DEPARTMENT OF STATISTICS

University of Wisconsin
1210 West Dayton St.
Madison, WI 53706

TECHNICAL REPORT NO. 964

Backfitting in smoothing spline ANOVA, with
application to historical global temperature
data'
by

Zhen Luo
July 22, 1996

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DocToRr OF PHILOSOPHY
(STATISTICS)

at the
UNIVERSITY OF WISCONSIN - MADISON
1996

!This research was supported in part by National Science Foundation Grant DMS
9121003 and National Aeronautics and Space Administration Grant NAGW-2961. E-mail
zhen®stat.wisc.edu



Abstract

In the attempt to estimate the temperature history of the earth using the sur-
face observations, various biases can exist. An important source of bias is the
incompleteness of sampling over both time and space. There have been a few
methods proposed to deal with this problem. Although they can correct some
biases resulting from incomplete sampling, they have ignored some other signif-
icant biases.

In this dissertation, a smoothing spline ANOVA approach which is a mul-
tivariate function estimation method is proposed to deal simultaneously with
various biases resulting from incomplete sampling. Besides that, an advantage
of this method is that we can get various components of the estimated temper-
ature history with a limited amount of information stored. This method can
also be used for detecting erroneous observations in the data base. The method
is illustrated through an example of modeling winter surface air temperature
as a function of year and location. Extension to more complicated models are
discussed.

The linear system associated with the smoothing spline ANOVA estimates
is too large to be solved by full matrix decomposition methods. A computa-
tional procedure combining the backfitting (Gauss-Seidel) algorithm and the
iterative imputation algorithm is proposed. This procedure takes advantage
of the tensor product structure in the data to make the computation feasible
in an environment of limited memory. Various related issues are discussed,
e.g., the computation of confidence intervals and the techniques to speed up
the convergence of the backfitting algorithm such as collapsing and successive

over-relaxation.
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Chapter 1

Introduction

In this chapter the motivation for the research documented in this dissertation is
discussed first. It is then followed by an outline of the contents of the subsequent
chapters.

1.1 Motivation

An accurate and easily accessible description of what has happened in earth
climate is always of interest. It is of greater interest especially in recent years
when scientists are starting to model the global climate and to use their models
to predict future climate. From “climate models which include as their central
components atmospheric and oceanic General Circulation Models (GCMs)” to
“climate system models which include all aspects of the climate system: the
atmosphere, the ocean, the cryosphere, the biosphere and terrestrial ecosystems,
other land surface processes, and additional parts of the hydrosphere including
rivers, and all the complex interactions between these components” (Trenberth
(1992)), the models get more and more complicated. A more complicated model
is supposed to be closer to the true climate. An important step in getting more
confidence in these models is to compare their “prediction” of the past climate
with what was actually observed. This is an important reason why an accurate
account of the past climate is desirable. Another reason for an accurate and
easily accessible description is for the purpose of getting more information,
especially graphical patterns, out of the data.

Temperature is certainly one of the most important variables in the climate.



It is also the most intensively recorded variable so far. For a long time, we have
only surface station temperature records. Therefore, we have to reconstruct
the whole temperature history over the sphere using these records scattered in
both time and space. Various biases exist such as the relocation of a surface
station, the change of instrument, etc. Another important source of bias is
the incomplete time and space coverage. All these potential biases make the
seemingly easy summarization job complicated. Many people have used different
approaches to avoid biases. See, e.g., Hansen and Lebedeff (1987), Jones et. al.
(1986), and Vinnikov et. al. (1990). Some have also studied the effect of
incomplete sampling on the estimates of the climate history. See Madden et.
al. (1993) and Karl et. al. (1994). See also Hurrell and Trenberth (1996)
for a comparison of monthly mean surface temperatures with those of global
Microwave Sounding Unit (MSU) 2R temperatures for the period of 1979-1995.

Despite the many advantages previous studies have, there are also some
common inherited biases existing in them, due to the fact that while all of them
have considered the variation of mean temperatures, none of them has taken
into consideration the variation of temperature change at different places when
correcting the bias resulting from the spatial sampling difference,

We propose a smoothing spline method to deal simultaneously with these
biases resulting from incomplete data coverage. Computational demand is huge
if we want to solve the linear system associated with the smoothing spline
method using decomposition methods for full matrices. There are many ways to
save computing time and space in different contexts. Approximate computation
is one way that may save computing space or time in many cases. See Luo
and Wahba (1997) for such an example. Another way is to make use of the
special structures of the specific data at hand. An example is the backfitting
algorithm used in fitting additive models (Buja, Hastie and Tibshirani (1989)).
One purpose of our study here is to explore the possibility of making use of
the (space-time) tensor product structure in our data. This kind of structure
exists in many climate, environmental and other studies, hence the methods
described in this dissertation may be of wider interest than just in the study of

global surface temperature data.



1.2 Outline

In Chapter 2, we discuss a computational procedure for fitting the smooth-
ing spline ANOVA models to data sets of a tensor product structure, with an
example of modeling global winter mean surface temperature. This example
is the primary model considered in Chapter 3. The computational procedure
combines the backfitting (Gauss-Seidel) algorithm with an iterative imputation
procedure in order to take care of the situations of incomplete tensor product
structure.

We introduce smoothing spline ANOVA models first in Section 2.1. It is fol-
lowed by the derivation of the backfitting algorithm for a perfect tensor product
structured data set and the discussion of its convergence in Section 2.2. Then
we discuss some issues in speeding up this algorithm in Section 2.3. The is-
sues we discuss include orthogonality, grouping, collapsing, and successive over-
relaxation (SOR). Those techniques are often necessary to insure the backfitting
algorithm to converge in real time. Then the justification for the use of an itera-
tive imputation procedure is given in Section 2.4. Finally some empirical studies
of the convergence of this computational procedure are discussed in Section 2.5.

In Chapter 3, we apply the computational procedure introduced in Chapter
2 to a smoothing spline ANOVA model of global winter mean surface air tem-
perature. We summarize other people’s approaches first in Section 3.1. Then in
Section 3.2, we discuss the relationship between the smoothing spline estimates
and the “statistical optimal averaging” estimates in Vinnikov et. al. (1990),
and the use of anomalies to correct the biases resulting from spatial sampling
difference as well as the limitation of the anomaly approach in correcting all
such biases. In Section 3.3, a smoothing spline ANOVA model is fitted to the
global winter mean temperature data. Various issues in fitting such a model,
such as choosing smoothing parameters and diagnostics, are discussed. We also
discuss an extension to a more complicated model. A small simulation is used
in Section 3.4 to get some confidence statements about the estimates in Section
3.3.

In Chapter 4, we discuss a correspondence between Monte Carlo methods
and optimization methods. This chapter is an introduction to our on-going re-
search. Section 4.1 introduces a Bayesian model. The posterior mode under this

model is exactly the smoothing spline estimate in Section 3.3. The posterior



mean (same as the mode in this case) and variance may be used to construct
confidence intervals for the smoothing spline estimate. The computation of the
posterior variance has the similar difficulties encountered in computing the pos-
terior mode. Monte Carlo methods may be used to compute them. This leads
to the discussion in Section 4.2 about a correspondence between the backfitting
algorithm and the Gibbs sampler. Their parallel speeding-up techniques are dis-
cussed too. Section 4.3 describes other analogous Monte Carlo and optimization
algorithms.



Chapter 2

Smoothing spline estimates and
the backfitting algorithm

In this chapter we will describe a computational procedure for fitting a smooth-
ing spline ANOVA model when data have a tensor product design and are too
large in size to use direct matrix decomposition methods.

The basic idea of this algorithm is that the backfitting (block Gauss-Seidel)
algorithm enables us to take advantage of a tensor product design when we
solve the linear system associated with smoothing spline estimates. To speed
up the convergence of this iterative method, various techniques such as SOR,
collapsing components, etc., are used. When the data do not have a perfect
tensor product design, which is often the case, an iterative imputation method
is used to impute the data into the desired form.

We will discuss in a general SS-ANOVA setup whenever it is convenient.
More often, we will use a model useful in a climate study to illustrate our

points.

2.1 Multivariate smoothing spline estimates

Our central problem here is to estimate a multivariate function f based on some

noisy data

yi=ft)+e €T, i=1,..,n (2.1.1)



where T, the domain of the function, is of more than one dimension. For
various reasons such as the convenience of interpretation or building a model,
we may be interested in a decomposition of f into some component functions
besides f itself, for example, an ANOVA type decomposition. In order to make
these component functions well defined, we assume that F, a linear space of
functions of ¢t which we assume contains f, can be decomposed as a direct sum
of its subspaces

F=F+F +-- - +F

i.e., the decomposition of any f in F into component functions in these sub-
spaces is unique. Usually F° is of finite dimension and we denote its dimension
by M.

Example In some climate studies, we are interested in a meteorology vari-
able, for example, winter mean surface air temperature, as a function of year
and geographical location (a time-space model). The year index x takes val-
ues in {1,2,---,ny} corresponding to a period of time. The location P =
(latitude,longitude) takes values on the unit sphere S. Hence here 7 = {1,2,--- ,ny} x
S.

Define averaging operators:
(E.f)(2, P) = Z::f(:z;,P)/nl (2.1.2)
(Epf)(z,P) = /Sf(:z;,P)dP/47r (2.1.3)

where the integral is an integration over the sphere. Then

= (6 (I E)(Er + (- &)
= E.Ep+ ([ — gw)gp + ggg([ — gp) + ([ — gx)([ — gp) (2.1.4)

defines a direct sum decomposition of the space of function f(x, P) satisfying
some integrability conditions. This decomposition singles out the year average

and the global average. It corresponds to a decomposition of f:

[, P) = di + g1(x) + 2(P) + gr2(x, P)
where these component functions satisfy

5x91 = 5x912 = 5P92 = 5Pg12 =0



Suppose we want to single out the linear trend along year too. We can just
define another averaging operator in addition to the two defined above:
EZL_I x+ 17 P) — Ty P
e p) = I LDZ Iy
¢(n1) - Qb(l)

() (2.1.5)

where ¢(z) = o — 2HL
Similar to (2.1.4), these three averaging operators define six component func-

tions through:

di = (&€p)f

dyp = (E’EP)
no= (I-&—=&)epf
gy = Ex(] — Ep)f

9s2(P)o = E(I-Ep)f
g1z = (I=E&—-E)I—-&Ep)f

It is equivalent to say that f is decomposed in the following way:

[, P) = di + dyp(x) + g1(2) + 92(P) + gs.2(P)d(x) + gra(z, ) (2.1.6)
where the component functions satisfy

Sl gi(z) = g1(n1) —g1(1) =0
Yot1 G2z, P) = gia(n1, P) — gi2(1, P) = 0 (2.1.7)
Js 92(P)dP = [5942(P)dP = [s gra(x, P)dP =0

for any x and P. See Wahba (1990, Chapter 10), Gu and Wahba (1993a,b) for
more about the way of formulating such ANOVA models. B

Now we need to make some smoothness assumptions about the functions we
want to estimate based on our finite noisy data. Without such assumptions to
relate function values at different points, it is an impossible task to estimate
true function values from a single copy of the function’s noisy version, let alone
to estimate function values at points other than data points. Suppose each F¢

has a subspace H® which is a reproducing kernel Hilbert space with an inner



product < .,.>ya and the corresponding reproducing kernel R, (#',t). That is,

R, is a positive definite function satisfying:

(2.1.8)

{R( tye H, VLET
< [y Ra(t) >na= f(t), V€ HY €T

This is equivalent to say that all the point evaluation functionals, L.(f) := f(?),
on H® are continuous. See Aronszajn (1950) or Wahba (1990) for more about
reproducing kernel Hilbert spaces.

We assume that the function f to be estimated is in
Hi=H +H + - +H

It is easy to see that H is also a reproducing kernel Hilbert space when it is

endowed with an inner product

P
<[og>u=< fo, g0 >m0 + 3 o < Jar 0o >ue (2.1.9)

a=1

where f =" _fo,9 =30 0G0, fa,9a € H?, for any given positive numbers

O,,a=1,....p. The corresponding reproducing kernel is
R(t',t) = Ro(t',t) + Z 0, R, (1) (2.1.10)
a=1

It is quite clear that with such an inner product in H, H® L H” for any
a # 3. Therefore

H=H@&H & - - ®&H (2.1.11)

i.e. H is an orthogonal sum of {H*}’ _,.

