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Abstract

We thank Hansen and Kooperberg (HK) for an interesting paper discussing model selection meth-
ods in the context of Extended Linear Models. We comment on their univariate density estimation
studies, which maximize the log likelihood in a low dimensional linear space. They consider spline
bases for this space and consider greedy and Bayesian methods for choosing the knots. We de-
scribe a penalized log likelihood univariate density estimate, and compare the estimate to those
studied by HK. Then we describe the multivariate version of our estimate, based on a Smoothing
Spline ANOVA model. A randomized Generalized Approximate Cross Validation estimate for the
smoothing parameters is obtained and an example is given. This represents work in progress.

1 Introduction and Thanks

The authors present greedy and Bayesian model selection frameworks for studying adaptation in the
context of an extended linear model, with application to logspline density estimation and bivariate
triogram regression models. We will confine our remarks to the density estimation case. The
authors define the setup of their ‘extended linear model’ as finding g ∈ G to maximize the log
likelihood

l(g) =
∑

i

l(g,Wi) (1)

where G is a linear space, generally of much lower dimension than the sample size n. Generally the
famous bias-variance tradeoff is controlled (most likely primarily) by the dimension of G, as well as
other parameters involved in the choice of G or spline spaces in Hansen and Kooperberg (HK), the
number of knots governs the dimension of the space, and the number and location of the knots are
to be chosen according to several Bayesian methods and compared with a greedy method. Knot
selection in the context of (1) is a difficult but not impossible task, as the authors clearly show.
The authors are to be thanked for an interesting study of Bayesian knot selection methods and
their comparison with a greedy knot selection method.

To contrast with the ELM approach in the paper, we will examine a penalized likelihood method
for the same (log) density estimation problem. It is based on solving a variational problem in
an infinite dimensional (Hilbert) space, where the problem has a Bayesian flavor, and where the
solution to the variational problem is (essentially) known to lie in a particular n dimensional
subspace. Then the smoothing parameter(s) are chosen by a predictive loss criteria. If the penalty
functional is square integral second derivative, the n-dimensional subspace is spanned by a basis of
cubic splines with knots at the observation points. At this point we can take one of several points
of view. The three that are relevant to the discussion here are: (i) Solve the variational problem
exactly, (ii) Find a good approximation to the solution of the variational problem, by using a
representative or a random sample of the knots, instead of the complete set, when the sample size
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is large and (iii) Instead of using the solution of the variational problem as the ‘gold standard’ as in
(ii), use a greedy algorithm to choose a subset of the knots, actually, a subset of the representers,
(Wahba (1990)), which reduce to the knots in the case of polynomial splines. This will have the
effect of letting the ‘wiggliness’ of the solution vary where there are more observations, and/or more
variable responses. Then the variational problem is solved in the greedily chosen subspace. This
so-called hybrid approach was taken in Luo & Wahba (1997) in a Gaussian regression problem,
using a relatively simple greedy algorithm, and, as was also found in Stone et al (1997) more knots
are located near sharp features, as well as where there are more observations.

We will focus on a density estimation version of (ii) in the rest of this discussion. To carry out
this program we need a criteria for the choice of the smoothing parameters appropriate for density
estimation and we will use randomized GACV for density estimation, (to be defined), which is
a proxy for the comparative Kullback-Liebler distance of the ‘truth’ from the estimate. In this
discussion we will first give some details for the univariate case and compare the results to Table 2
of HK. Loosely speaking, the results compare fairly favorably with all of the estimates whose MISE
performance is given in Table 2 with the exception of the two largest sample sizes in the ‘sharp
peak’ example. After commenting on these results, we will then describe some work in progress, in
which the penalized likelihood estimate is extended to several dimensions via a smoothing spline
ANOVA (SS-ANOVA) model. We briefly demonstrate a three dimensional result. The conceptual
extension of the penalized likelihood method to higher dimensions is fairly straightforward, and the
real thrust of the work is to be able to estimate densities in higher dimensions. One of the rationales
behind the use of the SS-ANOVA model for density estimation in several dimensions is that the
pattern of main effects and interactions has an interesting interpretation in terms of conditional
dependencies, and can thus be used to fit graphical models (Darroch, Lauritzen & Speed (1980),
Whittaker (1990), Jordan (1998)) nonparametrically.

