L distance has the form
(1/n) 20 (—pifi + b(f)), where f; is the estimated logit function for the ith
observation. However, the true mean p; is unknown. One approach is to sub-
stitute it with the observed y; and calculate OBS = (1/n) 7, (—vi fi + b(f)),
which is the observed negative log-likelihood function for f. But it is well
known that OBS tends to underestimate C'KKL because that y; and ﬁ are
usually positively correlated for any meaningful modeling procedure. Hence
E(CKL — OBS) = (1/n) Y E(y; — ) fi = (1/n) Y. Cov(y;, fi), which tends
to be a positive number. See Efron (1986) for reference. To correct this bias,
leave-out-one cross validation will also substitute ﬁ by fi(_i) in C KL, which
only depends on the observations other than y;. Thus fi(fi) is independent of
y;, and for large n, is expected to be close to ﬁ Eyifi(_i) = EyiEfi(_i) R ,uZEfz

Therefore we expect C'V to be a computable proxy for C'K L distance.
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3.5.2 GACYV for Multivariate Bernoulli Responses

We will extend GACV to multivariate Bernoulli distribution to choose smooth-
ing parameters adaptively. Before we proceed, we need to generalize the leave-
out-one lemma in Craven & Wahba (1979) first. This time, we need to leave

out one independent unit at a time.

Lemma 3.8 (Leave-out-one-subject lemma) Let —1;(yij, fij) = — > x Yijkfije +
b(fi;) be the part of likelihood function related to the jth endpoint. All other parts
of the likelihood function are considered as fived. I, (f;,Y;) = — >, Li(vij, fij) +
5Ja;(fj). Suppose h(i,z,-) is the minimizer of I, (f;, Z), where Z = (yﬂ-, s

Uiy 2 Yt s s Ung) T then
hi, 1t (), ) = £1,7 0,

where f/(\;i) is the minimizer of Y., 4 Ui g, fir ) + 2Ia;(f5), and p=) (255) =

(D (@551), o, D (wi5,)) T is the vector of means corresponding to f/(\]_z)()
Proof We have
i (D wiy), 15, @) < 4 (D @), fi(g). (3.5.7)

This follows since setting

ob(T)
aTk

Ol () (wij), 7 i
— GG ):—N( )(xijk)+

=0
aTk

9%b(7)

—72L > 0, implies that —I;(u=? (1), 7) achieves its unique

and using the fact
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minimum for 8;—5;) = pu= (251 ), hence 75, = f/(g_i) (wiji). Therefore, for any f;,

L\j(fjaZ) = _lj(ﬁb( )(x” ft] Zl ymafm)"‘ JA (fy)

1171
> _lj( (ng) fA (@i5)) Zl (Yirj» firg) + JA (f5)
1171
—i) n —i
> —lj(u( )(LL'ZJ) fA ng Zl yllj7fA xllj))_I_EJAj(f/(\j ))
1171

The first inequality is due to (3.5.7), the second one is due to the fact that
f/(\;l)() is the minimizer of — 7, . l(vij, fir,;) + 5, (f;). Therefore we have

Wi, pC0 (), ) = £ ()

Let Y% = (g%, oyl ) o i (i) T,y g s yE) T Because that (fa,,Y))
and (f/(\;i), Yj(fi)) are two local minimizers of I, (f, Z), 915, /0f; is equal to zero

on those two points. Thus,

Oln, 0l).

a7 s Yi) = 0,57 (£, 7 =0, (3.5.8)
j j
It is also easy to verify that
82IA]' 82]/\

where W;(f) = diag(Wyj, Wy, ..., Wy;) is defined in (3.3.6). X, is the semi-

positive definite matrix satisfying Ju, (f;) = f; a, f;-
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Using a first order Taylor expansion, we have the following equation

01y

_ i (=) (=9
0 = 8f] (fA]- 7Y} )
Oly. 2
- ;] (fAj’ J) 8f]8fT(f Y*)(f(] )_fA]')
1 §
ayaAfT(f*’Y*)(Yj( - Y))
_ 82[Aj * * (—19) 82IA]- % " (=)
- afjaff(f YY), —fAj)+8%8f]T(f YY) (Y — Y;5)3.5.10)

Equivalently, this is
(fa; = £5,7) = (W5(F7) +n2,) (Y5 = YD), (3.5.11)

where (f*,Y*) is a point somewhere between (fy;,Y;) and (f/(gi),Yj(*i)), Ap-
proximate W (f*) by W (fa,) and note that Y =Y 9 = (0, ..., 0, (y;;—pC 9 (245))7,

0,...,0)". We have
Ia (901_71) fA V(@11) 0
fa; (@ijn) — f/(\;i) (1) yiji — 1 (i)

~ (Wil fa,) +nZa,) ™

Iy (xinj) - f/(\;i) (xinj) YijKr; — M(_i> (xinj)

Ia; @njiey) = 15, (@njix;) 0

(3.5.12)
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Denote H? = [W;(fa,) + n¥,,] ", which is the inverse Hessian of Iy (f;,Y})

with respect to f; evaluated at fy,. H J has the following structure

H{1 >k

. H)
H = # , (3.5.13)

X

H,
where Hfl is the K; x K; submatrix on the diagonal. Hence, we have
Ia; (w41) — f/(\;i) (wij1) Yij1 — MH) (zij1)
~ Hj : . (3.5.14)
fAj («’L"inj) - f/(\;i) (ffinj) Yijk; — /ﬁ(_i) (xinj)
Starting with the ordinary leave-out-one cross validation function C'V'(A;),

we will use the above relation and several first order Taylor expansions in our

derivation.

CV(A]) = - Z Zyz]kfz]k + b fl])]
1=1
= — Z Zyz]kfz]k + b fz] + Zyl]k fljk zyk )]
1=1
= OBS Zzyz]k fz]k z]k; )

=1 k=1
fz]l fml)
1 n
= OBS(Aj)"‘EZ(yiﬂ yin]-)
i=1

fijk; — fz(]_lg
(3.5.15)
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Next, we need to show the following relation is true. The first approximation is

due to Taylor expansion for a function with vector responses.

&Q

&Q

Yij1 — Hij1
Yijk; — HijK;
Yiji — Hz(;f) Mgﬁl) — Hij1
_|_
N G (=9) _
Yijk; — Mijk; Hijk; — HijK;
yijy — 1y 2 (1, (@ig) — 52 (f, ()
n :
v — i) \ o U8 @) = gim (i, ()
Yijt — thigy” f X;Z) (i) — fa; (i)
N ) (=0 () g
Yijk; — Hiji; fAj («TU) fAj (37”)
A ) (=i
Yij1 — Mgj1 Yijr — Hij1
— WiHj,

(1)
yl]K] - ILLl]K]

N )
Yijr; — MijK;

(3.5.16)
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Hence, we have the following approximate relation. We will use it to define the

approximate cross validation (ACV') function.