Example (continued) Define an inner product in the space of functions

of z, denoted by HW, as

<fig>i= <Z f(x))(ig(x)) T (f(m) — F)g(m) — g(1)

T Z e +2) =2f(x+1) + f(2))(9(z + 2) = 29(x + 1) + g(x))



where three terms correspond to three subspaces. The first subspace consists of
all constant functions, the second one of all linear functions summed to zero (i.e.
all functions of the form c¢¢ for some constant ¢), and the third one of all the
functions perpendicular to the previous two. Hence we have a decomposition of

the space of functions of z:
HY = [1] & [¢] & HY (2.1.12)

with obvious notations. It is apparent that H") and its subspaces are all repro-
ducing kernel Hilbert spaces.

In the space of functions of P, an inner product is defined as

< fgz= oo /f )dP)( / g(P)dP) +/Af (Ag)dP  (2.1.13)

where A is the Laplace-Beltrami operator, the analogue on the sphere of the

Laplacian in Euclidean space. Hence a decomposition of the space of functions

of P:
HD = [1]aHP (2.1.14)

where H(?) contains all the functions in H?) such that [ f(P)dP = 0. H® and
its subspaces are also reproducing kernel Hilbert spaces (see Wahba (1981)).

Now the decomposition of H is obtained through the tensor product of
(2.1.12) and (2.1.14):

H = HYOoH?

= (ol oH)o (1] oH?)
= o H H@H@HS)@M@
1)@ & [poH? & HY o HP (2.1.15)

The first two are combined as H® with dimension 2 (i.e., M = 2). The last four
are denoted by H®, for o = 1,2, 3,4, respectively.

It can be shown that all these spaces with corresponding inner-products are
reproducing kernel Hilbert spaces too. It turns out that a closed form for the
reproducing kernel of H®) is not available. Consequently, the evaluation of
such a kernel can be expensive. We change the inner product to a topologically

equivalent one so that the corresponding reproducing kernel has a simple closed
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form easier for computation. See Wahba (1981, Section 3) for details. See also
Wahba (1990, Chapter 3) for the reasons why such a change is reasonable in
practice. H

A smoothing spline (SS) estimate is a minimizer over H of

M-

Il
—

G
(yi — f(t:)* + Z_: E!\fau%{a (2.1.16)

K3

(yi— < mis f>n)* + | PN (2.1.17)

-

o
Il
—

where n; is the representer of the evaluation functional at ¢;, i.e., < n;, f >y=
f(t:), for any f € H, and P; is the projection operator of H into H; :=
HY @ H® @ -+ + HP. Note that the 0’s, called “smoothing parameters”, con-
trol the smoothness of each f,. We will discuss the issue of choosing them in
Section 3.3.1. Here, and everywhere in this chapter, we assume that smoothing
parameters have been chosen.

Let & = Py, and {¢,, v = 1,2,---, M} span H°. By the argument in
Wahba (1990, p. 12) the SS estimate has a representation

M n
fo=2_dvty + 3 cibi (2.1.18)

The argument is very simple. Since any f in H can be represented as > d, ¢, +
o & + p where p is orthogonal to all ¢, and &;. Hence

M n
<77j7f> = Zdu<77j7¢1/>‘|‘Zci<77j7§i>+<77j710>

v=1 =1
M n

= > d, <m0, >+> ¢ <> (2.1.19)
v=1 =1

because < n;,p >=< n;, Pip >=< Pinj,p >=< &, p >= 0 (the first equality
is due to the fact that p € H;). Therefore the first part of (2.1.17) does not
depend on p, while the second part is

1P f113 1> ek +pll%
=1

= D <&& >u el (2.1.20)

]
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As a result, in order to minimize (2.1.17), p must be 0, that is fs must be of

the form (2.1.18).

The representer &; can be expressed in terms of these reproducing kernels:

Gt) = <& R(.,t )>:<P1772»,R(,t)>

= <n, PR(., )>—<772,ZHR ) >

a=1
P

= Zea<7’/“ >—ZGR t“t
a=1
Considering (2.1.17-21) and

< 77]‘7% >= le/( )
<y, & >=&(t ZGR (ti, ;)
<&, & >=< Pini, & >=< %Plé} >=<n;, & >,

the S5 estimate can be expressed as

M n p
= dd(t) + D e > 0.Ra(tis 1),
v=1 =1 a=1
where {d := (dy,--,dy)T,c:=(e1,- -+, ¢,)T} is a minimizer of

ly — Sd — Qac||” + " Qyc,

where

S = (qbu( i))nXMv
Qs = ZHR (tist) ) nxcn-

The component functions corresponding to (2.1.11) are
M
= Z d, ¢, (1)
=40, ch (t;,1),

(2.1.21)

(2.1.22)
(2.1.23)

(2.1.24)

(2.1.25)

(2.1.26)

(2.1.27)

(2.1.28)

(2.1.29)

(2.1.30)
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fora=1,2,---,p.
The stationary equations for (2.1.26) are

{ (5T5)d = STy — Qoc)

(Qo+ 1Qoc = Qo(y — Sd). (2.1.31)

Since (2.1.26), as a quadratic function in d and ¢, is non-negative, all its
stationary points, i.e., solutions to (2.1.31), are minimizers. Even though these
stationary points may not be the same, the functions they correspond to through
the representation (2.1.18) are the same, thus the minimizer of (2.1.17) is unique,

as long as 5 is of full rank. The reason is simple. Since by the second equation

of (2.1.31),
Qoc = (Qy + 1)7'Q4(y — Sd), (2.1.32)
hence by the first equation of (2.1.31),
(STS)d = ST(y — (Qs + 1) 'Qs(y — Sd)). (2.1.33)

Rearrange terms on both sides,

ST —(Qa+ 1)7'Qg)Sd = ST(I — (Qs + 1) ' Qo). (2.1.34)
That is,
ST(Qy+ 1)71Sd = ST(Qs + )71y, (2.1.35)
Therefore,
d=(ST(Qo+ D)7'S) ST (Qs + I)My. (2.1.36)

Hence d is uniquely decided by the stationary equations when S is of full rank.
For any two different ¢’s satisfying (2.1.31), their difference § must satisfy Q0 =

0. From

0=24"Qs6 = 252'5]‘ <&, >=< 252'52',25]‘5]‘ >
1,7 2 J

we know that >, &6, = 0, therefore by the representation (2.1.18), the corre-

sponding fy’s are the same.
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Since it does not matter which solution {d, ¢} to (2.1.31) we pick to compute

fo, we can just pick the solution to the following equations:
{ 0 = ST¢
(Qo+1)e = (y—5d).
These are equations usually used to compute SS estimates through direct matrix

decompositions. See equations (1.3.16) and (1.3.17) of Wahba (1990, pp. 12-13).
Example (continued) Corresponding to the space decomposition (2.1.15),

(2.1.37)

a decomposition of f is:
f=hth+ft+fs+ha (2.1.38)

where fo(l’,P) = dl + dqu(l'),fl(l',P) = gl(l’),fz(x,P) = gQ(P)vf?)(va) =
g¢72(P)¢($),f4($,P) ZQIQ(xvp)‘
A smoothing spline estimate is defined as the minimizer of

n

S0 — Flaas PO + -1 (g1) + —algn) +

=1 01 02
1 1
—J3(9e2) + ~Ja(g12), (2.1.39)
03 04

where Ji(g1) = Zzlz_lz(gl(:z; +2) —2g1(x + 1) + g1 ())?, J2 and J; are the same

and topologically equivalent to [¢(Af)*dP, and J, is derived from J; and J; as

the norm of the tensor-product space. (J; and J, are norms in H{") and H?

respectively, Jy is the corresponding tensor-product norm in Hy = H{) @ H?).)
The reproducing kernel for H{" is defined as follows. Let L be

1 -2 1 0
0 1 -2 - 0
00 1 -0 (2.1.40)
0 0 0 1

Thus Ji(f) = fTLTLf. Then Ry(j,5'), the reproducing kernel for H{), is the
75"-th entry of (LT L)" where 1 denotes the Moore-Penrose generalized inverse.
The reproducing kernel for H(?) is defined as

&uuwzégéﬁa—é, (2.1.41)
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where z = cos(y(P, P")), v(P, P') is the angle between P and P’, and

oo = gt (172 () -0 (5)
1 (1 3 2)3/2 +6 (121) +1} (2.1.42)

(From Wahba (1981), (3.3) and (3.4)).
The reproducing kernels for H,, a = 1,2,3,4, are therefore defined as in
Table 1. Solving (2.1.37) with these kernels, we get a SS estimate through

« space RK

1 [] Ry(x, P;2', P') = Ry(x,2')

2 [ ]@H D Ry(x,p;a’, P') = Ry(P, P

3 [¢]®H2) Ry(x, Pia’, P') = ¢(x)p(a') Ro(P.P')
4 HY @HD  Ry(x, P;a', P') = Rz, 2")Ry(P, P')

Table 1: The reproducing kernels of the four subspaces containing the four non-
parametric components in Model (2.1.38).

(2.1.25). A

When the sample size, n, is not too large, the equations (2.1.37) can be
solved through direct matrix decompositions. RKPACK developed by Chong
Gu (1989) implements an approach in this direction. For a Dec Alpha 3000/400
machine with 188M memory, the largest data size we can handle using RKPACK
is about 2000. When the sample size gets larger, for example, in the climate
study of Chapter 3 the data size is easily larger than 10000, unless we make use
of some special structures in our specific data set, it is difficult to imagine that
those equations can be solved using full-matrix methods on the computers of
the present or near future. One special structure which has been widely studied
is the sparsity of matrices. Sparse matrices often result from the problems of
numerical solution to partial differential equations. The special structure we

will use here is tensor product structures.
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2.2 The backfitting algorithm

The representation (2.1.25) can certainly be written as

M p n
Jo(t) = 2o (1) + 3 023 ciaRallist) (2.2.1)

too, where ¢; ., differs for different a. Since the minimizer of (2.1.17) is unique
(assuming as usual that S is of full rank), we can minimize (2.1.17) within the
class of functions of form (2.2.1) and get the same SS estimates as before. This

leads to a problem of minimizing:

p p
ly — Sd — Z (9aQacaH2 + Z Gachaca (2.2.2)
a=1 a=1

over d and ¢,, for a = 1,2,--- p, where Q. := (Ra(ti, 1) )nxn-
The corresponding stationary equations are:

{ (578)d = ST(y = Tioi 0aQuca)
(eﬁQﬁ + [)Qﬁcﬁ = Qa(y — Sd — Za;ﬁﬁ eaQaca)a for ﬁ = 1727 cey P

With an argument similar to the one used in the last section, any solution to

(2.2.3)

the above equations will result in the uniquely defined smoothing spline estimate
fo and its components. Without confusion within their context, we denote the
component functions of SS estimate f; evaluated at data points as fo, f1,--+, fp
also. That is,

fo = 54,
fa — eaQacaa

fora=1,2,---,p.
They must satisfy

fO = SO(y_ Z:lfoz)
{sz Sy — Ty fo), for B= 1,2, ..p. (2:24)

where Sp := S(STS)"1ST and S5 := (Qﬁ—l—é[)_lQﬁ for 3 =1,2,---,p. These S
matrices are called “smoother matrices” (5o, a projection matrix, is an extreme

case of smoother matrices.)
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This suggests an iterative method to solve the above equations, i.e.

{fék) = Soly — X0z JI7Y) (2.2.5)

fék) = Sp(y —Xocs J - 2a>p fFD), for p=1,2,...p.

This is exactly the backfitting algorithm studied in Buja, Hastie and Tibshirani
(1989).
It can be seen that this iterative method is equivalent to an alternating

minimization scheme to the problem

: - 2 = Lo
pecn o lly = aZ::OfaH + ; g e Qula (2.2.6)
where Q! is the Moore-Penrose generalized inverse of ), and £(A) denotes the
space spanned by the columns of A.

Because of this equivalence, we know immediately that this iterative method
converges to the solution of (2.2.4) using results in the optimization literature.
(See, for example, Lunerberg (1984), Section 7.9 on pp. 227-228). See Ansley
and Kohn (1994) for an interesting discussion of convergence issue.