2 Penalized Log Likelihood Density Estimation

Our density estimate is based on the penalized log likelihood estimate of Silverman (1982). When
going to higher dimensions we will use the basic ANOVA decomposition idea in Gu (1993). Our
density estimate will have compact support Ω, which will be scaled to the unit interval or the unit
cube in Ed and then rescaled back after fitting. Let the density p = eg with g in some reproducing
kernel Hilbert space (RKHS) H with square seminorm J(g) , where the null space of J contains
the constant function and is low dimensional. Letting xi ∈ Ω, Silverman showed that the penalized
log likelihood minimization problem: min g ∈ H

−
1

n

n
∑

i=1

g(xi) + λJ(g) (2)

subject to the condition

∫

Ω
eg = 1 (3)

is the same as the minimizer of

Iλ(g) = −
1

n

n
∑

i=1

g(xi) +

∫

Ω
eg + λJ(g). (4)
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We will describe the estimate in general form so that its extension from the univariate to the
multivariate case is clear. Let H = H0⊕H1 where H0 is the null space of J , and let the reproducing
kernel for H1 be K(x, x′). If the term

∫

Ω eg were not in (4), then (it is well known that) the
minimizer of (4) would be in Hn ≡ H0 ⊕ span{ξi, i = 1, · · · , n}, where ξi(x) = K(x, xi). (ξi is
known as a representer.) We will therefore feel confident that the minimizer of (4) in Hn is a
good approximation to the minimizer of (4) in H. In fact, we will seek a minimizer in HN =
H0 ⊕ span{ξir , r = 1, · · ·N} where the ir is a representative subset chosen sufficiently large that
the minimizer in HN is a good approximation to the minimizer in Hn.

In order to carry out penalized log likelihood estimation a method for choosing λ is required.
We have obtained a randomized Generalized Approximate Cross Validation (ranGACV ) estimate
for λ, for density estimation. We briefly describe it here, details will be given elsewhere. Let fλ be

the estimate of the log density, and let f
[−i]
λ (xi) be the estimate with the ith observation left out.

Define the ordinary leaving-out-one function as

V0(λ) = OBS(λ) + D(λ) (5)

where

OBS(λ) = −
1

n

n
∑

i=1

fλ(xi) (6)

and

D(λ) =
1

n

n
∑

i=1

[fλ(xi) − f
[−i]
λ (xi)]. (7)

Elsewhere (to appear) we show that nD(λ) can be approximated by the trace of the inverse Hessian
of Iλ with respect to fλ(xi), i = 1, · · · , n and that it can be estimated by a randomization technique
as follows. Let Iλ(g, y) be

Iλ(g, y) = −
1

n

n
∑

i=1

yig(xi) +

∫

Ω
eg + λJ(g). (8)

When y = (1, · · · , 1)′ then (8) becomes (4). Letting f y
λ be the minimizer of (8), D(λ) is estimated

as

D̂(λ) =
1

nσ2
ε

ε′(fy+ε
λ − fy

λ) (9)

where y = (1, · · · , 1)′, ε is a random vector with mean 0 and covariance σ2
ε I, and, with some abuse

of notation f z
λ = (f z

λ(x1), · · · , f z
λ(xn))′. Several replicates in ε may be used for greater accuracy.