CV(A;)

2
)
&
“n
s
+
<
S
N
<

Q
C
&
=
=
+

| —

INgE

oY
=

ACV(A;).

fij1 — fi(ﬁi>

yinj>
fiak; = Fix,
Yij1 — Mgfli)

yinj> Hz]z
(=)

)
Yijr; — HijK;

yinj> H (I — Wi HY) ™

Yij1 — Hij1

Yijk; — MijK;
(3.5.17)

Now define G, = (I — Wi;H;). In a step reminiscent of that used to get from

leave-out-one cross validation to GCV in the Gaussian case, we will obtain

a generalized form of the approximate cross validation. There, the diagonal

elements of certain matrix was replaced by 1/n times its trace. Here, for any

matrices A;, 1 <i<mn,

A = <ai7klk2> 1 < ki, ke < K,
KxK
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we define

o v ety

_ f}/ 6 e f}/

A= (0 —NIgxi+7-eel = : (3.5.18)
v 0

where ¢ = (11---1)T is the unit vector, and § and + are the average values of
corresponding elements in the matrices A;;’s.

1 n K
o = %Zzai,kk;

=1 k=1

Y= mz Z Qi ey by - (3.5.19)

1=1 k1#ko
Since A has a very special structure, it is very easy to obtain the closed form of

its inverse

_ 1 ol
A_l = —IK K — €€T
0—~ " (=)0 + (K —1)7)
K2y oy .y
(6—7)(0+(K—1)7) (0—7)(0+(K~1)7) (6= (0+(K—1)7)
_ ol 0+ (K—=2)y . AR
(0=7)(6+(K~1)v) (0=7)(6+(K~-1)v) (0=7)(6+(K~1)v)
- 7 — bl O e € o)
(6= (0+(K—1)7) (0—7)(0+(K~1)7) (6—7)(0+(K—1)7)

(3.5.20)
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Hence, we define the generalized form of approximate cross validation (GACV)
for multivariate Bernoulli distribution as following

GACV(A;)

Yij1 — Hij1

n K;
1
- n Z[— Z Yijr fije + b(fij)]
i=1 k=1
Yij1 — Mij1
1 — P '
+E - <yiﬂ yin]_> H(GY) : (3.5.21)

Yijk; — MijK;-

We remark that the above formula is reduced to (2.9) in Xiang & Wahba
(1996) when j = 1 and K; = 1. In practice, we will iteratively choose smoothing
parameters in each Block nonlinear SOR iteration in order to minimize GACV'.

When only person-specific covariates exist, following the notation defined at

the end of section (3.3), we can rewrite the above formula to a simpler form

GACV(A;)

tr(H7)/n - 30 i (Yig — g
n—tr(W;"HIW.'")

RS 757"(Hj)/” ’ Zzl yz’j(yz’j - Mij)
= =2 =vifiy +0(fiy)] + S 3.5.22
Dol W)+ T (652)
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3.5.3 The One-Step Randomized Estimate

The GACYV defined in the last section is very computing intensive. It involves
the computation of the inverse Hessian, which is a large matrix in our case.
However, this explicit calculation can be avoided by using a technique in the
spirit of the randomized trace method, provided a solution, either exact or
approximate, of the variational problem can be obtained at a lower cost. In
this section, we will propose a one-step randomized estimate of GAC'V, which
is fast and cheap to calculate.

The randomized trace technique was proposed in Girard (1987), Girard
(1991), Girard (1998). Given any square matrix A, and € is a zero mean random

1

vector with independent components with variance o2, then tr(A) = 4 Fe! Ae.

a2
Hence we can estimate the trace of A by # €l Ae. In practice, o? is replaced
by & >0 €
Given a square matrix A with A;(1 < ¢ < n) being the K x K sub-
matrices on the diagonal, we discuss how to obtain a randomized estimate of
A. TFirst, a vector of i.i.d. random variables distributed as N(0,1) is gener-

ated. € = (€1, ..., €ix;)" and € = (¢f, ..., €.)". Hence, § = tr(A)/(nK) can

be estimated by (¢ Ae)/(nk). On the other hand, v = (32,324, 1, Gikiks —

tr(A))/(nK(K —1)). To estimate Y, >, @ik, let & = (1/VE) XK eq,

€ = (€1, €1, E2, s 60) .

€ is a column vector with K replicates of €; for each
1 <i < n. We notice that Ee" Aé = 37,37, . a,k,- Hence, we can estimate

v by (€F' A — ¢ Ae)/(nK (K — 1)). Therefore, a randomized estimate of A can
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be obtained.

In practice, the randomized estimate of GAC'V is calculated by solving the
nonlinear system on the perturbed data Y; + € and Y; + €. Denote f}\z as the
solution of (3.3.7) by using the original data and f[iﬁe as the solution by using
the perturbed data. If we take f}\:]f as the initial value to a Newton-Ralphson
calculation of fEJre, and we run the iteration only once by using all matrix
decompositions which have already been performed for calculating f}g in the

SRS, Y5) = 0 and
9? In; 0? In;

afTaf (fA Y;) = afTaf (fA .Y, + €), we observe the simple relation

last step, we obtain the one step solution fYJr o+

R T S a O (v +0
_ i [%(ﬁjﬂ]l( TR
— ff]fj + (W +nEy,) e (3.5.23)
Hence, we have
A= fy = Hle, (3.5.24)

Thus, €' (fy] el fA ) = ¢ Hle and & (f)’ vitel _ fA ') = e H'€, we can obtain
a randomized estimate of H’. Similarly eTG76 =ele+ e W;(fy vitel _ f[i]f), and

e Gle=e"e+eW;(fy el fij) We can calculate the randomized estimate of
GY. This approach avoids the explicit calculation of inverse Hessian H7, which is
computational expensive and tends to be unstable for ill conditioned matrix. A

randomized estimate can always be obtained provided a cheap and stable “black
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box” exists to calculate the (approximate) one-step solution for perturbed data.

The resulting ranGACV function is

mnGACV(A-)
= —Z Zyzjkfzyk+b fZJ)]
=1

Yij1 — Mgt
%Z (yijl yin]) Hj(éj)fl E , (3.5.25)
_ Yijr; — MHijK;-
where HJ and GJ denote the randomized estimates. To reduce the variance in

“ ”

the term after n (3.5.25), we may draw R independent random vectors

e .., replace the term after “+” in (3.5.25) by

R Yij1 — Hij1
1 - o (1), 2 (), _
—RZ vii o yir, | HYO(G7) : (3.5.26)
1

n -
r=1 i=

Yijr; — MijK;-

to obtain an R-replicated ranGACYV function. Combined with the approximate
spline described in the last section, the computation of ranGACYV is fast and
stable. We will iteratively minimize ranG ACV in each step of block one-step
SOR iteration. This will be done repeatedly until some pre-specified convergence
criteria is met, or the number of iterations exceeds the pre-specified limit.