Rewrite the equations (2.2.4) as

I So So fO SOy

S
o 5 ff | (2.2.7)
Sp Sp oo 1 Ip Spy

It is clear that the backfitting algorithm we have just described, (2.2.5), is a
(block) Gauss-Seidel algorithm.

Having known fy (= Sd), we know d immediately. By (2.1.37), (Q¢+ I )c =
y — Sd, hence

c:y—Sd—Qgc:y—Z_:fa. (2.2.8)

Therefore ¢ is available after we get the f,’s.

One advantage of the backfitting algorithm is that it enables us to take ad-
vantage of some special structures of (), in some specific applications. In Buja
et. al. (1989), additive models are fitted by backfitting where each marginal



17

smoother is a one-dimensional smoother which has a sparse matrix represen-
tation due to O’Sullivan. Here marginal smoothers are full matrices, but they
have a tensor product structure if the data have a tensor-product design. This
structure is what we want to make use of.

Example (continued) Suppose we have data at every point (z;, P;) for
1 = 1,2,...,ny and 7 = 1,2,...,ny. That is, the data have a tensor product
design. Hence the sample size n = nyny. Then the S and (),’s have the

following forms:

S =1@58

Q= N e
Q: = Q, 211"
Qs = Q,D¢d"
Q4 = Q5®Qt

where 1 is a vector of ones of appropriate length, ¢ = (é(1), ..., ¢(n1))7, S =
(1 @)nyx2, Qs is an ny X ny matrix with (¢, 7)-th element Rs(FP;, P;), and Q) is
an ny X ny matrix with (¢, 7)-th element Ry(1, 7).

Given such tensor product structures, in order to get the eigen-decomposition
of matrices {Q,}, we only need to decompose (), and (); which are much smaller
in size compared with {Q,}. Note that we cannot take advantage of this struc-
ture in (2.1.37), because Qg = 31 _, 0,0, does not have a tensor-product struc-
ture even though every single (), does. This is exactly the reason why we want
to use the backfitting algorithm. Now with the eigen-decompositions of {@),},

hence {9, }, updating (2.2.5) involves just a few matrix multiplications. l

2.3 Issues in speeding up backfitting

In many cases, a straight-forward implementation of the backfitting algorithm
converges very slowly. There are many discussions about speeding up the Gauss-
Seidel algorithm in the numerical analysis literature, especially about an algo-
rithm called successive over-relaxation (GS is its special case). See, for example,
Young (1971). Here we would like to discuss some of these issues in the context

of fitting a smoothing spline model.
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2.3.1 Orthogonality

Roughly speaking, the main reason for the slowness of the backfitting (Gauss-

Seidel) algorithm is the correlation between components. For the purpose of il-
lustration, consider a trivial problem of minimizing f(c) := ¢* ( '; ) ¢ where

p is between —1 and 1. The spectral radius of the updating matrix of the alter-
nating minimization (i.e., GS) algorithm applied here is easy to be verified to be
p*. Hence the larger “correlation coefficient” p is, the slower the GS algorithm
converges. If p is zero, then the GS algorithm converges in one step. Therefore,
if possible we may want to formulate the original problem in such a way that
as many off-diagonal elements as possible are zero and thus the problem can be
reduced into some smaller problems. Besides the possible gain in the computa-
tional speed, the benefit of such an approach is that the smaller problems are
also easier to be analyzed in general. It is because of this, i.e., the reduction
of the original problem into smaller ones, we are able to analyze SOR in our
application analytically in Section 2.3.3.

Example (continued) Recall that Q; = (LTL)" where L is given by
(2.1.40), hence Q;1 = Q;¢ = ¢'1 = 0. Therefore, all Q,Qp for a # 3 and
Q.S are zero except Q1Q)4, ()25, and ()35. Hence the minimization problem
(2.2.6) can be separated into two smaller ones.

For fo € L£(S), fo € L(Q.), we know that fIf; = 0 for any o € {0,2,3}
and 7 € {1,4}. Hence

o= X Lol + X A QL
ZIW—ﬁ—ﬁ—ﬁW+%ﬁ@ﬁ+%ﬁ@ﬁ+

M—ﬁ—hW+%ﬁ@ﬁ+éﬁ@h
gl (2.3.1)

Therefore, (2.2.6) is equivalent to solving the following two problems sepa-
rately:

1 1
. 2 T Nt T At
m = f— — — 2.3.2
(s e - ron ly — fo—f2— fsl]P + 92f2 Qif2 + 03f3 Q3fs (2.3.2)
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and

They correspond to solving the following two systems:

I So So o Soy
Sy I 0 2l =1 Sw (2.3.4)
S; 0 [ f3 Sy
and
I s S
(5 T)(8)-(50), 229
respectively.

The key reason for such a reduction is that the x variable has an equally-
spaced design. But even with the same design, if we choose to treat = after
normalization as a continuous variable in [0, 1] and to use the same reproducing
kernel as that used in Gu and Wahba (1993b), then Q:1 and Q¢ will not be
zero anymore even though they may be very small.

If the design of every variable is equally-spaced, then choosing appropriate
reproducing kernels can make all Q,Qs for o # [ and @S5 zero, hence f, =
Soy. That is to say, we only need to apply marginal smoothers to the data once

to get all component functions. H

2.3.2 Grouping and Collapsing

Consider the problem (2.2.6). Instead of minimizing it with respect to one
component by one component which leads to the backfitting algorithm (2.2.5),
we can minimize it with respect to more than one component at a time. Of
course, each updating step is more complicated due to the higher dimension of
the problem. In many cases, however,this will reduce the number of iterations
needed in the backfitting algorithm. (See Varga (1962), p. 80, for a counter-
example.) A compromise between the cost of updating and the number of
iterations needed has to be considered.

Another possible way, in a similar spirit to save computing time, is through
what we call a “collapsing” technique. We will now illustrate this method, again

using the same example used before.
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Example (continued) It may be the case that the backfitting applied to
(2.3.5) is so slow that we would like to avoid any iteration completely.
Rewrite equations in (2.3.5) as

L= ((91_1[+Q1)_1Q1(y—f4)
Ja = ((91_4[+Q4)_1Q4(y—f1)-

Hence
(01—1[ + Q1)1 = Quly — fa)

(01—4[ + Q1) f1 = Quly — f1).

Rearrange terms on both sides:

= 91@1(9 - fi— f4)
f4 = 94@4@ - f1 - f4)-

Add these two equations together:

fi4 fa=(61Q1 + 0.Q4)(y — fr — [f4).

Denote 6101 + 0,04 by Q)114, we have:

fi+ fi=(Qiya+ 1)_1Q1+4y- (2.3.6)

Therefore, we do not need any iteration to compute f; + f; if we can easily
invert (Q144+ I). fi1 + fa can then be used in (2.2.8) to get ¢ and hence f; and
fa1 afterwards.

We certainly do not want to decompose ()144 directly. In this case, fortu-

nately, (144 has a tensor product structure too:

Qi4a = 91(11T @ Q1) + 04(Qs @ Q) = (9111T +04Q5) © Q¢ =: Q1+4 @ Q.

We can eigen-decompose ();,4 which is of the same size as Q,, then we get the

eigen-decomposition of ()14 through the tensor product of the eigen-decompositions

of Q1+4 and ;.
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Another application of collapsing is in solving (2.3.4). By the similar argu-
ment as that for (2.3.5),

Jot J3 = (Qapz+ 1) Qagsly — fo), (2.3.7)
where Qq13 1= 05(Q, @ 11T) + 05(Q, @ dp¢T) = Q, @ (05117 + O3007).

Since

fO = So(y - f2 - f3)
— So(y — (Q2+3 + [)_1Q2+3(y - fO))7

we get

(I — So(I+ Q213) ' Q243) fo = So(I — (Qz43 + 1) ' Q213)y.

Since fo = Sofo, it is equivalent to

So(I + Qa13)~" fo = So(I + Q243)"'y.
Hence
S(STS) ST + Qays) ' Sd = S(STS) ™ ST(T+ Qrys)y.
Therefore.,
d = (ST(I + Q242)7" ) ST (I + Qaya) ', (2.3.8)

which can be computed directly using the eigen-decomposition of Q213 = Qs @
(02117 + 030¢7). Then f; and f3 can be computed using fo = Sa(y — fo), f =
Ss(y — fo). Again no iteration is needed.

If the iteration of backfitting applied to (2.3.4) or (2.3.5) converges too
slowly, then the extra cost of matrix decompositions (actually for (2.3.4), no
extra decomposition is needed besides those of Q5 and ();) and matrix products
may be worth taking in order to save overall computing time.

Note that if we apply the same argument to all four f,’s, we would end up
with (2.1.37), where @y does not have a tensor product structure such as Q243
in (2.3.7) has, thus it is much more difficult to invert (I + ()4) than to invert
(I + Q243). Therefore the problem here is to decide how much further we want
to break down the original problem. If too much, we may end up with too many
backfitting iterations. If not enough, the updating equations may be impossible

or too expensive to solve. l
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2.3.3 SOR

A very important technique to speed up the Gauss-Seidel (backfitting) algo-
rithm is through successive over relaxation (abbreviated SOR). See, for example,

Golub and Van Loan (1989), or Young (1971).

Suppose we want to solve

I Sy - Sy fo Soy
S I - 5 f1 _ Sly (239)
Sp Sp e fp Spy

The Gauss-Seidel updating scheme is

JED = 5 (y = 37 I 23T ), (2.3.10)

B<a B>a

The SOR scheme is

S = wfSa(y = S = S A =B, (2300

B<a B>a

where w is a real number known as the relaxation factor. With w = 1, we
are back to the Gauss-Seidel algorithm. When w < 1 or w > 1, we have
underrelaxation or overrelaxation.

The trick is to find a good w. In general, only for some special kinds of
matrix a prescribed optimal w is available. Fortunately our case falls into this
kind of situation.

Example (continued) Consider system (2.3.4), and denote:

I S0 So
A= 5 [ 0
S 0 1

Obviously A is consistently ordered (see Young 1971, pp. 144-145). If we
can show that all the eigenvalues of B := I — (diag A)™'A are real and have

absolute values less than 1, then according to Theorem 2.2 on page 172 of Young

(1971), SOR will converge for any w in (0, 2).
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Since
A =5, =5
|B— M| = -5y =X 0
-5 0 =X

= (=17 A2 AT — (Sp So)( M)~ ( gz )‘

— (S 1)PNART — So(Ss + )

(this is true for all nonzero A, hence for all A, because both sides are continuous.)

Therefore all the eigenvalues of B are

{07 :i:\//’TZ7Z = 17"'7”}7

where {yi1, ..., 1, } are eigenvalues of Sp(S2 + 53) and 0 has a multiplicity n.

They are certainly real, since all Sy, 53,53 are non-negative definite. We
only need to show that their absolute values are less than 1. We know Sy has
eigenvalues either 0 or 1 since it is a projection matrix. So we just need to show
Sy + 53 has all its eigenvalues less than 1 in absolute value.

Let Q, = T, AT, Q; = T\A LT, A, = diag(A3)i2,, Ay = diag(N)2,. Since

j=1»
Q1 = Q0 =0, and ¢'1 = 0, we can choose I'; so that its first two columns are

1/ and /||g]], where [|¢]] = /SiL; ¢2(x). So

Sy = (Q:t5D)7'Q2 = (T, @T)((As @Az + 5 1)7HA, @ M) (T @ T,
S5 = (Qs+70)7'Qs = (T,@T)((As @As+ 1) (A, @A) (T, @ Ty)T,

where Ay is a ny X ny matrix with all its elements being zero except the first
diagonal one being ny, Az is a ny X ny matrix with all its elements being zero ex-

cept the second diagonal one being ||¢||*. Hence, we can see that the eigenvalues

of (Sy+ S3) are

by 22|¢)2
]nl ]"¢" = 1727"'7n2}7

07 '\ s ) J
{ A+ 1107 X[ 9]]” + 1/03

where 0 has a multiplicity (nq — 2) X na. Therefore, all (S5 + S5)’s eigenvalues
are in [0, 1).
According to Theorem 2.2 of Young (1971, p.172), SOR converges for any

choice of w between 0 and 2. Furthermore, according to Theorem 2.3 on the
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same page, the best choice of w is

2
1+ /12

where [ is the spectral radius of B. It can be shown (Young 1971, Theorem

Wh

2.2, p. 142) that @? is the spectral radius of the Gauss-Seidel iteration matrix
which can be estimated by the power method after some GS iteration steps are
done. See Young (1971, p. 206) for an explanation.

