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ABSTRACT

Linear parametric regression models of fMRI time series have correlated residuals. One
approach to address this problem is to condition the autocorrelation structure by temporal
smoothing. Smoothing splines with the degree of smoothing selected by generalized cross-
validation (GCV-Spline) provide a method to find an optimal smoother for an fMRI time
series. The purpose of this study was to determine if GCV-Spline of fMRI time series
yields unbiased variance estimates of linear regression model parameters. GCV-Spline was
evaluated with a real fMRI data set and bias of the variance estimator was computed for
simulated time series with autocorrelation structures derived from fMRI data. The results
from the real data suggest that GCV-Spline determines appropriate amounts of smoothing.
The simulations show that the variance estimates are, on average, unbiased. This study
demonstrates that GCV-Spline is an appropriate method for smoothing fMRI time series.

2



1 Introduction

Linear parametric regression models of fMRI time series have autocorrelated residual
errors (Friston et al., 1994). Two general approaches to deal with these autocorrelated resid-
uals are temporal smoothing (Friston et al., 1995; Worsley and Friston, 1995) and whitening
(Bullmore et al., 1996). Data are whitened by first modeling the intrinsic autocorrelations
and then removing them from the data. Provided that the model of the autocorrelations
is correct, whitening yields the minimum variance estimate among all unbiased estimates
of the linear regression model parameters (Bullmore et al., 1996). Smoothing conditions
the autocorrelation structure of an fMRI time series. Appropriate smoothing can minimize
the bias in variance estimators for a contrast of a linear model parameter and, thus, the
difference between the applied autocorrelation structure and the intrinsic autocorrelations
(Friston et al., 2000). Friston et al. (2000) argue that it is preferable to smooth with the goal
of minimizing bias rather than whiten data since it is difficult to obtain an accurate estimate
of the intrinsic autocorrelations. Thus, it is prudent to investigate the appropriateness of
various smoothing methods for fMRI time series.

This paper focuses on the use of spline smoothing in the context of fMRI analysis as de-
scribed by Worsley and Friston (1995). Smoothing splines with automatic optimal smoothing
parameter selection via generalized cross-validation (GCV) have a number of desirable prop-
erties (Wahba, 1990). GCV provides an objective method to determine the correct degree
of smoothing for optimally separating a smooth function from white noise. The purpose
of this paper is to describe and validate spline smoothing of fMRI time series with GCV
smoothing parameter selection (GCV-spline). GCV-spline is validated with respect to the
minimum bias criteria proposed by Friston et al. (2000). They study the properties of a
relevant contrast for a regression model parameter by examining the bias of the variance
estimator of this contrast. We compare the variance and the bias of the variance estimator
for a contrast of a regression model parameter under GCV-spline smoothing to those under
the low pass filter (SPM-HRF) implemented in SPM99 (Wellcome Department of Cognitive
Neurology, London) and no smoothing. This paper describes smoothing splines combined
with a parametric regression model. This is related to, but different than, the well known
partial spline paradigm for signal detection. The difference will be briefly described.

2 Materials and Methods

2.1 The General Linear Model

One popular model of fMRI time series is a general linear model (GLM) (Friston et al.,
1995; Worsley and Friston, 1995),

y = Xβ + Kε, (1)

where y = (y1, . . . , yn)T is an n× 1 matrix of equally-spaced samples of the time series, X is
the model (design) matrix with columns that contain signals of interest and nuisance signals,
β is an unknown parameter, K is an unknown convolution matrix which characterizes the
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autocorrelations, and ε ∼ N (0, σ2I). The autocorrelation matrix is given by V ∝ KKT . Let
S be a linear transformation. The matrix S is applied to the model (1) to give

Sy = SXβ + SKε. (2)

If K is known, the approach of whitening is to choose S = K−1. This transformation will
allow a minimum variance, unbiased ordinary least squares (OLS) estimate of β in equation
(2) given by β̂ = (SX)+Sy where + denotes the pseudoinverse that satisfies the Moore-
Penrose conditions, i.e., X+ = (XTX)−1XT . Suppose that S 6= K−1. Then the assumed
autocorrelation Va ∝ S−1(S−1)T will differ from the actual autocorrelation V and result in
biased OLS estimates of the variance of a contrast of β. The amount of bias depends on
the accuracy of the approximation of K−1. Friston et al. (2000) found that computing Va

with a low order autoregressive (AR) model or a 1/f model (Zarahn et al., 1997) results in
unacceptable bias for fMRI inference. An alternative approach to whitening is to smooth
model (1) with S such that the assumed autocorrelation Va ∝ SST ≈ SVST , the true
autocorrelation under smoothing. Even when V is unknown, bias can be minimized (Friston
et al., 2000). Since the bias as a function of S is difficult to directly minimize it is more
practical to determine if a method for computing S gives acceptable levels of bias. One
method for computing S is spline smoothing.