The GACV and ranGACYV function is derived by assuming that the mini-
mizer of (3.3.7) is calculated at each block nonlinear SOR iteration. To speed

up the algorithm, however, only one-step update will be calculated. We remark
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that all favorable properties of GACV and ranGACV are preserved for Block
one-step SOR algorithm and approximate spline estimate. It is very easy to
carry out the computation as no additional matrix decomposition is required.
By evaluating H? and W; at the latest updated value f;_, most of the approxi-
mations in the derivation of GAC'V becomes exact. If we take f;_ as the initial
value, all matrix decompositions which have been done for calculating fliff’l is
readily available for computing the one-step estimate f}\z+5’1 for the perturbed
data. Moreover, the relation in (3.5.24) remains to be true for the block one-step
SOR algorithm, which sets f}\z = fﬁ’l in every iteration.

Since it is difficult to write down the derivatives of ranGACV with respect
to the smoothing parameter(s) A, to search for the minimizer of ranGACV
function, optimization methods which do not require the explicit calculation of
the derivatives are highly desired. For single smoothing parameters, we will
use Golden section method. For multiple smoothing parameters, we will use

downhill simplex method. See Press, Flannery, Teukolsky & Vetterling (1996)

for reference.

3.5.4 Numerical Examples
(i) ranGACYV vs. iterated ranGACV

The first experiment is to compare the performances of ranGACV and iterated
ranGACYV . For fixed smoothing parameters, Xiang & Wahba (1996) and Lin,

Wahba, Xiang, Gao, Klein & Klein (1998) proposed to find the solution of the
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variational problem, then evaluate the GACV function. However, for multi-
variate Bernoulli data, when there present more than one logit functions to be
estimated, or we assume the parametric form for the association terms, evalu-
ating and minimizing ranGACV for each logit function at the corresponding
step of the block one-step SOR-Newton-Ralphson algorithm seems to be more
convenient and natural. In this experiment, we will assume j =1 and K; =1,
the situation is reduced to the univariate Bernoulli distribution.

The first three univariate functions are taken from Xiang & Wahba (1996).

We define the true logit functions to be estimated as
filz) = 3—(5z —2.5)
fo(z) = 2sin(10z)
fs(z) = 0.218 —4.312x. (3.5.27)

Figure 1 shows the true probability functions determined by p(z) = /@ /(1 +
e/@). The predictor variable x was taken to be uniformly distributed in (0, 1).
Two sample sizes n = 100 and n = 400 were used for this simulation. To
compare the effectiveness of these two methods, 100 independent sets of data
for each combination of logit function and sample size were generated. We used
the same random perturbations and set R = 5 and computed the 5-replicated
ranGACYV for both methods. Only 50 basis functions chosen by clustering
method were used for approximate spline for all cases. The pairwise comparison
of C K L distance is plotted in Figure 2. From this experiment, the performances

of ranGACYV and iterated ranGACYV are almost the same. ranGACYV seems
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to be slightly better than its iterated version for small sample sizes. However,
this difference becomes negligible very quickly when the sample size increases.
The iterated ranGACV method is not guaranteed to converge, although this

happens very rare. From extensive simulation studies, when the algorithm does

not converge, very often, the value at the last step of the iteration is still an
acceptable estimation.

(@)

(b) (€)
[ee] [ee] [ce)]
S S S
X X X
o<t o<t o<t
o] S’ S|
=1 =1 =1
O = T T O = T T O T
00 04 08 00 04 08 00 04
X X

0.8
X
Figure 1: True probability function p(z) determined by the logit functions in
(3.5.27): (a) f1 (b) fo (c) f3

The next Monte Carlo simulation uses the WESDR (Wisconsin Epidemiol-

ogy Study of Diabetes Retinopathy) data. See Wahba et al. (1995) and ref-

erences cited there. Three covariates dur, gly and bmi are used as predictor

variables. The outcome variable is the progression of retinopathy. The following

ANOVA model is fitted by iterated UBR method by GRKPACK (Wang 1997),

logit(p(dur, gly, bmi) = c + fi(dur) + f2(gly) + f3(bmi) + fio(dur, bmi).
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Figure 2: Pairwise comparison of C KL for ranGACYV and iterated ranGACV
for the cases in (3.5.27). (a) fi,n = 100 (b) fi,n = 400 (¢) fo,n = 100 (d)

fz,n =400 (e) f3,n =100 (f) f3,n =400
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The fitted logit function is then treated as the true test function in our simu-
lation. 100 replicates of data are generated and fitted for the above ANOVA
model by both ranGACYV and iterated ranGACYV methods. The number of
replicates R for randomized estimate of GAC'V is taken to be 5 for both meth-
ods. In the mean time, we used clustering method to obtain 50 basis functions
for the approximate spline. For each run, the C' KL distance between the true
probability function used to generate the data and the estimated probability is
computed. The pairwise comparison of the C'K L distance is plotted in Figure 3.
The ranGACYV method seems to be slightly better than the iterated ranGACV

algorithm. However, the difference is very small.

iterated ranGACV
0.58 0.59 0.60
o)

0.57

0.56

0.56 0.57 0.58 0.59 0.60
ranGACV

Figure 3: Pairwise comparison of C KL for ranGACYV and iterated ranGACV
for 100 runs of the simulated WESDR data.
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In light of the results of the above simulation studies, we prefer to solve the
variational problem for fixed smoothing parameters, then evaluate the ranGACV
function at the solution whenever possible. However, for more complicated sit-
uations, there may exist more than one logit functions to be estimated, or some
functions to be estimated may take simple unpenalized parametric form. It is
very difficult to write down the closed form of ranGACYV and to compute it
directly. On the other hand, combined with some iterative algorithm to solve
the variational problem, iterated ranGAC'V is the natural alternative which is

expected to be nearly as efficient as ranGACYV itself.

(ii) Iterated ranGACV as a proxy for CKL distance

In this experiment, we will show that the iterated ranGACYV is an excellent
computational proxy for C'K L distance for multivariate Bernoulli data. Iterated
ranGACYV is an estimator of C'K L distance at every updating step of the Block
one-step SOR-Newton-Ralphson algorithm.

We assume that j = 1 and K; = 2. There are one endpoint of interest and
two repeated measurements for it. The first example is for the single smoothing
parameter case. The predictor variable x is assumed to be uniformly distributed
on (0,1). For each subject, x is assumed to be the same for both measurements.