It is even easier to show that SOR for the system (2.3.5) converges too, also
its optimal over-relaxation parameter can be computed given the estimate of
the spectral radius of the corresponding GS iteration matrix.

Note that the cited results of Young (1971) are only for the (point) Gauss-
Seidel or SOR algorithms. In our case, however, point and block versions are
the same because of the special structure of our linear system. The diagonal
blocks are all identity matrices. Hence updating elements in one block one by

one is the same as updating them simultaneously.

2.4 Iterative Imputation

So far we have assumed that our data are complete in the sense that every
tensor product grid point has one observation. But frequently in observational
studies, we have data missing here and there. For example, in the climate study
to be described in Chapter 3, many stations have interrupted records due to
various reasons. In such cases we can still make use of previously discussed
computational procedures through the aid of an imputation technique.

For simplicity reason, suppose that we have reordered the data in such a

way that the complete data y can be written as two parts

y = ( y(: ) , (2.4.1)

y!

where y® = (y;,,--+,y;,.)7 is the missing part, and y") is the observed part.
The iterative imputation procedure is to impute the missing part with any
initial values (of course, if we start with good ones, we will be able to converge

to the results faster), then fit a smoothing spline model to the complete “data”,
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then to calculate its predicted values at the missing part, e.g., ¢'». After that,
we impute y? with these newly predicted ¢/® and go back to fit the same SS
model again. We keep going through this cycle until the fitted values do not
change anymore.

In the step of fitting a SS model, we can use backfitting and all other tech-
niques discussed before.

It can be shown that this iterative imputation procedure is equivalent to the
EM algorithm. See Dempster, Laird and Rubin (1977) and Wu (1983) for more
about the EM algorithm and its properties. See also Green (1990) for its use in
penalized likelihood estimation.

The following lemmas are taken from Wahba and Luo (1996). It is shown
in these lemmas that this iterative imputation procedure does converge to the
SS estimate we want.

Lemma 1 (The Leaving-Out-K Lemma)

Let H be an RKHS with subspace H° of dimension M as before, and for f € H
let | PLfI|? = 5oy é”PﬁfH?. Let f1 be the solution to the variational problem:
Find f € H to minimize

n

Sy — FREO) PR (2.4.2)

i=1,i¢ Sk
where Sk = {i1,---,ix} is a subset of 1,---,n with the property that (2.1.17)
has a unique minimizer, and let y',1 € Sk be “imputed” values for the “missing”

data imputed as y: = fW(1(:)),i € Sx. Then the solution to the problem: Find

f € H to minimize

n

S (i SO+ X~ S IR (243
i=1,i¢Sx €Sk
is fIKI,
Yates (1933) uses a similar idea to fit an ordinary ANOVA model to the data
with a few missing values, without solving a general linear model equation.
Let A()X) be defined by f = (@), = ANy, and A(X) be parti-

tioned, corresponding to (2.4.1), as

All A12 ) (2 44)

AN = ( Ay s
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Lemma 2 (The Imputation Lemma)
Let g((g)) be a K -vector of initial values for an imputation of (f(¢(iy)), -, [t (ix))7,
and suppose (I — Agg) = 0 (i.e. positive definite). Let successive imputations
g((f)) forl=1,2,---, be obtained via

1) (1)
o =an | G- (2.4.5)
9 Ju-1)

(1) JEI((1))
g
Jim ( o ) = : : (2.4.6)
fH(t(n))

~—

Then

There is a simple sufficient and necessary condition for (I — Ajz) to be
positive definite.

Lemma 3 (The Pre-Imputation Lemma)
Let 'y be an n x M matrix of orthonormal columns which span the column space
of S, partitioned after the first n — K rows to match y in (2.4.1) as

( E; ) : (2.4.7)

Then (I — Agy) = 0 if and only if 1 is not an eigenvalue of T'y 'L,
An interpretation of this condition is based on the observation

ryrf 1,1t
S(STHST =17 = ( o A2 ) . 2.4.8
( ) 149 F21F¥“1 F21F%“1 ( )

We see that 'y 'L, is in the same position as the diagonal elements of a “hat”
matrix are in an ordinary linear regression. Hence it can be interpreted as a
measure of influence of those missing data points on the SS fit. Since the largest
possible eigenvalue of I'y; '], is 1, the condition in the lemma is a condition to

exclude the most extreme influential case.
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2.5 Convergence criteria and the verification of

computation

In order to verify the above method of combining the backfitting and the EM
algorithm to compute SS estimates, we compare the results using this method
with the results using RKPACK of Gu (1989) which solves (2.1.37) using direct
matrix decomposition methods.

Consider the model in the example of previous sections. From the data set
used in Chapter 3, we choose a subset of 100 stations, distributed as uniformly
as possible, and their 30 years’ records. There are 2046 observations available.
About one third of the total observations is missing. 2000 is about the largest
data size for the model in our example which RKPACK can handle on our
current computer with 192M memory.

Smoothing parameters (6,’s) are chosen in a way that they are comparable
to the results for 1000 stations shown in the next chapter, i.e. §; = 10°°, 0, =
102,05 = 1,0, = 105,

For the backfitting iteration, we choose the relative differences of f,’s:

LAY — F2

a=0,1,---,4 Hfo(zk)HQ (251)

as the convergence index. The convergence criterion is that the maximum rel-
ative difference is smaller than a pre-specified number ¢;.

For the EM iteration, (2.1.26) is chosen as the convergence index. Note that
by (2.2.8), (2.1.26) equals

P P
Hy - fO — Z eaQacHz + CT Z aaQac
a=1 a=1

= My =2 fall" +(y - Z_:fa)TZ_:fa, (2.5.2)

hence it can be computed easily after the f,’s are computed. The convergence
criterion for the EM iteration is that (2.5.2) is smaller than a pre-specified
number &,.

We compare three different levels of convergence. The first set of results
are for 87 = 5. x 107" and §; = 1. x 107*. The second set of results are for
d; =5.x107% and d, = 1. x 107°. The third set of results are for §; = 5. x 1076
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and §; = 1. x 107%. From the figure of estimated fy + f; by RKPACK and
three backfitting fits (Figure 1), we see that even a relatively loose convergence
criterion still gives a solution close to that given by RKPACK. From Figure 2
of the plots of backfitting results with §; = 5. x 107°% and §, = 1. x 107° against
RKPACK’s results, we see that there are still some discrepancy between these
two sets of computational results, especially in estimating f;. We can certainly
make our convergence criteria stricter so as to make the results even closer
to those of RKPACK, but in practice, this may not be necessary for large
size problems. The extra computing time may not be worthwhile since after
all even the exactly computed results may not be the best estimates. If we
start with some smooth values (for example, imputing missing values by the
station means), we know our results are a little bit smoother than the exact SS

estimates.

fitted global mean 'winter’ temperature (C)

13.6 1
13.4 1
13.2 1
13.0 1
12.8

12.6 1
12.4 -

1960 1965 1970 1975 1980 1985 1990
year

Figure 1: Compare results computed by backfitting with different convergence
criteria with those by RKPACK. 100 stations. Solid lines are the RKPACK
results, broken lines are the backfitting results. Longer broken lines correspond
to a cruder criterion.

While the theory described in the previous sections requires that in every
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backfitting step the iteration has to converge before the next imputation step
starts, in practice there is a flexibility in varying how close the backfitting
iteration is to its convergence. Our experience suggests that we can just choose
an adequately strict criterion comparable to the criterion for the EM iteration
which controls the closeness of our results to those of RKPACK eventually.
An extreme choice is to do only one iteration in backfitting, hence form a big
iteration including backfitting and EM updatings simultaneously. This reminds
us of what many Bayesians usually do with missing values: to treat them as
unknown parameters and update them together with “real” parameters. The
problem is that it may be very slow to converge, and the theory described before
does not apply anymore. Therefore, even though we may still use SOR or other
speeding-up techniques, we do not know in theory when it does and when it
does not converge.

Finally, as a precaution, the component function values computed from rep-
resentation (2.1.29-30) using d and ¢ in (2.2.8) should be checked against those
obtained directly from backfitting. Any discrepancy may indicate that the con-
vergence criterion is not strict enough. In general, results directly from backfit-
ting are more reliable than those computed using d and ¢ whose computations
are more ill-conditioned than those of function values. It is important to check
this point, especially when some smoothing parameters are extremely small

compared with the others.
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Chapter 3

An application of smoothing
spline ANOVA to global

historical temperature data

In this chapter, a smoothing spline ANOVA model for global surface air tem-
perature history is described and fitted using the computational procedures
described in Chapter 2. Some important issues in practice such as choosing

smoothing parameters and diagnostics are discussed too.

3.1 Introduction

In recent years a lot of attention has been paid to the climate change of the earth
due to its tremendous impact on human life and the possibility of anthropogenic
influences on the climate. There have been many studies on different aspects of
this issue. An initial and yet important step towards a thorough understanding
of this issue is to have an accurate picture of what has happened so far in the
climate. Here we consider only one aspect of the climate, i.e. surface air tem-
perature. However the method used here can also be applied to precipitation or
other climate variables. Our goal is to give an accurate description of the global
temperature history. We would like to know the history of global mean temper-
ature, as well as local temperature history and its variation across the globe.
Essentially, we want to calculate a whole bunch of summary statistics, e.g., dif-

ferent kinds of averages of the past temperature records. This seemingly easy
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job is complicated by the non-uniform distribution of the weather stations tak-
ing these records and by the incomplete time coverage of the records available.
Stations are concentrated more in Europe and North America. Some stations
have a long history of records, others have very short ones, and some have inter-
rupted records due to various reasons. The newly available satellite data may
help to solve the problem resulting from the nonuniform spatial coverage, but
its history is too short. For many historical studies of climate, surface station
data are still the main source of information. Also, see Hurrell and Trenberth
(1996) for a comparison of estimates based on satellite and surface data.

To calculate a global mean, the simple average of available station records
is obviously biased towards the area concentrated with more stations. More so-
phisticated methods are needed. Vinnikov et. al. (1980) subjectively contoured
the station data to get grid point estimates, then averaged them with cosine
weighting to account for the change of grid density along latitude. Jones et.
al. (1982) did a similar computation except with an objective method (near-
est neighbor (with 6 neighbors) inverse distance weighting) to get grid point
estimates. Later in Jones et.al. (1986), they divided the globe into 36 by 36
boxes and within each box the inverse distance weighted average was used to
estimate the grid point value corresponding to that box. Hansen and Lebedeff
(1987) divided the globe into a number of equal-area small boxes and computed
a mean value within each box. Then a hierarchical average of box mean val-
ues (from small boxes to bigger boxes, then to latitude bands, to hemispheres,
with different weighting schemes at different levels) is used as an estimate of
the global mean. Vinnikov et.al. (1990) used an “optimal statistical averaging”
method to compute different area mean values directly without computing grid
point values.

To compare global means across time (the crudest way to look at global
temperature change), there is another bias due to the incompleteness of time
sampling, i.e. the stations having records are different from one year to another.
The temperature change in time is confounded with the change in the location
of stations. If in one year the relative number of stations in a cold area is bigger
than in the next year, then we do not know whether the change in the average
temperature is due to a real global change, or just due to the sampling difference
between these two different sets of stations. The way most studies choose to

correct this bias is through the use of anomalies which is defined as the difference
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of raw records and the average over a pre-specified reference period. We will see
in Section 3.2.2, while this approach is satisfactory in general, there are some
significant biases it cannot correct. We will also show that our smoothing spline
ANOVA approach can correct such biases without even using anomalies.

In Section 3.2, we will show our SS approach to the problem of spatial
averaging of one-time data. In Section 3.3, we will describe our approach to
data with both time and space dimensions.