Then

ranGACV (λ) = OBS(λ) + D̂(λ). (10)

Our numerical results (to appear) show that ranGACV is a good proxy for the comparative Kull-
back Liebler distance between the density determined by fλ and the true density.
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3 The Univariate Estimate

The procedure is to start with N representers. In the one-dimensional case we choose roughly
equally spaced order statistics. Fix λ large. Use a Newton Raphson iteration to estimate the
coefficients of fλ in the basis functions spanning HN . Evaluate ranGACV (λ). Decrease λ and
repeat, until the minimizer over λ is found. Double N and repeat. Compare the resulting esti-
mates with N and 2N , if they agree within a specified tolerance, stop, otherwise double N again.
We tried this penalized log likelihood estimate on the examples in HK, using H = W 2

2 ≡ {g :

g, g′abs.cont., g′′ ∈ L2} and J(g) =
∫ 1
0 (g′′(x))2. In this case H0 is spanned by linear functions

and K(x, x′) = k2(x)k2(x
′) − k4([x − x′]), x ∈ [0, 1] where [τ ] is the fractional part of τ and

km(x) = Bm(x)/x! where Bm is the mth Bernoulli polynomial. The estimate is a cubic spline
(Wahba (1990)) with knots at the xir . In the one dimensional case this is not the most efficient
way to compute this estimate, since a B-spline basis is available given the knots, and that will lead
to a sparse linear system, whereas the present representation does not. However, this representation
generalizes easily to higher dimensional estimates. In our experiment the maximum allowed N was
48. We made 100 replicates of each case in Table 2 of HK, and computed the MISE in the same
way as HK did, by averaging the squared difference over 5001 equally spaced quadrature points
in the three intervals (for the normal, slight bimodal and sharp peak cases) of [−5, 5], [−7, 7] and
[0, 12].

dist sample MISE HK Ratio

size (pen.log.lik) (Table 2(i)) (pen.log.lik/HK)

=======================================================

normal 50 0.01859 0.02790 0.666

200 0.00435 0.01069 0.407

1000 0.00071 0.00209 0.340

10000 0.00014 0.00020 0.700

bimodal 50 0.01358 0.02502 0.543

200 0.00372 0.00770 0.483

1000 0.00079 0.00164 0.482

10000 0.00011 0.00020 0.550

peak 50 0.10011 0.15226 0.657

200 0.03045 0.03704 0.822

1000 0.02152 0.00973 2.212

10000 0.01624 0.00150 10.83

=======================================================

We note that the ratio column suggests that this estimate is among the better estimates in
HK’s Table 2 with the exception of the n = 1000 and n = 10000 cases for the peak example.

4 Multivariate Smoothing Spline ANOVA Density Estimation

The univariate penalized log likelihood density estimation procedure we have described can be
generalized to the multivariate case in various ways. Here we describe the smoothing spline ANOVA
(SS-ANOVA) model. The use of SS-ANOVA in a density estimate was suggested by Gu (1993),
who also gave a method for choosing the smoothing parameter(s). It can be shown that (for the
same smoothing parameters) the estimates of Gu and Silverman are mathematically equivalent,
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however we found the variational problem in Silverman easier to compute. The problem in d
dimensions is transformed to the d-dimensional unit cube, and xi = (xi1, · · · , xid). H will be an
RKHS on the d dimensional cube which is formed as the direct sum of subspaces of the tensor
product of d one dimensional RKHS’s. Details of SS-ANOVA models may be found in Wahba
(1990), Wahba, Wang, Gu, Klein & Klein (1995) Lin, Wahba, Xiang, Gao, Klein & Klein (2000).
Letting u = (u1, · · · , ud) ∈ [0, 1]d, we have

g(u) = µ +
d

∑

α=1

gα(uα) +
∑

α6=β

gαβ(uα, uβ) + ... (11)

where the terms satisfy averaging conditions analogous to those in ordinary ANOVA that insure
identifiability, and the series may be truncated somewhere. The interesting feature of this repre-
sentation of a log density is the fact that the presence or absence of interaction terms determines
the conditional dependencies, that is, a graphical model see Whittaker (1990)). For example the
main effects model represents independent component random variables, and if, for example d = 3
and the g23 and g123 terms are missing then the second and third component random variables are
conditionally independent, given the first.