The true conditional logit function to be estimated is
f(@) = logit(P(V;, = 1Y = 0,2)) = 3sin(2.72%) — 2. (3.5.28)

Odds ratio is used to measure the association between correlated observations.
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We will let the conditional log odds ratio be a constant
a =logOR(Y,Ys|z) = 1. (3.5.29)

The sample size n is taken to be 500. The predictor variable z is assumed to be
uniformly distributed on (0,1). The true marginal probability p(z) = P(Y; =
l|z) = (/@ 2@+ /(1 42/ @) 4 e2/(@)+) and one set of randomly generated
data according to the true joint distribution are plotted in Figure 4. This set
of data is used in our simulation study. To compute the approximate spline

estimate, only 50 basis functions are selected.

p(X)
00 02 04 06 08 1.0

0.0 0.2 0.4 0.6 0.8 1.0

X

Figure 4: True marginal probability P(Y; = 1|x) and one set of generated data.

As proposed early, the algorithm we used to estimate the joint distribution
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will iterative update f and «. We proposed to iteratively minimize ranGACV
whenever updating f by the one-step updating formula. The initial values for
both f and « are taken to be 0. At different stage of this process, the true CK L
distance and the ranGACYV function are computed and plotted in Figure 5-7.
Figure 5 shows the comparison made at the first iteration step while & = 0.
Figure 7 shows the comparison made at the converged value while & = 1.53.
Figure 6 shows the comparison made in the middle of this iterative algorithm,
while & = 0.91. Three different values are taken for R, the number of replicates
used to evaluate the randomized estimate of GACV in order to reduce variance.
And for each value of R, 10 independent realizations of ranG AC'V function are
computed and plotted. The closed circle is the minimizer of the C K L distance
while the open circles indicate the minimizers for each ranGACV curve.

In terms of locating the best A which yields the smallest C'K'L distance,
ranGACYV is an excellent proxy to be minimized. When R increases, ranGACV
seems to have smaller variance and better performance. Since the iterated
algorithm minimizes ranGACV at every step, we really prefer it to have smaller
variance. In the meanwhile, The computation of ranGACYV is in fact very fast
since no additional matrix decomposition is necessary. Hence we suggest to let
R be large enough, for example, R = 20.

The next example is for multiple smoothing parameters. Still, there is one
endpoint of interest and paired observations for each subject. The predictor

variables (z1,z9) are assumed to be uniformly distributed on the unit square



1.18

1.16

1.14

1.12

1.10

1.08

1.18

1.16

1.14

1.12

1.10

1.08

Alpha=0

R=20

—— CKL
"""" ranGACV

Alpha=0

R=5

log(lambda)

1.18

1.16

1.14

1.12

1.10

1.08

72

Figure 5: 10 replicates of ranGACYV curves compared to CKL when & =0. R
is the number of replicates used to evaluate the randomized estimate of GACV .
Circles indicate the minimizers for each curve.
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Figure 6: 10 replicates of ranGACYV curves compared to CKL when & =
0.91. R is the number of replicates used to evaluate the randomized estimate
of GAC'V. Circles indicate the minimizers for each curve.
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Figure 7: 10 replicates of ranGACYV curves compared to CKL when & =
1.53. R is the number of replicates used to evaluate the randomized estimate
of GAC'V. Circles indicate the minimizers for each curve.



I6)

(0,1) x (0,1). We assume the true conditional logit function has an additive

form

f(xy, 29) = logit(P(Yy, = 1|Y "R = 0,2, 25)) = 2sin(27z,) — sin(27a,).
(3.5.30)

As in the previous example, we let the conditional log odds ratio be a constant
a =log OR(Y1, Ya|xy, x9) = 1.5. (3.5.31)

The true marginal probability is plotted in Figure 8(a).
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Figure 8: The true and estimated marginal probability function p(z,xs) =
P(}/k = ]_|JI1,JI2).
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For this simulation study, 500 pairs of observations are generated according
to the joint distribution. 50 basis functions are selected by clustering method.
We apply the Block one-step SOR algorithm combined with iterated ranGACV
to estimate the joint distribution P (Y7, Y3|z1, x2). R = 20 replicates are used for
estimating ranGACV . The estimated marginal probability is plotted in Figure
8(b). Figure 8 and Figure 9 show the perspective plots and contour plots for
both ranGACV and CKL surfaces. Three comparisons are made during the
iteration process: at the first step (when & = 0), in the middle of the iterations
(when & = 0.77) and at the converged value (when & = 1.29).

From the plots, iterated ranG AC'V does an excellent job in terms of search-
ing for the minimum value of C KL distance. Although the minimizers of
ranGACYV are not the minimizers of C KL distance, considering the flat na-
ture of C' KL surface near its minima in this case, we notice that the CKL
distances achieved by the minimizers of ranGACV are very close to the min-
imum values of C'K' L distance. The comparison of the minimum C K L values

and the one achieved by the minimizers of ranGACYV is listed in Table 3.

min)\l,)\z CKL()\l,AZ) CKL(S\]_,}\Q)

a=0 0.88501 0.88912
a=0.77 1.22738 1.23200
a=1.29 1.50359 1.50903

Table 3: Comparison of the minimum CK L distances and C'K L achieved by
(A1, A2), the minimizers of ranGACYV function.
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Figure 10: Contour plots of iterated ranGACV and CKL. Solid dots denote
the minimizer of C' KL distance while the triangles denote the minimizer of
ranGACV functions.
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3.6 Bayesian Inference and Approximate Con-
fidence Intervals

Theorem 3.3 shows that the pseudo-data defined in section 3.3 have approxi-
mately the usual data structure. We will make use of such an observation in
this section to construct the approximate Bayesian confidence interval. An ap-
proach similar to that used by Silverman (1985) is adapted for the approximate
spline solution to the variational problem.

First let us consider the Bayesian formulation of the variational problem
associated with correlated Gaussian observations. For fixed smoothing param-
eter(s), we will identify the variational problem with a Bayesian problem. As-
sume there is only one endpoint, J = 1. On domain X, vy = f(xi) + €,
i=1,..,n, k=1,.. K, where (¢1,...,€x), i = 1,...,n are i.i.d. distributed as
N(0,0?W 1), with W a known positive definite matrix. With abuse of nota-
tion, the approximate spline solution of f(z) is a combination of the selected

basis functions
f=8d+ Qye, (3.6.1)

where Qy = (¢1,...,¢y). Let @} denote the matrix with (Q%);; =< ¢, ¢; >.
By assuming an improper prior distribution on the coefficients (¢, d), we let

their log-density function take the form

|
Lprior(C, d) = —ébcTQf/c, (3.6.2)
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where b = (n))/o? and the notation “=" means “equals up to a constant”.
Following some standard Bayesian manipulation, the posterior log-likelihood

has the following form

L Que— SATW(y— Que— Sd).  (3.6.3)

Lpost(c, d) = —%bcTQQC ~ 5.2
Hence by minimizing the posterior negative log-likelihood of (¢, d), we obtain ex-
actly the same solution as solving the variational problem in the approximating
subspace span(S, Qv).