The data set we choose to apply our approach is Jones et. al. (1991)’s data.
We obtained this data set from http://cdiac.ESD.ORNL.GOV/ftp/. It is a
combination of four files: ndp020r1/jonesnh.dat, ndp020ri/jonessh.dat,
ndp032/ndp032.tml and ndp032/ndp032.tm2. This data set is assembled from
different sources of monthly temperature records at about 2000 stations dis-
tributed across the world over the period from 1851 through 1991. There are
only a few stations with records dating back that far. Most of stations started
recording in this century. The stations are concentrated heavily in Europe and
North America. Jones et. al. (1991) have done some cleaning and homogenizing
to the original data.

A subset of this data set is chosen to illustrate our method. Only winter
average temperature, defined as the average of December, January and February
temperatures, is considered. The most recent 30-year period (1961-1990) is
chosen. Instead of using all the stations in this data set, we selected 1000
stations due to the limit of our computing capacity. These 1000 stations are
chosen deliberately so that they cover the sphere as uniformly as possible. Hence
most stations left out are those in Europe and North America while almost all
the stations in other regions are included. Note that this selection of stations
only mitigates the problem of non-uniformness of station distribution, it does
not eliminate the problem. The distribution of these 1000 stations is plotted in
Figure 3.

To have a graphical idea of the incomplete time coverage, a plot of (year,
latitude) for the records in our data set is given in Figure 4. The year variable
is blurred by a small uniform random variable in order to get a better idea of
the density of data.
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Figure 3: The distribution of the 1000 stations used in our analysis.

3.2 Smoothing spline estimates for a single year

3.2.1 SS estimates and BLUP estimates

Consider a variable defined over the sphere, for example, winter mean temper-

ature. Suppose we have noisy data at some locations,
vi=f(P)+e,1=12,..n (3.2.1)

where P; € &, the sphere. ¢; represents a “noise” term which contains not
only the measurement error in record taking but also the representation error
which is in connection with the density of data points. Hence f represents a
smoothed version of the actual temperature field. Its smoothness depends on
the resolution of data points. In other words, the denser those data points are,

the smaller the area represented by f’s value at one point is.
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Figure 4: The missing pattern in the 1000 stations. The year variable is blurred
by a small uniform random variable.

A smoothing spline estimate of f, denoted by fy to emphasize its dependence

on a smoothing parameter 6, is defined as the minimizer of

n

Sl — S+ 50(F) (3.2

i=1
over a reproducing kernel Hilbert space with 1 4+ R as its reproducing kernel,
where R is defined in (2.1.41). J is the semi-norm corresponding to R in this
space. J is topologically equivalent to the integrated squared Laplacian on the
sphere, [s(Af)?dP, as defined in Section 2.1. The smoothing parameter, 6,
controls the smoothness of f; besides R.
As in chapter 2, it can be proved that the solution to the above problem has

a representation

foP) = d+ 03 GR(P.P,), (3.2.3)
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where d and ¢ are the solutions to the following linear system:

1T7¢ = 0
{(0Q+1)c = y—dl. (3.2.4)

[t can be easily derived from (3.2.4) (see (2.1.36)) that

d = 170Q + )™ y/1T(0Q + 1)1
{c = 09+ 1)y — ). (3:25)

It is not difficult to verify that
/ R(P,P")dP =0, for any P' € S, (3.2.6)
S

hence [s fo(P)dP/ [¢ 1dP = d. That is, d is the global mean of fy.

We can also integrate f; over a region, say K C S, to get an estimate of
the average temperature in that region. It turns out that this is the same as
what Vinnikov et. al. (1990) called the “statistical optimal averaging” estimate
(also called “Best Linear Unbiased Prediction” (BLUP) in many statistical ref-
erences), even though these two estimates result from two different approaches.
Vinnikov et. al. (1990) assume that f is a random field over the sphere with
a constant mean , say C, and a covariance function R(P, P’). They also as-
sume that {¢} are independent random variables such that F(¢;) = 0 and
Var(e;) = 0. {¢;} are assumed to be independent of f as well. Then the mean
squared error of predicting the mean of f over a region K C S, [ fdP/b where
b:= [ 1dP, by a linear combination of observed data is

MSE = E(/}C fdPb — ﬁ;piyi)z
_ E(/}C fdP/b—épifi—épiﬁi)z
_ Var(/}c FdP/b) —I—Var(épifi) +var(§;pm)
—zcov(/}C fdP/b,ZZj;pifi) + (E/dep/b - épiEfi)z

= [Var(/}cfdp/b) —I-ZZPZ'}?]‘R(PMP]‘) ‘|‘ip?02
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2300 +[C31 - L p)
_ lariancd 4 bias, (3.2.7)
where
0; _Cov/fdP/b i) = / R(P, P)dP/b.

They restrict estimators to unbiased ones, i.e. require that the “bias” term

in (3.2.7) equals to zero. Hence coefficients {p;} must satisfy:
Spi=1. (3.2.8)
=1

Under the condition (3.2.8), the minimizer of the MSE which is the same as
the “variance” term now is

1— 1T(Q + o270

_ 27\—1 2 -1
p=(Q+7H7'Q4+(Q+s 1)1 T(Q + o2) (3.2.9)
hence the estimate of f’s mean over region K is
1—17(Q + 821710
T — T 52[ _1Q T 52[ -1
y'r = y (@) Q+y (Q+51) 1700 + 621)-]
_ yie+enT
= Qe
T 5211
+y— 2 (Q+071) HIQ+ 8070 (3.2.10)

17(Q + 621)-11

which is exactly [ fodP/ [c 1dP with § = 1/02.

In Vinnikov et. al. (1990), they use an empirically estimated R(P, P’'). As a
matter of fact, what they have used is not exactly a covariance function, since it
is not positive semi-definite. The discontinuity in its derivative is also a unde-
sirable property. Estimating covariance functions, especially non-homogeneous
ones, from empirical data is a very difficult problem. See Sampson and Gut-
torp (1992) for an example in this direction. For the data set we chose to use,
we concluded, after a few attempts that a reasonable homogeneous covariance
function is better than or at least as good as a very crudely estimated non-
homogeneous one. We note that given any covariance function, homogeneous

or not, our method is still applicable.
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3.2.2 Spatial sampling difference and anomalies

Applying the SS estimate technique to each year’s records in the period of
1961-1990, we get a sequence of global averages of winter temperature. A plot

of these averages is shown in Figure 5. An easily seen feature of this sequence

14.0

13.5 1

13.0

winter mean temperature

12.5 7

1960 1965 1970 1975 1980 1985 1990

year

Figure 5: Global average winter temperatures (°C') based on yearly fits to raw
data. Grand mean temperature is 13.07(°C'), the linear trend coefficient over a

30 year period is .025(°C') /year.

is the outstanding high values of the last two years. If we hence conclude that
we have seen a dramatic increase of winter temperature in the last two years of
80’s, then we have been misled by the bias resulting from the spatial sampling
difference (or, equivalently, unbalanced time coverage). The records for the
Antarctic region end in 1988 (see Figure 4). Obviously this abrupt increase of
winter temperature in the last two years is mainly because of the lack of data
in the Antarctic region where it is much colder than most other regions of the

world.
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In order to correct the bias resulting from the spatial sampling difference,
many previous studies have chosen anomalies, instead of raw temperature records,
as input. An anomaly is defined as a difference between a temperature record
and the average temperature over a specified reference period. Choosing the
average over 1961-1990 as the reference period, we get a sequence of average
temperature anomalies shown in Figure 6. It is quite clear that the outlying

feature of the last two years in Figure 5 disappeared.

0.6

winter mean temperature

-0.6

1960 1965 1970 1975 1980 1985 1990

year

Figure 6: Global average winter temperature anomalies (°C') based on yearly
fits to anomalies. The grand mean anomaly is .02(°C') and the linear trend
coefficient over the 30 year period is .014(°C') /year.

The reason for the effectiveness of using anomalies to correct the bias re-
sulting from the spatial sampling difference can be easily explained by the data
decomposition of (2.1.1) and (2.1.6).

Since an observation is

y(z, P) =dy + d20(x) + g1 () + 92(P) + go2(P)p(x) + gr2(z, P) + ¢,
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considering (2.1.7), the station mean over the same period is

1 &
g(P):= — > y(x, P)~dy + g2 P). (3.2.11)

1 p=1
The approximate equality in (3.2.11) is because that the records of some
years may be missing when calculating 3" y(x, P), and Y7L, €, is only approxi-

mately zero. Therefore the anomaly is

y(@, P) — T(P) = da(a) + gi(2) + oo P)ola) + grala, ). (3:212)

Now it is clear that the locational difference across years in go( P) does not
affect the anomaly. However, the locational differences in the last two terms
of (3.2.12) still do. The only case in which using anomalies will eliminate any
bias resulting from spatial sampling difference is when we are certain that the
last two terms in (3.2.12) are not significant, i.e. we know in advance that an

additive model:
Yz, P) = di + dsd(x) + () + a(P) + €, (3:2.13)

is adequate. In our application here, we know that not only the average tem-
peratures in different locations (g2(P)) can be different, the change trends
across years at different locations (g42(P), linear change trend coefficient, and
g12(x, P), the other change) can be significantly different too. Some locations
may have an increase, others may have a smaller increase or even a decrease.
See Hergel et. al. (1995)’s Figure 2. This makes the last two terms un-negligible
when considering the bias resulting from spatial sampling differences.

Having pointed this out, we would like to make clear that it is true that the
locational difference in ¢g2(P) is the most prominent one among the three terms
in (2.1.6) involving P. The locational difference in the average temperatures (in
a range of (—40°C,40°C")) is much larger than the locational difference in the
changes of temperature (a few degrees (°C')). Therefore the anomaly approach
has eliminated most bias resulting from locational differences. This is probably
one of the reasons for its satisfactory use so far.

In our approach described in the following section, we fit raw temperature
records instead of anomalies directly. By choosing appropriate averaging, we

can correct the bias resulting from the locational difference in both go(P) and
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the other two terms g4 2(P) and gi2(x, P). A global average temperature history
delineated using this approach is shown in Figure 8. We can see that the pattern
shown there is very similar to the one shown in Figure 6 which is obtained using
anomalies. This is obviously an evidence that our approach has a similar ability
to correct the bias resulting from spatial sampling difference as the anomaly
approach does. Since we consider simultaneously all three terms in (2.1.6)
involving P, it is reasonable to expect that our approach will correct the bias

resulting from the other two terms too.

3.3 Smoothing spline model for multiple years

Now consider a more complicated model than (3.2.1). Suppose we have some

winter mean temperature data at certain combinations of year and location,
yi:f(l'iypi)‘l‘ﬁiy = 1,2,...,n, (331)

where z; € {1,2,...,n1} and P, € §, the sphere. We are not only interested
in the “signal” f itself (see the interpretation after (3.2.1)) but also its certain
component functions representing certain marginal signals.

Adopt the model discussed in the example of Chapter 2, and write f as a

sum of its component functions:

fla, P)=di + dyd(x) + g1(2) + 92(P) + gs2(P)d(x) + gr2(2, P), (3.3.2)

where = € {1,2,....,n1} and P = (latitude,longitude) € S, and ¢ is a known
linear function ¢(x) = x — (ny + 1)/2. Condition (2.1.7) guarantees that repre-
sentation (3.3.2) is unique.

Note that these component functions and their combinations are often of
clear climatology interest. For example, d; is the grand mean temperature
over both year and location; ds is the linear trend coefficient of global means;
di+dyd+g1 s the global mean temperature history; gz, g4 2 and g, are locational
adjustments to di, dy and gy, respectively; di + g2(P) is the average winter
temperature at location P; and dy + g42(P) is the linear trend coefficient of
winter temperatures at location P.

A smoothing spline estimate, fy, is defined as the minimizer of

n

1 1 1 1
D (i — flzi, P))? 4 = Ji(g1) + —J2(g2) + —J5(962) + 7 Ja(g12) (3.3.3)
2 7, 7 7 0
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See the example in Section 2.1 for the meanings of J’s.
In Chapter 2, we have discussed a computational procedure for getting such
a 55 estimate given the smoothing parameters, the #’s. In the next subsection,

we will discuss different ways to choose these smoothing parameters.