2.2 Smoothing Splines

Smoothing splines model the observed time series yi as

yi = f(ti) + εi, (3)

where f is a smooth function, εi ∼ N (0, σ2), and ti for i = 1, . . . , n are equally-spaced
times when fMR images are acquired. Green and Silverman (1994) give an elementary
introduction to smoothing splines. A general reproducing kernel Hilbert space approach to
smoothing splines is found in Wahba (1990).

An estimator of f(ti) is obtained from

ˆf(ti) = arg min
f∈C2[t1,tn]

(
n∑
i=1

(yi − f(ti))
2 + λ

∫ tn

t1

(f ′′(x))2 dx

)
. (4)

The unique solution of (4) is a natural cubic spline (NCS). A comprehensive introduction
to cubic splines can be found in de Boor (1978). The amount of smoothing is controlled
by the parameter λ ≥ 0 through weighting the contribution of the second derivative to the
penalty function in (4). When λ = ∞, (4) is a linear approximation. When λ = 0, i.e., no
smoothing, (4) interpolates the yi with a piecewise cubic polynomial.

The solution of (4) is computed with linear algebra. The penalty function in equation
(4), namely

S(f) =
n∑
i=1

(yi − f(ti))
2 + λ

∫ tn

t1

(f ′′(x))2 dx, (5)
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can be simplified if the NCS f is represented with its value-second derivative form. The NCS
representation from Green and Silverman (1994) is simplified for the case of equally-spaced
time points. Following Green and Silverman (1994) with simplifications, let Q and R be
matrices. Q has size n× (n− 2) with entries Qij for i = 1, . . . , n and j = 2, . . . , n− 1, where

Qj−1,j = Qj+1,j = (∆t)−1 and Qjj = −2(∆t)−1,

with Qij = 0 for |i− j| ≥ 2. Note that the columns are indexed with an unusual convention
starting with j = 2. The (n− 2)× (n− 2) matrix R is given by

Rii =
2∆t

3
, for i = 2, . . . , n− 1,

Ri,i+1 = Ri+1,i =
∆t

6
, for i = 2, . . . , n− 2, and

Ri,j = 0, for |i− j| ≥ 2.

Let f be a 1 × n matrix containing the values of f at the ti. The NCS conditions set the
second and third derivatives of f equal to zero at the boundary points t1 and tn. The
following relationship exists on the smoothness penalty term of equation (5):∫ tn

t1

f
′′
(x)2 dx = fTQR−1QT f . (6)

Substitution simplifies equation (5) to

S(f) = (y − f)T (y − f) + λfTQR−1QT f . (7)

It is now easy to show that the minimum of (7) is

f̂ = (I + λQR−1QT )−1y. (8)

The estimator in equation (8) is valid, but its form is not computationally efficient.
Consider an eigenvector-eigenvalue decomposition of the symmetric, positive semi-definite
n× n matrix QR−1QT , namely

QR−1QT = ΓDΓT , (9)

where the orthogonal matrix Γ contains the eigenvectors and

D =


0 · · · 0

0
...

l1
...

. . .

0 · · · ln−2

 (10)

contains the n − 2 positive eigenvalues. Substituting this factorization for QR−1QT in
equation (8) gives

f̂ = (I + λΓDΓT )−1y. (11)
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Since Γ is orthogonal (i.e., ΓT = Γ−1), equation (11) can be simplified to

f̂ = Γ(I + λD)−1ΓTy. (12)

Observing that I + λD is diagonal,

(I + λD)−1 =


1 · · · 0

1
...

1
1+λl1

...
. . .

0 · · · 1
1+λln−2

 . (13)

Thus, one need only perform the eigenvector-eigenvalue decomposition in equation (9) once
for an entire fMRI data set since QR−1QT depends only on the time between scans (i.e., the
sample rate). Then, for each spline fit, only λ need be changed in equation (13). This allows
for very fast spline fits for different λ. This feature is important for GCV since a spline must
be fit for many different degrees of smoothing.