From (3.6.3), (¢, d) in fact has a proper posterior distribution as a multivari-

ate normal with mean (¢, d) and covariance matrix o> M ~!, where

o QTWQy +n\Qi QTWS 0.0

STWQy STw S
and

e
=M wy. (3.6.5)
ST

(o]

SN

Hence, for f = Sd + Qyc, the following is true
QY
Var(f) = o? . Mt (Qv 5) : (3.6.6)
S

Define the influence matrix A(A) satisfying f = A(\)y to be

AN = ij‘f M (Qv 5>W. (3.6.7)
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(3.6.6) can be re-written as
Var(f) = a? AANWL, (3.6.8)

Therefore, Bayesian confidence intervals can be constructed once the posterior
mean and covariance matrix are computed for (¢, d).

The construction of Bayesian confidence intervals for multivariate Bernoulli
data utilizes the fact that the pseudo-data have approximately multivariate
normal distribution, which is based on the Taylor expansion of the penalized
log-likelihood function centered at the mode (¢, d). Denote the negative log-
density function of y conditioning on f and « as [(y|f,«). To estimate the
conditional logit function for the jth endpoint f;, we will condition on the other

estimated values for (%) and «. f;j is the minimizer of
n J n T ryx
Li(f3) + 5 A (Fi) = Li(f) + 5A¢; Qe (3.6.9)

At the converged step of the block one-step SOR iteration, we are actually

solving a penalized weighted least square problem based on the pseudo-data
LS - T - T oy
o Z(yz] — i) Wii— (05 — fi5) + A Q. (3.6.10)
i=1

Here Wl;i is an estimated value of Var(Y;) = Wj_l. From Theorem 3.3, we

know that g; is approximately distributed as N( fj,Wj’l). Hence by dealing

with the pseudo-data g;, similar to (3.6.5), we have

¢ Qr
=Mt wy; (3.6.11)
d ST
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where M is evaluated at the converged step of the iterations as in (3.6.4). To
calculated the posterior variance of f, (3.6.6) remains to be true. Therefore,
the pseudo-data can be used to construct the approximate Bayesian confidence

interval for the multivariate Bernoulli data.

3.7 Monte Carlo Simulations

In this section, we will demonstrate results from some Monte Carlo simula-
tions to evaluate the performance of the proposed method. The comparative
Kullback-Leibler distance (CKL) is used to measure the performance of the

estimated values.

3.7.1 Repeated Measurements for the Same Endpoint

The first example is about the single smoothing parameter situation. We will
try to mimic the characteristic of possible ophthalmology data. There is one
endpoint of interest and paired observations for each subject. There presents one
observation-specific covariate X, (k = 1,2). X;;’s are assumed to be uniformly
distributed on the interval (0.05,0.95). X;» = X1 + ¢€;, while ¢;’s are uniformly
distributed on (—0.05,0.05).

The true conditional logit function is assumed to be

Flea) = logit(P(Yy, =1V = 0,24))

= 2[exp(—30(xy — 0.25)%) + sin(7a?,)] — 2. (3.7.1)
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And the conditional log odds ratio & = log OR(Y1, Yiz|z;) = 0.8. Three different
sample sizes are used in this simulation: n = 125, n = 250, n = 500. For each
sample size, 100 independent sets of data are randomly generated according to
the true joint distribution.

Figure 11 shows the histogram plots of the estimated & for the three different
sample sizes. The dotted lines represent the true value of 0.8. The fitted values
appear to converge to the truth while the sample size increases. The estimator
of a appears to be approximately unbiased and normally distributed from the

histogram.

n=125 n=250 n=500
50 - : :

40 - § -

20

10

Percent of Total

Estimated Alpha

Figure 11: Histogram of & for three different sample sizes. The dotted lines
represent the true value of o = 0.8.

In Figure 12, 13 and 14, we plot the true conditional probability function
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Figure 12: True and estimated conditional probability functions when n = 125.
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Figure 13: True and estimated conditional probability functions when n = 250.
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Figure 14: True and estimated conditional probability functions when n = 500.
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and the estimated curves for each sample size, P(Yj, = 1|Y;(7k) = 0,zy) =
e/ @ir) /(1 4+ e/@)), For each sample size, the 100 fitted values are ranked ac-
cording to the C KL distances between the estimated joint distributions and
the truth. The 5th, 25th, 50th, 75th and 95th best fits are plotted for each
sample size. The true conditional logit function is a bi-modal function. The
trend is clear that when the sample size increases, the estimated curves become
more and more accurate. However, for parametric model, there might be no
prior knowledge about the bi-modal nature of the truth. Hence a linear or even
quadratic form will miss the true curve no matter how large the sample size is.

In the next experiment, we will compare the proposed new multivariate
method to the univariate fit. In the ophthalmology studies, one question of
interest is to estimate the probability of at least one eye developing a certain
disease given the values of the predictor variables for a person. Assuming there
is no eye-specific covariate. X;’s are uniformly distributed on (0,1). For each
subject, there are paired observations (Y1, Yi2). We want to estimate the prob-
ability P(Y;; = 1V Yy = 1|z;) = (2e/i + e¥ite) /(1 + 2efi + 2/it%) from the
observed data.

For this experiment, we assume
p(z;) = P(Y;; =1V Yy = 1]a;) = 0.8sin(2.727) + 0.1 (3.7.2)

The true p(z) is plotted in Figure 15. Four different values are used for a: 0,
0.4, 0.8, 1.2. a = 0 is corresponding to the case that Y;; and Y, are indepen-

dent. However we pretend that this fact is unknown, « is still estimated by the
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Figure 15: True p(z;) = P(Y;1 = 1V Y2 = 1|z;) used for the simulation study.

proposed algorithm. Straightforward calculation yields the following formula to

compute f; for given o and P(Y;; =1V Yy = 1|1)

(p(z:) = 1) + /(1 = p(x:))? + ep(ai) (1 — p(x:))
e*(1 = p(w:)) '

fi =log (3.7.3)

The experiment is conducted as follows. First, for the univariate fit, the
only information needed is Y; which is defined to be 0 when both Y;; = Y, = 0
and 1 otherwise. P(Y; = 1|z;) = p(x;). We generate 100 sets of data according
to the true distribution and fit the data by using univariate penalized logistic
regression. For the bivariate fit, we first calculate the true joint distribution of
(Yi1, Yio) according to the previous formula. For each value of «, 100 sets of data

are randomly generated and the joint distribution is estimated by the proposed

multivariate method. Afterwards, the probability of P(Y;; = 1V Y, = 1|z;) can
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be derived from the estimated joint distribution. For every run, C' K L distance
between the estimated p(x;) and p(z;) is calculated.