3.3.1 Choosing smoothing parameters

How to choose smoothing parameters (the 6’s in (3.3.3)) is a very crucial issue
here, because the choice affects the smoothing spline estimate to a great extent.
For example, if we choose 03 and 0, to be very small, we will penalize g4 ¢ and
g12 heavily when their corresponding semi-norm values are not zero. Therefore
we will essentially make these two terms disappear in our model and adopt an
additive model (3.2.13).

There are basically two types of techniques for choosing smoothing param-
eters. One consists of the so-called “objective” or “data-driven” methods such
as cross-validation (CV), generalized cross-validation (GCV), and generalized
maximum likelihood estimation (GMLE) (See Wahba (1990) Chapter 4). The
other consists of “subjective” methods. This category includes actually quite
different types of techniques. For example, we could examine estimates corre-
sponding to different choices of smoothing parameters to see which one is more
consistent with our prior (subject) knowledge about what the fit should look
like. We may also compute for each choice of smoothing parameters an esti-
mate of the standard deviation of the observation, then compare it with our
prior knowledge about the size of such observation “error”. We may also use
the past data to estimate these parameters. This is exactly Vinnikov et. al.
(1990)’s approach for deciding both their smoothing parameter and covariance
function. Finally, we may just want to make a choice basing on our subjective
decision about how much smoothing we want, e.g. for visual enhancement. In
general, these subjective criteria rarely give us a precise choice of smoothing pa-
rameters, but still they are very important in guiding us, and are even sufficient
for our needs in many applications. It is also important to keep these criteria in
mind even when we use “data-driven” criteria since so-called “objective” meth-
ods may give us misleading results also, not to mention that some important
information is very hard to be formulated into “objective” criteria.

In our particular application here, we decide to use a “subjective” method
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to choose #; and 63, and an “objective” method to choose #5 and #,. The
main reason is because of the large computational demand of choosing all four
f’s by an “objective” method. Another reason is that we have a relatively
clearer idea about how much smoothing should be done to ¢; and ¢g;. As a
matter of fact, we want little smoothing done to them. A way to relate this
information to a smoothing parameter is through the “degrees of freedom” of
the corresponding marginal smoother. The usual definition of the “degrees of
freedom” in smoothing spline estimates (see Wahba (1990)) is ¢r(A(8)), where
A(0) is the influence matrix defined by (fs(t1),- -, fo(tn))T = A(0)y. This
concept can be readily generalized to marginal smoothers, i.e. the “degrees of
freedom” for a marginal smoother S,(0,) = (Q, + i[)_lQa (see (2.2.4)) is
defined as tr(S,). It is not difficult to see that the maximum degrees of freedom
for S1(61) is (ny — 2), ny for S2(02), ng for S5(83), and (ny — 2)ny for S4(04). (It
is natural that they, together with 2 degrees of freedom for the parametric part,
do not add up to the maximum overall degrees of freedom, nyns, because they
are not independent.) To choose #; and 6 in such a way that little smoothing
is done to ¢g; and ¢z, we just choose them so that their corresponding degrees
of freedom are close to their maximum values. The degrees of freedom for S
and Sy are also useful to help us set a preliminary searching range of 5 and 6,
when we use an “objective” method to choose them.

A commonly used “data-driven” method is to choose #’s minimizing GCV

score which is defined as

ly — I
(tr(1 — A(0)))*

V(9) = (3.3.4)
where f = (fo(t1), -+, fo(tn))T = A(0)y. The numerator ||y — sz, the residual
sum of squares, can be easily computed after we get the estimate of the function.
But the denominator (¢r(I — A(#)))* is much more difficult to compute. Usually
when the data size, hence the size of the matrix A(#), is not very large, we can
compute this V(6) for any 6 easily after a sequence of matrix decompositions are
done (See (4.6.2) of Wahba (1990)). When the data size is very large as in our
case here, we cannot use this matrix decomposition method anymore. Instead

of computing tr(I — A(f)) exactly, we use an approximation called “randomized
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GCV” (RGCV)

ly = 11
[€7(¢ — F(EN)?

where ¢ is a standard multivariate normal random vector with the same length

RGOV () := (3.3.5)

as the data vector, and f(f) is the smoothing spline estimate when the data
vector y is substituted by €. (See Girard (1989, 1991) and Hutchinson (1989)).
The reason behind this approximate GCV criterion is that E[¢T(€ — f(f))] =
tr(I — A(0)), i.e. [ET(¢ - f(f))] is an unbiased estimate of tr(1 — A(6)). In
order to minimize the variation induced by &, it is better to use the same ¢ for
all choices of §. Both f and f(f) can be computed using the same procedure
discussed in Chapter 2.

Considering that y —f = (I — A9)y, € — f(f) = (I — A(9))¢, and a
representation of I — A(#) in Wahba (1990, (1.3.23)), it is straightforward to
verify that

ORGOV(0) _ 2(uTu)(v7Qpv) — 2w’ Quu)(Tv)

70, = (€To) ) (3.3.6)
for any 5 =1,2,3,4, where
u = (I —A(9))y, (3.3.7)
v o= (I —A(9)), (3.3.8)
w = (I —A(9))u, (3.3.9)

and Qg = (Rg(wi, Pis w5, Pi))7 iz

We need uw and v to compute RGCV anyway; with one more fit with y
replaced by u, we can get all partial derivatives of RGCV. This information
may be used in minimizing RGC'V'.

3.3.2 Results

Taking the approach described in Section 3.3.1, we choose #; = 107%! and
0, = 10*® which correspond to 27.8 degrees of freedom for Si(6,), 989.8 for
S3(6s). With little smoothing done to g1, our results should be comparable to
those of other studies where only single year data are used to calculate a global

average in any particular year. We choose 6, this large because the smaller 6 is,
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the smoother gs 1s, and the closer our estimated global mean history is to what
was obtained by the naive single year means of raw data (Figure 5). The reason
for this is the following. If 6, is so small that ¢, is practically constant, then we
essentially disregard the potential bias resulting from the locational difference
in g9 totally. The smaller 6, is, the more bias we disregard.

With ; and 6, chosen as above, we choose 05 and 8, by a crude grid search,
We first set some preliminary limits for them by the tool of the degrees of
freedom of their corresponding marginal smoothers. For 63, the limits are 10
and 10'° corresponding to 565.4 and 890.5 degrees of freedom (the maximum
is 1000) respectively. For 84, the limits are 10*® and 10** corresponding to
7052.6 and 17138.2 degrees of freedom (the maximum is 28000, but the total
number of observations is 20910) respectively. Part of the search results are
given in Table 2. A (local) minimum in RGCV gives us a choice of #; = 10'-*°
and 0, = 10*! which correspond to 831.1 degrees of freedom for S5 and 14860.5

degrees of freedom for 5, respectively.

log10(8s)
logl0(03) | 15 1.25 1 55
4.4 63452 63617 .64697
4.1 92752 .62737(%) 62747 62909 .63298
3.8 63958 .63905 .64201

Table 2: RGCV for the 1000 station data set. logl0(61) and logl0(0z) are fized

at —.1 and 4.5 respectively. (*) indicates a local minimum.

Some results based on a fit with smoothing parameters chosen as above are
shown in Figures 7-10. The estimated standard deviation of €, &, by the formula

of Wahba (1990, Section 4.7):

o =0 =117
tr(l—A(0)) ~ €(¢ — f(£))

is .49°C" which is a little bit larger than what a typical measurement error of

(3.3.10)

mean temperature is expected to be. This is reasonable considering the fact that
here € contains not just the measurement error. If o is too large, e.g. larger
than 1°C', then we may suspect too much smoothing has been done to the data.
This is how a subjective criterion is used. A comparison of fitted values and

observations at two arbitrarily selected stations is plotted in Figure 7.
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From Figure 8, we see that in the global mean winter temperatures, there
exists an overall cooling trend in the early sixties and an overall warming trend
from the seventies on. The overall linear trend over these 30 years is about
011°C /year.

In Figure 9, we see a familiar pattern of winter mean temperature across the
world. In Figure 10, we see that most of the European area has a warming trend
(positive coefficient) except the eastern Mediterranean region and a large area
of the North Atlantic, including Greenland. A cooling trend has been observed
in part of Africa and America also. Strong warming trends have been noticed
in parts of Siberia and North America. Such a local trend pattern gives us more
information about what has happened to the climate in the past, and it may be
used in a comparison with the predications of climate models in order to verify
these models.

The whole history of these 30 year winter temperature anomaly based on
our SS fit is made into a movie which can be accessed at
ftp://ftp.stat.wisc.edu/pub/wahba/theses/luo.movie. Viewing such a
movie may help climatologists identify important patterns observed in the cli-
mate.

In order to see the effect of the number of stations used on the results, we
did a similar analysis based on 500 stations. #’s are chosen in the same way
as for the 1000 stations. #; is chosen as 1 and 6, as 10%>® which correspond
to 27.7 degrees of freedom for S;(6;) and 491.8 degrees of freedom for S3(6)
(the maximum for Sy here is 500) respectively. Then a crude grid search in
RGCV gives us #3 = 10-° and 0, = 10>® which correspond to a local minimum
of RGCV. A part of the search results is given in Table 3. These #’s correspond
to 369.2 degrees of freedom for the marginal smoother S5(8s) and 7864.2 for
S4(04), respectively.

log10(6s)

log10(03) | 2 15 1 5 0 5
4.2 1.0191 1.0211 1.0208 1.0260 1.0500 1.0923
3.8 0.9957 0.9950 0.9916 0.9900(*) 0.9979 1.0157
3.4 1.0407 1.0392 1.0346 1.0291 1.0300 1.0389

Table 3: RGCV for the 500 station data set. logl0(0;) and logl0(8y) are fized

at 0 and 3.8 respectively. (*) indicates a local minimum.
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Some results based on this fit of the 500 station data set are shown in Figures
11-12. We see that even though there exist some discrepencies between them and
the 1000 station data set results (Figure 8 and Figure 10), the general patterns
are quite similar. The plot of linear trend coefficient of winter temperature using
the 1000 stations has more details than its 500 station counterpart, but they
agree in large patterns. A similar fit using only 250 stations results in much
more different plots (compare Figure 13 with Figure 8 or 11). This suggests
that a few hundred stations are probably the minimal number of stations for
calculating reliable global mean temperatures. Of course these stations still
have to be distributed as uniformly over the sphere as possible. As a matter of
fact, with 500 stations chosen randomly from the original stations, hence more
stations concentrated in Europe and North Ameria, a fit based on these stations

is much more different than the results based on the 1000 stations.

3.3.3 Outliers and other diagnostics

The results shown in Section 3.3.2 are based on a corrected version of the original
data from CDIAC. There are six places where we have found some possible
typos and corrected them for the purposes of this study.! Our purpose here
was to demonstrate the power of the method, not to criticize the data base.
The corrections we made are documented below. These “typos” were found as
a by-product of fitting smoothing spline models to the data (see Knight (1980)
for a comparison of such a approach with others). For example, when a SS
model (3.3.1-3) is fitted to a 500 station subset of the original version of the
data, some residual plots resulting from this fit are shown in Figure 14.

From the QQ plot of residuals, we see that one observation has an extremely
large residual. That observation turns out to belong to station (72.0N, 102.5E)
in Hatanga/Khatanga of the former USSR. Its December temperature of 1980
is 28.8°C" as shown in the original database, while all other years’ December
temperatures during the 1951-1991 period range from —38.3°C' to —19.3°C.
Also the November and January records in the same year do not show any
extreme pattern. Therefore we strongly suspect that 28.8 should be —28.8 and

the record in the original data base results from a missing minus sign.

1As of June 17, 1996, the last time we visited this data base at CDIAC. However, this is
not the latest data base and not the one used in the latest IPCC Report, see Nicholls at al
(1996).
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This observation’s extreme outlying feature is so strong that it makes two
of its neighboring observations in time (year 1979 and 1981), and another in
location (station (68.5N, 112.4E), December) look like outliers too. They are the
three observations with largest negative residuals. With Hatanga’s December
record corrected, however, they look just “normal”.