The optimal smoothing parameter λ is determined with GCV (Craven and Wahba, 1979).
For a given λ, the GCV score is

GCV (λ) =
1

n
·
∑n

i=1(yi − ˆf(ti))
2

(1− n−1trA(λ))2
. (14)

The matrix A(λ) is the hat matrix for a given λ. By definition, A(λ) = Γ(I + λD)−1ΓT

since it is the linear transformation that maps the data to their fitted values.

2.3 Bias of the Variance Estimator for Spline Smoothing

The smoothing spline from (4) can be represented in the form of a smoothing matrix. This
allows the spline smoother to be incorporated into the smoothed GLM in equation (2). The
representation of the smoothing matrix is given directly from the solution to the penalty
function. Moreover, the smoothing matrix is

S = Γ(I + λD)−1ΓT . (15)

Given S computed with GCV-spline, the variance of a contrast of β̂ and the bias of the
variance estimator can be computed with equations given in Friston et al. (2000):

var(cT β̂) = σ2cT (SX)+SVST (SX)+Tc (16)

and

bias(S,V) =
var(cT β̂)− E[ ̂var(cT β̂)]

var(cT β̂)

= 1− tr[LSVST ]cT (SX)+SVaS
T (SX)+Tc

tr[LSVaST ]cT (SX)+SVST (SX)+Tc
, (17)
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where L = I − SX(SX)+ is the residual forming matrix and c is a contrast vector for
hypothesis testing of the components of β̂. An estimate of var(cT β̂) is obtained by replacing
V with its assumed value, Va, and σ2 with its estimate

σ̂2 =
(LSy)TLSy

tr(LVa)
, (18)

given in Worsley and Friston (1995).

2.4 Relationship to Partial Spline Model

In this paper A(λ), the smoother matrix associated with the minimization problem of (4) is
taken as the matrix S in the Worsley and Friston (1995) paradigm. A different smoothing
spline paradigm, which is also designed for signal detection, is based on the the partial spline
model. The partial spline model is:

yi =

p∑
ν=1

φν(ti)βν + f(ti) + εi (19)

where the φν are specified signal functions whose values φν(ti) provide the entries of X,
ε ∼ N (0, σ2I) and f may be considered as a smooth function, as in (5), or, alternatively as
a zero mean Gaussian stochastic process with some multiple of a particular covariance that
is related to (QR−1QT )+, (Wahba, 1983, Wahba, 1990, Chiang et al., 1999, and elsewhere).
In the partial spline paradigm, one finds β and f to minimize

S̃(f, β) =
n∑
i=1

(
yi −

[
p∑

ν=1

φν(ti)βν + f(ti)

])2

+ λ

∫ tn

t1

(f ′′(x))2dx (20)

and λ is chosen to minimize the corresponding GCV score which now has
∑n

i=1(yi−[
∑p

ν=1 φν(ti)βν+

f(ti)])
2 in the numerator of (14), and ˜A(λ) replacing A(λ) where Ã(λ) is the matrix satisfying

Xβ̂+f̂ = Ã(λ)y. In this paradigm the β̂ which minimizes (20) is β̂ = (XT (I− S)X)−1XT (I− S)y.
Estimates for σ2 and hypothesis tests for β when f is treated as a stochastic process are
given in the references. At this time it is not known how the partial spline paradigm might
compare, in practice, with the Worsley and Friston (1995) paradigm studied here.

2.5 fMRI Experiment

One hundred thirty-two brain volumes were acquired from a healthy volunteer with a
1.5T scanner running a gradient echo EPI pulse sequence for BOLD contrast. The specific
parameters were: 22 coronal slices, 7mm thick, 1mm gap, 642 pixel matrix with in-plane
resolution of 3.75mm2, TR 2000ms, TE 40ms, and flip angle 85◦. During the fMRI ex-
periment, four symmetric blocks of photic stimulation and darkness were presented to the
volunteer. This stimulus was designed to activate the visual cortex. The raw data were
spatially smoothed in the frequency domain with a Hamming filter to increase SNR (Lowe
and Sorenson, 1997). The first four time points were discarded to prevent known signal
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instabilities from confounding the analysis. An intensity mask was applied to the images to
exclude voxels located outside of the brain. Head motion was corrected with the algorithm
in SPM99.