The above procedure is performed for three different sample sizes: n = 100,
n = 200 and n = 400. In Figure 16, we show the histograms of the estimated
a’s for different sample sizes and true values of a. Dotted lines represent the
true values of . From the plot, the estimated values have an approximate
bell-shaped distribution and are approximately unbiased. When sample size
increases, the estimated values become closer to the true value.

In Figure 17, we compare the C'K L distances between the fitted probability
and the true probability p(x;) = P(Yy = 1V Y = 1]a;) for different method.
Obviously, for all true values of «, the bivariate fit, which estimates the joint
distribution of (Y;1,Y;2), has a better efficiency than the univariate fit, which
estimates P(Y; = 1) directly. This is not surprising since the univariate fit
only needs to know Yi, hence some information in (Y;;,Y}s) is not used in the
estimation procedure.

The next experiment is similar to the previous one but for multiple smooth-
ing parameters. Assume (X;,X;2)’s are uniformly distributed on the unit

square (0,1) x (0,1). The true conditional logit function is taken to be

f(iEﬂ,J)iQ) = 2sin(3:ri1 — 315‘111}2) + COS(2 — 2.’E12) — 3(3%1 — 035)2 —1.5

(3.7.4)

and the conditional log odds ratio « is taken to be a constant 1. Each time, 500
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Figure 16: Histograms of estimated &’s for n = 100, n = 200 and n = 400.

Dotted lines represent the true values of a.
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independent pairs of observations (Y;i, Y;2)’s are simulated. The proposed pe-
nalized multivariate logistic regression is used to estimate the joint distribution.
This is repeated for 100 times.

We can derive p(z;1, 2i2) = P(Y; = 1|24, 7;2) from the estimated joint dis-
tribution. Figure 18 shows the true p(z;1, z;2) and the 5th, 25th, 50th, 75th and
95th best estimated values ranked by the C'K' L distance. The proposed method
gives very good estimations most of the times.

To make the comparison, we also use the univariate method to estimate
p(xi1, x52) directly for the same 100 sets of data. Only the derived outcome
variable Y; is used in the estimation procedure. Assuming we are only interested
in estimating P(Y; = 1|i1, Zi2), the pairwise comparison of C KL distance is
shown in Figure 19. About 2/3 of the times, the bivariate fit yields better

estimation.

3.7.2 Different Endpoints

In this example, we assume that there are two correlated endpoints of inter-
est. For each subject, there are two binary outcome variables: Y;; for the first
endpoint and Y, for the second endpoint. The proposed method will estimate
the conditional joint distribution of P(Yj, Y;2|X;). This model is also useful to
predict the outcome of one endpoint, given the outcome of another endpoint is
known. For example, if a person already has one disease, what is the probability

of getting another disease?



75th best 95th best

N
,'\.,’,',‘\,{{IIII///

1K
0.8 = &S{‘:\ Wi Z;,,lr,,l:,lll
L R ” , i "hl/,,(\'ll
0.6 ~:~§fo' “3‘:‘ }}\‘R{Q“\\\k\ﬂ{\\\ 0.6 'I N , i "'o. Ul
S ,.W i 3;:\:\\\§W§$§\\§§§§\ " ,/,, «.;;,;;;;;;,l;n,;;,l:,,,/l,,/llll i i \\M 0
P 0.4 ‘3%':23333:3:3:32,’3’ ,' ‘:::‘t&&*‘w\@}@%{ P 0.4 }[”"']I'I’I["l, %?”':.0¢”"1,”I0I:”0,“’ \!
: o s QR O I/ iy l":
XKLL AR Uizl iyl
0.2 "::::::‘O:;llr//lllftz‘:"" N 0.2 II'II III///III/,,,"»,A.\\\\\\\\ \{"l/’l I

0/,

X
KITAEK
Fuly

0

\\ ""
V)

25th best 50th best

:m."o, ::'.' »‘g. :‘::

" 75 '0'0.’0,0.‘. 3055583 SRR
/0'& o]v, "l'l'f""/i ' % "of"f:'o'nu' ' “‘ s ‘”'::‘:‘::3‘
o G i i
m:':,'l//, ll// l ', o / 5
m/o'ln, "ll// "I 'I c : it
oty
":/;Iw,;;l/' :"c"

Ul
ulc,l l
"I“'l'h"l

true 5th best

s
PRI ’ 0oes
i AL
% 'I 0, vO 9%
.{'4 4/: ',, tortorod

,,;,,;,,,';;,;.,;.::.:,3
ASHELE
Yo rsrosses
LA

. ':,.,,,;,
,',;,,;,;,;:,m

"’lll"llO‘;’l,’lll'l : ' Ullelint r'l":'f'""o

l:l:;:,l,,;',i,l l,,',ll‘ l':;,;ll;",‘oO

Il'l"l"

% Ll

Nt /'l'l'l '
Kt ":, il i
oty
il

l
"I:"' oty 'l'h'
% ity
: ol 'l it
K "":3 i
% ':':/':‘v:'l:'l
Y90

4
l 0
il
Xl
it

Figure 18: True p(x;1, 24) = P(Y; = 1|41, 742) and estimated surfaces.



94

CKL comparison, n=500
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Figure 19: Pairwise comparison of C'K L distance for the bivariate fit and the
univariate fit.

The true association factor o = log OR(Y;1,Y;s) is taken to be 1.5 in this
simulation. The true conditional logit functions for the two different endpoints

are

Fi(x;) = logit(P(Yy = 1|Yi = 0,;)) = 10 cos(2x;) 4+ 7% — 16 (3.7.5)
and

fal@;) = logit(P(Yig = 1|Yi = 0,2;)) = 2 cos(5z; + 1.4) + a7, (3.7.6)

Two sample sizes (n = 200 and n = 500) are used in this simulation. For
each sample size, 100 sets of independent data are generated according to the
true joint distribution. The predictor variables X; are assumed to have uniform

distribution over (0,1). Only 50 basis functions are selected to generate the



95

approximating subspace for the approximate spline solutions. To compute the
randomized version of GAC'V, we use R = 20 replicates to reduce the variance
of the estimated values.

In Figure 20, we present the histogram plots of the estimated & for two
different sample sizes. The dotted lines are the true value of o = 1.5. The

estimated values converge to the truth while sample size increases.
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Figure 20: Histograms of estimated & for two different sample sizes. The dotted
lines represent the true values of o = 1.5.