From the plot of residual vs latitude, we notice two outliers in the southern
hemisphere. Station (29.95, 31.0E) in Durban of South Africa has a February
temperature of 4.0°C' in 1983 in the original database, while all other February
temperatures in the period of 1885-1991 are in the range (22.0°C, 25.9°C"). Again
we suspect that this is a record with a typo. It should probably be 24.0 rather
than 4.0. Station (39.0S, 68.0W) in Neuquen Aero of Argentina has a January
temperature record of 2.3°C" in 1977, but all other January temperatures in the
period of 1957-1991 are in the range (20.7°C,25.4°C'). Hence we suspect that
2.3 should be 22.3.

Following are three other possible typos we have found through various
smoothing spline fits to different subsets of the original data. Station (22.0S,
60.7W) in Mariscal Estigar of Paraguay has a December temperature of 38.1°C
in 1972 which might be 28.1°C' since all other December temperatures in the
period of 1951-1991 range from 25.8°C' to 30.7°C. Station (42.8N, 73.8W) in
Albany of USA has a January temperature record of 9.6°C" in 1968 which might
be —9.6°C' since all other January temperatures in the period of 1820-1991
range from —12.4°C' to 1.8°C'. Station (38.4N, 27.3E) in Izmir of Turkey has a
February temperature of —7.0°C' in 1976 which might be 7.0°C' since all other
February temperatures in the period of 1843-1991 range from 4.8°C' to 14.0°C.

Of course these are only suspicions, no matter how strong they might be.
Further examinations of original station records or comparisons with other
records are needed to confirm that these records are really incorrect in the
database. But it is certainly helpful to have these extreme observations pointed
out for further examination. Plotting residuals from smoothing spline models
in a QQ plot and against year, latitude, or longitude etc., has proved to be a
useful tool in identifying these extreme cases.

Looking at the QQ plots resulting from various smoothing spline fits, we
found that all of them are S-shaped, which indicates in the distribution of
the residuals a heavier tail than that of a Gaussian distribution. In general,

since seasonal temperatures such as winter temperatures considered here are
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calculated by a series of averaging steps, we would expect a Gaussian or at least
approximate Gaussian distribution in the residuals. The reason for the heavier
tail is that these residuals are a mixture of more than one zero-mean Gaussian
distributions of different variances. It can be proved easily that any mixture
of this kind will have a larger kurtosis than a Gaussian distribution’s kurtosis.
That is to say that it will have a heavier tail. In our data set, the variation
of temperature in different locations can be very different. For example the
variations at stations in the central continental regions may be quite different
from those at stations in the coastal regions. The difference in the variation of
temperature may be also due to the difference in the altitude, or the difference in
the latitude, and so forth. This suggests that we should not treat the stochastic
model used in deriving BLUP estimates too literally. The variance of € in
Model (3.3.1-3) is not constant. However smoothing spline estimates can still be
justified through penalized least square estimates instead of penalized likelihood
estimates. In practice, as long as there exists little positive dependence among
€’s, smoothing spline estimates with smoothing parameters chosen by a GCV

kind criterion work just fine even when the variance of ¢ is not constant.

3.3.4 Extension to more variables

If, besides year and location, we want to include other variables, e.g. season,
into our model, the computational procedures discussed in Chapter 2 can be
easily extended to deal with such cases. Even though the model may get very
complicated, it will work fine as long as the newly added variables have a uniform
design.

We illustrate such an extension through a model of monthly temperature.
First, define averaging operators in each of three variables: year(z), location(P),
month (m) (actually two averaging operators for variable year since we want to

single out its linear trend as well as its mean):
1 &
ES)w Pm) = 23 () 33.1)
r=1
(&pf)(z, Pym) = / F(P)dP/4n, (3.3.12)
s

Ed)r Pom) = 5 3 f(m), (3313)
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f(nl,P,m) —f(l,P,m)
P(n1) — (1)

Then we have a unique decomposition of f:

(&)@, Pym) = H(x). (3.3.14)

f=latra+U—-&-E)Er+ (I —Ep)En+ (I —Enf

. EpEn S+ EL = EP)Enf + (I — & — ENI — Ep)Enf
+EI —Ep)enf+ET-Ep)enf+ (T —-E —EI—Ep)enS
+EEP(I = En)f + EEp(I = E)f + (I =& = E)Ep(I = En)f
+& —Ep)I —ENf+E(—Ep)I —En)f

+(I =& —ENIT—-Ep)I-E)f

= di + dyd(2) + g1(7)
+92(P) + go2(P)o(x) + g1a(w, P)
+g3(m) + gs3(m)d(x) + gr3(x, m)
+g23(P,m) 4 goa3(P,m)p(x) + gras(x, P,m), (3.3.15)

where these components satisfy some side conditions similar to (2.1.7). These
side conditions are also sufficient to make the decomposition uniquely defined.
A smoothing spline estimate is defined as the minimizer of

n 1

Z xZ,PZ,mZ)) +0_J1(91)
T

9, —J2(g2) + 03J3(9¢,2) + 04J4(912)
1

0

_J5(93) + 0—J6(9¢ 3) + 0—J7(913)

+o- J8(923) + J9(9¢,23) + —J10(g123) (3.3.16)
05 0, 010

where Js and Jg are the same and defined as

12

J(f) = Y (Fom+1) = fm), (3:3.17)
m=1
with f(13) := f(1). This form of penalty is chosen because of the periodic
nature of the variable month. Other .J’s are defined through the tensor-product
structure of their corresponding Hilbert spaces.
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Define
-1 1 0 0 0
0 -1 1 0 0
1 ...
| 0 0 00 (3.3.18)
0 0 0 -1 1
1 0 o --- 0 -1

12x12

Then J(f) = fTLTLf. The reproducing kernel for the variable month is Q,, :=

(Ro(i,0))1%2, = (LTL)t, where f means the Moore-Penrose generalized inverse.

Since (LTL)1 =0,
Qml =0 (3.3.19)

Table 4 shows the reproducing kernel matrices for the subspaces containing
those component functions defined in (3.3.15). The projection operator for the
parametric component is: Sg = S(STS)71ST where S =1 ® (1 ¢) @ 1, and the
marginal smoothing matrices are S, = (@, + i[)_lQa, fora=1,2,---,10.

smoother S, component r.k. matrix @),

S g1 1nreQ,o11?
S g2 Qp@ 1T 11T
S3 96,29 Qp @ ¢o" @ 117
S4 g12 Qp©Q, 117
S g3 11w,
Se 94,30 1T @ oot @ Q.
S7 g13 1172 Q, ®Q
Sg 923 Qr 2117 @ Q.
S9 99,23 Qp @ ¢ @ Q,p
Sto 9123 Qr @ Q. QQn,

Table 4: The reproducing kernel matrices of the ten subspaces containing the
ten nonparametric components in Model (3.3.15).

Because of (3.3.19), all but a few products of 5,55 for o # [ are zero.
Hence, the stationary equations which lead to the backfitting algorithm are



(after rearranging the order):

I Sy So Jo Soy
Sy I 0 Ja Say
S; 0 [/ fs S3y
I 5 S Sty

Sy 1 Ja Sy

I S5 Is Ssy

Sy 1 fs S8y

I S Je Sey

Se 1 Jo Soy

I 5; I Sty

Swo 1 Jio Sty
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where blank spaces mean zero.
Therefore the backfitting algorithm is reduced into five smaller groups, each

of which can be handled by the techniques discussed in Section 2.3.

3.4 Confidence intervals and simulation

In order to get some idea about the accuracy of our estimates in Section 3.3.2,
we conduct a small simulation study. Due to computing time limitations, the
500 station subset of the data is chosen.
Section 3.3.2 to be the truth, generate 10 copies of bootstrap samples from

Pretending the fitted functions in

Model (3.3.1), with ¢;’s generated from a zero-mean normal pseudo random
variable with a standard deviation .61, an estimation based on Formula (3.3.10).
Then the same S5 model with the same smoothing parameters as those used in
Section 3.3.2 is fitted to each of these copies.

All 10 estimates of the global average winter temperature history are su-
perimposed in Figure 15. This plot can be viewed as a confidence statement
The width of the bundle of 10 estimates

at one point can be treated as a measure of variation of the SS estimate at

about the estimate in Figure 11.

that point. 10 estimated grand global winter mean temperatures range in
(12.90°C,12.94°C") with a mean 12.92°C. 10 estimated linear trend coefficients
range in (.013°C'/year, .017°C /year) with a mean .015°C'/year.
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Similarly we can use the range of 10 estimates of the linear trend coefficient
at any geographical point as a measure of the variation of the estimate in Figure
12. In Figure 16, the white areas are where there is a consistently estimated
trend (either consistent warming trend or consistent cooling trend) in all 10
estimates. Therefore these are areas where the estimated trend in Figure 12 is
more reliable. For example, the cooling trend in the North Atlantic and the
warming trend in most of the European region are relatively more trustworthy.
Of course the black areas include also those regions of the world where there
was no linear trend at all over the period of 1961-1990. The black regions in
Figure 16 also serve as a division of the world into warming areas and cooling
areas.

We also generated a similar pseudo data copy for the 1000 station subset
based on the results in Section 3.3.2. The fitted results using this pseudo data
are shown in Figure 17-19. They can be compared with their counterparts in
Figure 8-10 to get a rough idea about the accuracy of the estimates in Section
3.3.2 for the 1000 station subset of the data. The pattern observed in Figure 8
is relatively reliable, while the large features in Figure 9-10 are reliable too.

Of course the confidence statements above are in general underestimates
of the variation inherited in the estimates of Section 3.3.2. We did not apply
RGCYV to the pseudo data, instead we just used the same smoothing parameters
used in Section 3.3.2. The extra variation resulting from choosing smoothing
parameters is not considered here. Nevertheless, these simulation results give us
some idea about the accuracy of our estimates. See also the discussion in Wang
(1994) for an interpretation of these bootstrap confidence intervals. Another
way to formulate confidence statements is through “Bayesian” confidence inter-
vals which will be discussed in Chapter 4. Unfortunately their computation is
also quite demanding. We do not have any numerical results here to compare

with these bootstrap results.
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-15 1

-16 1
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-18 1
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1960 1965 1970 1975 1980 1985 1990

1960 1965 1970 1975 1980 1985 1990

Figure 7: Comparison of fitted values and observations at two arbitrary stations:
(80S, 119.5 W) and (45.6 N, 117.5 W). Squares are the fitted values and crosses

are the observations.
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Figure 8: Global average winter temperature (°C') based on Model (3.3.1-3) using
the 1000 stations. The grand mean temperature is 13.0(°C') and the linear trend
coefficient over the 30 year period is .011(°C') /year.
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Figure 11: Global average winter temperature (°C') based on Model (3.3.1-3)
using the 500 stations. The grand mean temperature is 12.9(°C') and the linear
trend coefficient over the 30 year period is .015(°C') /year.
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Figure 12: Linear trend coefficient of winter temperature over the globe using
the 500 stations.
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Figure 13: Global average winter temperature (°C') based on Model (3.3.1-3)
using the 250 stations. The grand mean temperature is 12.9(°C') and the linear
trend coefficient over the 30 year period is .015(°C') /year.
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Figure 14: Residual plots using the 500 station subset of the uncorrected version

of the data.
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Figure 15: S5 estimates of global winter mean temperature history for 10 copies
of the pseudo data. Refer to Figure 11.



63

\
100

[
0
Longitude

\
-100

T
o

50
-50 T

apnie

Figure 16: Black regions are the areas where the range of 10 estimated linear
trend coefficients for the pseudo data covers zero. Refer to Figure 12.
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Figure 17: Global average winter temperature (°C') based on Model (3.3.1-3)
using the 1000 stations’ pseudo data. The grand mean temperature is 13.0(°C')
and the linear trend coefficient over the 30 year period is .011(°C') /year.
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Figure 19: Linear trend coefficient of winter temperature over the globe using
the 1000 stations’ pseudo data.
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Chapter 4

Backfitting vs the Gibbs

sampler, and on-going research

In the previous chapters we have mentioned some on-going research problems
here and there. In this chapter we will focus on constructing confidence intervals
for the smoothing spline estimates using a Bayesian model and through this
model studying a correspondence between optimization methods for getting
smoothing spline (penalized likelihood) estimates and Monte Carlo methods for
getting posterior distributions.