Let H̃ be the d-fold tensor product of W 2
2 and let H be the subspace of H̃ consisting of the

direct sum of subspaces containing the terms retained in the expansion. (They are orthogonal in
H̃) We have

∫ 1
0 gα(uα)duα = 0, and so forth. The penalty functional J(g) of (4) becomes Jθ(g)

where the θ represents a vector of (relative) weights on separate penalty terms for each of the
components of (11). As before H = H0 ⊕H1 where H0 is the (low dimensional) null space of Jθ.
Let Kθ(x, x′), x, x′ ∈ [0, 1]d be the reproducing kernel for H1 where θ has been incorporated into
the norm on H1. (See Wahba (1990) Chapter 10.) Let ξi(x) = ξiθ(x) = Kθ(x, xi). The same
arguments hold as in the one dimensional case, and we seek a minimizer of (4) (with J = Jθ) in
HN = H0 ⊕ span{ξirθ, r = 1, · · · , N}, and λ and θ are chosen using the ranGACV of (10).

We will give a three dimensional example, essentially to demonstrate that the calculations are
possible and the ranGACV reasonable in higher dimensions. The SS-ANOVA model for this exam-
ple contained only the main effects and two factor interactions, and we had altogether 6 smoothing
parameters, parameterized in a convenient manner (details to appear elsewhere). For fixed smooth-
ing parameters λ, θ the coefficients in the expansion in HN are obtained via a Newton-Raphson
iteration. In this case integrations over [0, 1]3 are required, and we used quadrature formulae based
on the hyperbolic cross points, see (Novak & Ritter (1996), Wahba (1978)). These quadrature
formulae seem particularly appropriate for SS-ANOVA models and make high dimensional quadra-
ture feasible. Then the ranGACV was minimized over smoothing parameters via a 6-dimensional
downhill simplex calculation.

The underlying true density used in the example is p(x) = 0.5N(µ1,Σ) + 0.5N(µ2,Σ), where
µ1 = (0.25, 0.25, 0.25), µ2 = (0.75, 0.75, 0.75),

Σ =





10 0 10
0 20 30
10 30 80





−1

=





0.14 0.06 −0.04
0.06 0.14 −0.06
−0.04 −0.06 0.04



 .

(This density has a non zero three factor interaction which is not in our two factor model.) In this
example the sample size was n = 1000. N = 40 and the 40 representers were randomly chosen from
among the n possibilities. The N = 80 estimate was essentially indistinguishable from the N = 40
case. (Note that the smoothing parameters will not generally be the same in the two cases.) Figure
1 gives cross sections of the true density, and Figure 2 gives the SS-ANOVA penalized log likelihood
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estimate. Figure 3 compares the ranGACV and the CKL (CKL(λ) = −
∫

Ω fλ,θ(u)p(u)du) as a
function of iteration number in a downhill simplex minimization of the ranGACV . For this report
we have added Figures 4 and 5 which are the same as Figures 1 and 2 but from a different viewing
angle.
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Figure 1: The true density. x1 = .1, ..., .9. is fixed in the plots, left to right, then top to bottom.
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5 Closing Remarks

We have compared a penalized likelihood density estimate with ranGACV to choose the smoothing
parameter(s) to the greedy density estimate and the Bayesian estimates in ELM models consid-
ered by HK. Fairly favorable results were obtained except in the highest n peak cases. We have
shown that these penalized likelihood estimates can be extended to the multivariate case (work
in progress). It remains to develop tests to allow the construction of graphical models from the
SS-ANOVA estimates in higher dimensions.

We would be interested in knowing to what extent the Bayesian model selection methods can
be incorporated in ELM estimates for the multivariate case.

Splines of various flavors have been widely adopted in many statistical problems. It is interesting
to compare the various flavors and we are pleased to compliment the authors and contribute to the
discussion.
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Figure 2: The estimated density. x1 = .1, ..., .9 is fixed in the plots, left to right, then top to
bottom.
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Figure 4: The true density. Same as Figure 1 but from a different viewing angle.
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Figure 5: The estimated density. Same as Figure 2 but from the same viewing angle as Figure 4
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