In Figure 21 and 22, we plot the true and estimated conditional probability
functions for both endpoints. For each sample size, the 100 fitted values are
ranked according to the C K L distance between the estimated joint distribution

and the truth. The 5th, 25th, 50th, 75th, 95th best fits are plotted for both

sample sizes. Figure 21 shows the conditional probability for the first endpoint
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P(Yy = 1Y = 0,2;) = @) /(1 + /1(#)). Figure 22 shows the conditional

probability for the second endpoint P(Y, = 1|Y;; = 0,z;) = e/2(#:) /(1 4 ef2(@)),



1.0
0.8
0.6
0.4
0.2
0.0

P(Y1=1[Y2=0,X)

5th best

5th best

n=200

n=500

00 02 04 06
1 1 1 | 1 1 1 1
95th best 95th best
10 n=200 n=500
0.8
0.6
0.4
0.2
0.0
75th best 75th best
n=200 n=500
1.0
0.8
0.6
0.4
0.2
0.0
> 50th best 50th best
= 10 n=200 n=500
O o8
8 0.6
(@) 0.4
o 02
0.0
25th best 25th best
n=200 n=500
1.0
0.8
0.6
0.4
0.2
0.0

Figure 21: True and estimated conditional probability P(Y;; = 1|V = 0, X;).
Solid lines are the estimated functions while dotted lines represent the true
function.
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Figure 22: True and estimated conditional probability P(Y;, = 1|Y;; = 0, X;).
Solid lines are the estimated functions while dotted lines represent the true

function.
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Chapter 4

Application to the Beaver Dam

Eye Study

4.1 Introduction

The Beaver Dam Eye Study (BDES) is an ongoing population-based cohort
study of age-related eye diseases, cataract and maculopathy. A description of
the population and details of the study at the baseline may be found in Klein,
Klein & Linton (1992). Five-year followup data has now been collected and
analyzed, see, for example, Klein, Klein, Jensen & Meuer (19970), and the
ten-year followup of the cohort is in progress.

A private census of the population of Beaver Dam, Wisconsin was performed
from September 15, 1987 to May 4, 1988 to identify the eligible population,
which is defined as being 43 to 84 years of age at the time of census. Afterwards,
the population was examined over a 30-month period. Of the 5925 eligible
people, 4926 (83.1%) participated in the study. Photographs of each eye were
taken and graded. An examination and a standardized questionnaire were also

administrated.
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4.2 The Pigmentary Abnormalities for Women

The association of pigmentary abnormalities with six other attributes at the
baseline was studied by the “univariate” penalized logistic regression in Lin et
al. (1998). Only the n = 2585 women members of the cohort in the baseline with
no missing values were considered. Pigmentary abnormalities are an early sign
of age-related macular degeneration and are defined by the presence of retinal
depigmentation or increased retinal pigmentation in association with retinal
drusen. Pigmentary abnormalities were found in 11.88% of the n = 2585 cohort
studied. Here, the question of interest is to estimate the probability of at least
one eye developing pigmentary abnormalities given the values of the predictor
variables.

Based on the previous work, age is known to be a very strong risk factor for
the presence of pigmentary abnormalities and other age-related maculopathy in
the Beaver Dam Eye Study. The association between cardiovascular disease and
its risk factors and the incidence of age-related maculopathy was examined in
Klein, Klein & Jensen (1997a). Hormone replacement therapy was associated
with a weak protective effect while a history of heavy alcohol consumption and
beer drinking was associated with a deleterious effect for some endpoints. See
Klein, Klein & Ritter (1994), Ritter, Klein, Klein, Mares-Perlman & Jensen
(1995) and Moss, Klein, Klein, Jensen & Meuer (1998) for references. We used
multiple linear logistic regression and contingency tables for the preliminary

analysis. First, one predictor variable was examined at a time. Only those
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variables whose p-values are below some threshold (0.1) were kept for further
analysis. A forward selection procedure was then carried out for the linear
logistic regression. Afterwards, several possible forms of the model were closely
examined by the nonparametric method. If the fitted value of any term had
no significant visual effect to the overall fit, that term was considered to have
no practical importance. The six “predictor” variables selected for the final

nonparametric model are listed in Table 4.

Variable units  code
current usage of hormone replacement therapy yes/no horm
history of heavy drinking yes/no drin
body mass index kg/m?  bmi
age years  age
systolic blood pressure mmHg sys
serum cholesterol mg/dL chol

Table 4: Predictor variables for the Beaver Dam Pigmentary abnormalities
model.

The model fitted there is

f(z) = C+ fi(sys) + fa(chol) + fi2(sys,chol)

+dageage + dpibmi + dyornli (horm) + darin/i (drin). (4.2.1)

I, and I, are indicator variables. Originally, age and bmi were fitted as smooth
main effects, however visual inspection indicated that they are indistinguishable
from linear terms, so that they were set to be linear in the final model. Thus,

there are 5 smoothing parameters in the model, one for each of the main effects
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of sys and chol, another 3 for the interaction term (linearsys ® $mootheper,
§SMO0thsys @ linearcye1, SMoothsys @ sMO0thehor). The results were reported in
Lin et al. (1998).

In this section, we will re-examine the association by using the proposed
penalized multivariate logistic regression. n = 2495 women with outcomes
available for both eyes are included in the analysis. For reference, the percentiles

of the continuous predictor variables are given in Table 5.

Percentile Min 12.5 25 375 50 62.5 75 87.5 Max
sys(mmHyg) 71 108 116 122 129 136 145 157 221
chol(mg/dL) 102 191 210 225 237 252 266.5 290 503
bmi(kg/m?) 15 225 24.25 259 274 29.5 3155 352 684
age(years) 43 48 52 58 62 66 71 76 86

Table 5: Percentiles of the predictor variables.

In Table 6, we summarize the relation between the outcome variable and the
categorical predictor variables.

We apply the penalized multivariate logistic regression to analyze these data.
Here J =1 and K; = 2. All predictor variables took the same values for both

eyes of the same person. The association between fellow eyes is assumed to
P(1,1]x;)P(1,1]|x;)
P(1,0|z;)P(0,1|z;)
functional form as in (4.2.1), although this time on the conditional logit scale.

be a constant o = log The final model takes the same

Only 50 basis functions selected by the clustering method is used to fit the
final model. To estimated the ranGACV, the number of replicates R is taken

to be 20. Upon convergence, the estimated & = 2.8269. The naive estimate
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pigmentary abnormalities
horm no oneeye both eyes
no 1953 184 104
yes 245 6 3

pigmentary abnormalities
drin no oneeye both eyes
no 2073 174 100
yes 125 16 7

Table 6: Summaries of the relation between the pigmentary abnormalities and
the current usage of hormone replacement therapy and the heavy drinking his-
tory

of odds ratio without adjustment for any covariates is 26.06. The estimated
odds ratio from the multivariate model goes down to OR = %829 = 16.89.
Obviously, the common predictor values for the same person explain partly the
strong association between fellow eyes. We plot the estimated main effects of
all predictor variables in conditional logit scale in Figure 23. Not surprisingly,
age turns out to be the most influential predictor.