In Section 1, we will discuss a Bayesian model behind the SS estimates. In
Section 2, the backfitting algorithm and the Gibbs sampler are considered in the
same perspective. Some common issues in speeding up such as SOR, collapsing,
grouping, etc., are discussed. In Section 3, more analogous situations between

sampling methods and optimization methods are described.

4.1 A Bayesian model

The smoothing spline estimates have a Bayesian interpretation which has been
used to construct confidence intervals. See Wahba (1978, 1983), and Gu and

Wahba (1993b).
Suppose that the data we have are:

yi = f(;) + e, fori=1,2,---.n (4.1.1)

where ¢; are identically distributed independent random variables. They have
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a common Gaussian distribution with a mean zero and a standard deviation o.
Assume further that

J(t) =2 dd + Zij Jult) (4.1.2)

where {¢,} are M known functions (e.g., lower order polynomials), {d, } have a
uniform prior, f, as a prior is a zero-mean Gaussian process with a covariance
function 0?0, R,(s,t). {d,} and {f,} are independent. They are independent
of {&;} too. Suppose o and {6,} are known. {6,} are smoothing parameters in
Section 2.1. They control the relative size of the variation in the “noise” term,
¢, and the signal terms {f,}. {0,} may be chosen using present or past data,
or by pure prior (i.e. empirical Bayesian methods, or strict Bayesian methods,
corresponding to the “data-driven” or “subjective” methods discussed in Section
3.3.1), or in a hierarchical Bayesian way, may be assigned a hyper-prior. In this
chapter, however, we assume that they have been chosen by some method and
are fixed. o, the absolute magnitude of the noise term, is assumed to be a
known parameter. It can be assigned a prior too if a strict Bayesian model is
required. For example it can be assigned a Gamma prior. See Besag et. al.
(1995) for some examples.

Now the posterior of d := (dy,---,dy)T and {f,} are proportional to

co { 5o Sl £} TL ) (1.13)

where g denotes a generic density with some abuse of notations.
Rewrite (4.1.3) as

p

cop{ =503 S0l = £} TL ottt fult)

a=1

f[ g(fal(t),t £ ti =1, n|faltr), -, faltn)) (4.1.4)

Since the first part of (4.1.4) does not depend on {(f,(¢),t # t;,i=1,---,n),
a=1,---,p}, and the last part of (4.1.4) is Gaussian with {(fo(¢1), -, fa(tn)),a =

1,---,p} only appearing in the means (by the assumptions about the prior of

{f.}), the marginal posterior of {f, := (fo(t1), -, fu(t,)) ;@ =1,---, p} and
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d is proportional to

1
exp{—ﬁ
B 1

= exp{—ﬁ

- el gm (Sw-swr+ S prran)b

1
2020,

Sl — 1)}
Sl — 1)}

f[g(fa(tl),---,fa(tn))
IT ern(—gomg 101

We have used {f,} to denote both the component functions and the vector of
their values at points {¢;} when there is no confusion.
Note that since f, ~ N(0,0%0,Q.), we know that f, € £(Q,) almost surely.

Hence now to maximize the posterior (4.1.5) is equivalent to minimizing

Sl — S0+ X SO (1.1.6)

which is the same as (2.2.6). Thus we see that the SS estimate is a posterior
mode when the prior is given in such a way.

We have assumed that o is known. If we assign a prior such as § := 1/0% ~
['(a,b), that is § has a density §* 'exp(—bd), then it can be shown that maxi-
mizing the posterior is still equivalent to minimizing (4.1.6).

A Bayesian model like this can be used to construct confidence intervals
based on the posterior of the estimated functions. See Wahba (1983) and Gu
and Wahba (1993b) for the formulation. See also Nychka (1988, 1990) for their
frequentist properties. Analogous to the situation in which the posterior mode
is computed, computing posterior variances requires huge memory too if direct
matrix decomposition methods are to be used. A possible way out of this
memory problem is to get the posterior distribution through Monte Carlo in a
similar way as we get the posterior mode in Chapter 2, i.e., through component-

wise updating. This leads to our discussion in the next section.
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4.2 Backfitting vs the Gibbs sampler

Since the posterior of (d, fi, f2,- -, f,) in the Bayesian model of the last section

is proportional to

n P
corl =gz (Dl £+ 32 104 ) | (12.1)
the SS estimate is the same as the posterior mode. One way to compute the
posterior mode is through maximizing (4.2.1) component-wisely. That is to
maximize along each component of (d, fi,---, f,) in turn until it converges.
Since the conditional posterior of each component given others is proportional
to (4.2.1), maximizing along each component is equivalent to computing con-
ditional modes. Hence we see that Besag (1986)’s iterative conditional mode
(ICM) algorithm is actually the component-wise descent method for optimiza-
tion.

The conditional posterior of fz, given f,,a # 3 and d, is proportional to

car =gz (=50 3 L+ 10040 ) | (122)

hence the conditional mode is

fo = (il +Qp) ' Qply — Sd— ) Q) (4.2.3)
b6 af

and the conditional distribution is

fﬁ|d7foma %ﬁvy
1 1
~ N ((Qﬁ + %1)—1625@ —S5d =" Q.), 0% (Qs + %1)—%)5) (4.2.4)
atp

Similarly, the conditional posterior of d, given f, for &« =1,--- p, is propor-

tional to
1 P 5
capy =55 lly = Sd - > fall (4.2.5)
g a=1

hence the conditional posterior mode is

p

d= (ST STy =3 fa) (4.2.6)

a=1
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and the conditional posterior distribution is

d|fa70é: 17"'7p7y

p

~ N ((STS)_IST(y -3 fa),UZ(STS)_l) (4.2.7)
a=1

(4.2.3) and (4.2.6) are the same as the updating formulae for backfitting.
See (2.2.4). Viewing backfitting under this perspective, one can see that it is
analogous to the Gibbs sampler (see Besag et. al. (1995), Liu (1994), Liu and
et. al. (1994,1995), and Roberts and Sahu (1996)). Both the backfitting algo-
rithm and the Gibbs sampler make use of conditional posteriors. One computes
conditional modes (4.2.3) and (4.2.6) in turn to get the mode of the joint pos-
terior (4.2.2), the other samples from conditional posteriors (4.2.4) and (4.2.7)
in turn to get a sample (correlated though) from the joint posterior (4.2.2).

The advantage of using the Gibbs sampler to get a posterior sample here is
similar to the advantage of using the backfitting algorithm to get the posterior
mode. That is to say, we can easily get the eigen-decompositions of the matrices
in the updating formulae through a tensor product structure if the data have a
tensor product design. Therefore we can update those components quickly. In
this way, overall computing time and space may be saved.

With an incomplete tensor product design, analogous to the EM algorithm,
the Data Augmentation method of Tanner and Wong (1987) may be used to-
gether with the Gibbs sampler. However, its feasibility in our application of
Chapter 3, i.e., the situation of very large data size, still needs to be investi-
gated.

4.2.1 Issues in speeding up Gibbs sampler

There are some speeding-up methods for the Gibbs sampler which are quite
similar to those for the backfitting (Gauss-Seidel) algorithm. Many authors
have noted such analogous situations for non-stochastic iterative algorithms
and iterative Monte Carlo algorithms. For example, see Besag et. al. (1995)
and Roberts and Sahu (1996).

Barone and Frigessi (1989) proposed a stochastic relaxation method that is
a direct analog of successive over relaxation (SOR) for speeding up the Gauss-

Seidel algorithm. Suppose that we want to sample from a multivariate normal
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distribution. The Gibbs sampler draws a new value of one component from
the conditional distribution of this component given other components, say,
N(p:,0?). Successive drawing through all the components will give us a se-
quence of (correlated) random vectors distributed as the target multivariate
normal distribution (after convergence). Barone and Frigessi’s stochastic relax-
ation method draws a new value from N(wy; + (1 —w)z;,w(2 — w)o?) where w
is a constant in (0,2). Similarly for the Gauss-Seidel algorithm, a new updated
value, i.e., a conditional mode y; (considering that GS is the same as ICM),
is replaced by a linear combination of y; and its corresponding old value z;,
i.e., wpi + (1 —w)x,;, which is the mode of the updating distribution of Barone
and Frigessi’s algorithm. Not much convergence results are available about this
stochastic relaxation method. See Green and Han (1992). It seems plausible
that the rich material in numerical analysis literature about SOR might benefit
the research on the convergence of this stochastic relaxation method.

One product of such a connection is some of the results in Roberts and Sahu
(1995) in which they prove that the convergence rate in terms of Chi-square
distance of the iterates and the target distribution is the same as the spec-
tral radius of the Gauss-Seidel algorithm’s updating matrix (comparing their B
with (3.19) on page 72 of Young (1971)). Some results of Roberts and Sahu
are actually direct analogs of the similar results for the Gauss-Seidel algorithm
in Varga(1962) and Young (1971). For example, their Theorem 8 about the
convergence rate of grouping components in the Gibbs sampler is a direct result
of Varga (1962)’s Theorem 3.15 about the convergence rate of grouping compo-
nents in the Gauss-Seidel algorithm, due to the above connection, as noted by
them. See also Liu (1994), Liu, Wong and Kong (1994, 1995) for more about
speeding up the Gibbs sampler through grouping and collapsing. An application
in the reverse direction is the use of collapsing in the Gauss-Seidel algorithm as

discussed in Section 2.3.2.

4.3 Other analogous algorithms

There are some other analogs between Monte Carlo sampling algorithms and
optimization algorithms. One such example is Amit, Grenander and Piccioni

(1991)’s Langevin-Hastings algorithm for sampling from n(x) x exp{—u(x)},
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x € R". The proposed next state of = is drawn from
'~ N(z — 7Vu(z),271,) (4.3.1)

where 7 is a small positive constant. See also Besag et. al. (1995, Section 2.3.4).
Similar to the analog between Barone and Frigessi (1989)’s stochastic relaxation
and SOR, here the mean of the proposal distribution is a move along the steep-
est descent direction, hence it is analogous the steepest descent algorithm in
optimization literature.

In a problem of sampling from a high-dimensional Gaussian distribution, we
may find useful an application of an analog of the conjugate gradient algorithm
in optimization literature.

Consider the problem:

igli%r}l flz) (4.3.2)

where f(z) oc exp{—h(x)}, h(x) = a7 Qx — bTx where @Q is a positive definite
matrix which may be too large to be saved. The conjugate gradient algorithm
(see Luenberger (1984), p. 244) is:

1. Start with xq, let go = Vh(xg), do = —go;

2. For k=1,2,---,n, compute

(a) 7 =2(h(dy_1) + bTdp_1);

(b) a=—gl_idx1/r;

(¢) xp = w1 + adi_q;

(d) gx = Vh(xy), 5 = szl
(e) dy = —gx + Bek-1;

)T

Lp—Tf T
9k _ (rr—zr—1)" Qgk _ dg—ngkv and

O

Note that 2(h(d) + b7d) = d"Qd, 1e=gx=1
b = —Vh(0). The expressions used in the algorithm are chosen in order to
avoid using () directly. A property of this algorithm is that the resulted di, k =
0,1,--+-,n — 1 are Q-conjugate directions, that is, df Qd; = 0 for any k # [.
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Now if we want to sample from distribution f(x) instead of minimizing f(z),

we can make use of these directions. Since
1
e:z;p{—ﬁxTQx + 27b}
1 n—1 n—1 n—1
= 651?}?{—5(2 ardy)" Q(Y_ apdy) + (D ardy) b}
k=0 k=0 k=0
1 n—1 n—1
= ecap{—3 Y aidi Qdi + Y ardb}
k=0 k=0
dTh )2

n—1 (. —
17t (an dTQdy,

o e:z;p{—§ Z W} (4.3.3)

k=0
Hence we see that we can sample from f(z) by @ = Y725 ardy, where ay is
. . T _
distributed as N(dgdkﬁ, (dFQd;)1). Note that df Qd;, = 2(h(dy) + dL'b) can be

calculated without explicit use of (). In order for this method to be feasible in
practice, the calculation of A and its derivatives must be very efficient. In many
situations corresponding to statistical models of some special structure, this is
often the case.

Even though the conjugate gradient algorithm has been extended to non-
quadratic optimization problems, the extendibility of the above sampling algo-

rithm to non-quadratic cases is still under investigation.
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