The data were analyzed with the GLM in equation (2) with S determined by GCV-spline.
The design matrix contained one column with a boxcar function that was convolved with the
SPM99 HRF to model the expected BOLD response to the fMRI experiment (Figure 1a).
Polynomial terms up to order three were also included to achieve high pass filtering following
the motivation of Worsley et al., (2002). Moreover, the design matrix X = [s 1 t t2 t3],
where s is the convolved boxcar, 1 is a n × 1 column of 1s, and t = (t1, t2, · · · , tn)T . An
optimal spline smoothing matrix was computed for each time series with equation (12). The
optimal λ =: λopt was determined by a grid search for the minimum of the GCV score over
λ ∈ [10−3, 106] on a log10 scale with steps of size 0.1. The data were also analyzed with S
given by the SPM-HRF and S = I (no smoothing). Images of voxel t-statistics from a test
of the null hypothesis cTβ = 0 for the contrast cT = [1 0 0 0 0] were created for each of the
three smoothing strategies with the statistic given by

t =
cT β̂√
̂var(cT β̂)

. (21)

2.6 Bias Computations with Simulated Data

Bias of the variance estimator can be computed with equation (12). However, this de-
mands knowledge of the true variance. For an observed fMRI time series, the true variance
is unknown. It is possible to generate simulated a time series with a known autocorrelation
structure to allow direct calculation of bias. To generate a set of reasonable simulated fMRI
time series, autocorrelation structures can be estimated from real data. The autocorrelation
estimates can be used to induce correlations in pseudo-random numbers independently-
sampled from a Gaussian density with a known variance. Finally, a signal can be added to
the correlated Gaussian samples. Figure 1b shows a simulated time series.

Autocorrelation structures were estimated from the residuals of the fit of the time series
from the fMRI experiment with the smoothing matrix S = I (i.e., no smoothing) with an
AR(8) model. The residuals for a single time series y are

r = Ly. (22)

The AR(8) model of the i-th residual is

ri = b1ri−1 + · · ·+ b8ri−8 + ζi, (23)

where b1, · · · , b8 are the AR coefficients and ζi ∼ N (0, σ2
r). The more convenient matrix

representation of equation (23) is, following Friston et al. (2000)

r = (I−B)−1ζ, (24)
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where B is a matrix of AR model coefficients and ζ ∼ N (0, σ2
rI). The AR coefficients were

estimated with the least squares procedure (Chatfield, 1996) and organized into

B̂ =



0 0 0 0 · · · 0

b̂1 0 0 0 · · · 0

b̂2 b̂1 0 0 · · · 0

b̂3 b̂2 b̂1 0 · · · 0
...

...
...

...
...

b̂8 b̂7 b̂6 b̂5 · · · 0

0 b̂8 b̂7 b̂6 · · · 0
...

...
...

...
...

0 0 0 0 · · · 0


, (25)

where b̂1, · · · , b̂8 are the estimated AR coefficients. Then, the estimated convolution matrix
is

K̃ = (I− B̂)−1. (26)

A simulated time series ỹ is constructed by

ỹ = 0.15 · s + K̃e, (27)

where s is the signal in Figure 1(a) and e is a sample from N (0, I). The coefficient of the
signal, namely 0.15, and the unit variance error term e were selected to match the simulated
data parameters used by Lange et al. (1999).

For each voxel in the masked data set, a separate K̃ was estimated and a separate
e was generated with the randn() function in MATLAB (Mathworks, Nattick, MA) to
produce a simulated time series with equation (27). The simulated time series were assigned
to the spatial location where the K̃ was estimated. This preserves the spatial variability of
autocorrelation structures in the simulated data. A subset of the simulated data was selected
based on 100 voxels with the largest t-statistics of a test of the null hypothesis cTβ = 0 for
the contrast cT = [1 0 0 0 0] in the real data under S = I. This subset contained simulated
time series with autocorrelation structures from regions that were presumably related to the
stimulus in the fMRI experiment.

The variance and bias of the variance estimator were calculated for each time series in
the entire simulated data set with three different smoothing matrices: S = I, S equal to the
SPM-HRF filter matrix, and the spline smoothing matrix S = (I+λQR−1QT )−1. The SPM-
HRF smoothing matrix is generated with the spm make filter() function with the option
for no high pass filtering and “hrf” for the low pass filter. This function is part of the SPM99
package. For the spline smoothing, the optimal λ was determined with the same parameters
as used with the real data, i.e., for each time series a GCV search over λ ∈ [10−3, 106] on a
log10 scale with steps of size 0.1. The variance of cTβ with cT = [1 0 0 0 0] and the bias
of the variance estimator were computed for each of the time series under each smoothing
method with equations (16) and (17), respectively. The known variance-covariance matrix

V = K̃K̃
T

and the assumed variance-covariance matrix Va = SST with S given by the
particular smoothing matrix under investigation.
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Figure 1: The hypothesized BOLD response to the photic stimulation in the fMRI experiment
(a). A simulated time series used in the bias computations (b).