From the estimated joint probability, we can calculate the probability of
at least one eye developing the pigmentary abnormalities. Figures 24 and 25
give the estimated probability of finding pigmentary abnormalities in at least
one eye as a function of chol, for various values of sys, age and bmi. In
Figure 24, (horm, drin)=(no, no) and in Figure 25, (horm, drin)=(yes, no).
A suggestion of a nonlinear protective effect of cholesterol, particularly for those

who were older in the horm=no group, may be seen as a result of fitting this
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model. Figures 26 and 27 give the estimated probability of finding pigmentary
abnormalities in at least one eye as a function of sys, for various values of chol,
age and bmi. In Figure 26, (horm, drin)=(no, no) and in Figure 27, (horm,
drin)=(yes, no). A protective effect of hormone replacement therapy is still
evident from this bivariate model. Figure 28 gives cross sectional plots of the
estimated probabilities along with the 90% Bayesian confidence intervals as a
function of chol for both values of horm and four values of age, which are taken
to be the middle of the four age groups defined in the Beaver Dam Eye Study.

The new analysis basically confirms the result obtained in Lin et al. (1998).
The trend of the effect for each predictor variable remains the same. Compared
to Figures 9-11 in Lin et al. (1998), we do notice some small difference between
these two models. From the simulation studies, we expect that the new model
is closer to the underlying truth. Besides, we notice that the outcomes for both
eyes of the same person are highly correlated (OR = €2%2%9 = 16.89), even after
adjusted for all the predictor variables in this model. This partly explains why
the results from the two models look very similar. When the outcomes are less
correlated, or there are more repeated measurements for the same person, the
“multivariate” method estimating the joint distribution is expected to extract
more information from the data.

Another merit of this new approach is to estimate the probability P(Y, =
1)Y=F) =1, X). Figure 29 shows this conditional probability as a function of

chol. This conditional probability is medically meaningful to a patient who has
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Figure 24: Estimated probability of at least one eye having the pigmentary ab-
normalities as a function of cholesterol by three levels of age and bmi. horm=no,
drin=no.
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Figure 25: Estimated probability of at least one eye having the pigmentary ab-
normalities as a function of cholesterol by three levels of age and bmi. horm=yes,
drin=no.
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Figure 26: Estimated probability of at least one eye having the pigmentary
abnormalities as a function of systolic blood pressure by three levels of age and

bmi. horm=no, drin=no.
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Figure 27: Estimated probability of at least one eye having the pigmentary
abnormalities as a function of systolic blood pressure by three levels of age and
bmi. horm=yes, drin=no.
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Figure 28: Bayesian confidence intervals for the probability of at least one eye
having the pigmentary abnormalities. bmi and sys are fixed at their median.

drin=no.
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been diagnosed to have a certain disease for one eye. It provides a guideline as

how to reduce the risk of the same disease for the other healthy eye.



conditional probability P(1]|1,X)

horm=no, drin=no
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Figure 29: Estimated probability of one eye developing pigmentary abnormal-
ities conditioning on the other eye already having this disease as a function of
cholesterol by three levels of age and bmi. horm=no, drin=no.
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Chapter 5

Summarizing Remarks

5.1 Conclusion

Penalized multivariate logistic regression using smoothing spline ANOVA model
has been proposed to estimate the joint distribution for multivariate Bernoulli
data, given the values of the predictor variables. The estimate is obtained by
solving a variational problem involving the penalized likelihood.

Numerically, an approximate solution of the minimization problem is ob-
tained by using the block one-step SOR-Newton-Ralphson algorithm. It has
been proved in some special case, the approximate solution requires much less
computing resources to achieve the same statistical convergence rate as the
exact solution. Extensive Monte-Carlo experiments demonstrate that the per-
formance of the approximate solution is very close to the exact one. Hence, we
can deal with much larger data set by using the approximate solution instead
of the exact one. GACV for multivariate Bernoulli data has been derived. Its
randomized version has been used to adaptively select smoothing parameters in
every step of the block one-step SOR iteration. From the simulation studies, the

iterated ranGACYV is an excellent computational proxy for the C K L distance.
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The association terms are still kept as simple parametric forms in this model.
They are estimated iteratively by maximum likelihood estimation in each block
one-step SOR updating step.

By taking the dependence structure into consideration, we can obtain a
partly flexible estimate of the joint probability, conditioning on the predictor
variables. This approach is particular useful when the correct form of the func-
tion to be estimated is unknown. We successfully applied this method to analyze
a medical data set. Some interesting features of this data set are brought to
our attention by the nonparametric model, while more conventional parametric
approach is unlikely to reveal such a relationship without more prior knowledge

of the data set.

5.2 Log-linear vs. Marginal Model, and Future
Research

The model we considered in this thesis is a conditional logistic regression model.
The parameters f’s and a’s in our model have straightforward interpretations
in terms of conditional probabilities. They are the canonical parameters in the
log-linear model. Another class of model is the marginal model. The joint
distribution is parameterized in terms of marginal means and odds ratio rather

than conditional means and odds ratio.
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The conditional model is very useful for prediction. In practice, for a vec-
tor of correlated outcomes, we may not observe all of them at the same time.
However, we want to predict the outcomes of the unobserved variables con-
ditioning on the predictor variables and observed outcomes. The conditional
model addresses this problem more directly than the marginal model.

The computation of the marginal model is more difficult than the condi-
tional model, since it involves re-parameterization of the canonical parameters.
However, it also enjoys the reproducibility property, especially when the num-
bers of repeated measurements for each subject vary. Although it is argued
that when the association factor is of interest, this will be most likely genuine
multivariate data of equal cluster size, it will be interesting to build a marginal
model by using a SS-ANOVA model. When the cluster sizes are unequal, like
some longitudinal studies, the association factor can be viewed as a nuisance
parameter. Data-driven method to select the smoothing parameters need to be
developed.

Another interesting problem is to develop a semi-parametric model for time-
to-event data using a smoothing spline model. We will assume a nonparametric
form for baseline hazard function. The outcome variable could be correlated
multivariate responses, for example, the time to developing a certain eye dis-
ease for each eye of the same person. Alternatively, there may exist correlated
competing or semi-competing risks or informative censoring. Full penalized like-

lihood may be useful for model building. As always, a central question is how
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to adaptively choose the amount of smoothing.
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