2.7 Computer Software and Hardware

The algorithms were written and carried out in the MATLAB technical computing package.
Some of the plots were created with the R statistical environment (www.r-project.org). The
t-statistic images and bias images were co-registered with anatomic images with AFNI (Cox,
1996). A linux workstation with dual 1.2 GHz AMD Athlon MP processors was used for
the computations in this study. The algorithms were not designed to utilize both processors
simultaneously.

3 Results

3.1 FMRI Experiment

The results of the fMRI experiment and motion correction were technically adequate for
further analysis. After the intensity mask was applied, approximately 12,000 voxels were
included in the analysis. The computational time for GCV-spline analysis of the entire brain
volume was four hours and fifteen minutes. Generalized cross-validation performed well
on the fMRI time series; sensible amounts of smoothing were determined. High frequency
fluctuations of the observed BOLD signal received more smoothing than lower frequency
fluctuations. The GCV score was numerically well-behaved over the region of the parameter
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Figure 2: Histogram of log10(λopt) from the visual stimulus experiment.

search. The amount of optimal smoothing with the GCV-spline method is illustrated in
Figure 2. The distribution of the optimal λ is skewed toward the smaller values with only a
few time series that required large amounts of smoothing (λ̄ = 4.790× 104 and median(λ) =
50.01). An example of a time series that required little smoothing and one that required
more smoothing are included in Figure 3 (a) and (b). The corresponding plots of the GCV
score demonstrate the numerical stability of GCV for these two time series (Figure 3 (c) and
(d)). These plots are similar in the relative amount of curvature to the GCV scores from
the other time series. The GCV-spline method performs, on average, more smoothing than
the SPM-HRF smoothing kernel. Figure 3 (e) and (f) shows the equivalent smoothing spline
kernels and the SPM-HRF kernel for the time series in Figure 3 (a) and (b), respectively.
For log10(λ) ≈ 0.78, both methods provide the same amount of smoothing (Figure 3(e)).

Inference from the model fits with GCV-spline, SPM-HRF, and no smoothing give qual-
itatively similar results. Images of t-statistics from a test of the null hypothesis cTβ = 0
for the contrast cT = [1 0 0 0 0] are given for a coronal slice through the primary visual
cortex (V1) in Figure 4. The clusters of activation are centered at approximately the same
location for each of the models. The spatial extent of the clusters and the level of significance
was different with each method. When no smoothing is performed (i.e., no accounting for
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residual autocorrelations), the t-statistics are highest and the spatial extent of the clusters
is greatest. Conversely, with GCV-spline smoothing, the level of significance was lowest and
the activated clusters are the smallest. Smoothing with the SPM-HRF gave t-maps that
were somewhere in between the other two methods.

3.2 Simulated Data

The amount of bias in the variance estimates for the simulated data differed between the
three smoothing strategies. The computational time for GCV-spline fitting of the simulated
time series was the same as with the real fMRI data set. The distribution of the optimal
λ was skewed towards the lower values (Figure 5). On average, the simulated time series
required more smoothing (λ̄ = 8.154×104 and median(λ) = 398.1) than the real fMRI data.
The mean and median bias with the simulated data for the three methods are shown in Table
1. The mean and median bias were positive for all methods. GCV-spline smoothing had bias
that was closest to zero, whereas the bias was greatest for no smoothing. Histograms of the
bias show that, on average, GCV-spline is unbiased and that SPM-HRF and no smoothing
are biased (Figure 6). Images of bias are included in Figure 7. These images show how
the bias of each method varies over different regions of the brain. There are slightly more
voxels with positive bias in the grey matter regions and more voxels with negative bias in the
ventricles and white matter regions with GCV-spline smoothing (Figure 7A). With SPM-
HRF smoothing (Figure 7B) and no smoothing (Figure 7C), bias is nearly systematically
positive in the grey matter regions. The 100 voxel subset of the simulated data show similar
trends in the bias that are summarized in Table 2. Boxplots of the bias and variance for the
three methods show that the reduction in bias comes at the cost of only a small increase in
variance (Figure 8).

Table 1. Bias for Three Smoothing Strategies (Whole Brain)
GCV-Spline SPM-HRF No Smoothing

Mean Bias 0.0200 0.0701 0.4019
Median Bias 0.0037 0.1608 0.5399

Table 2. Bias for Three Smoothing Strategies (100 Significant Voxels)
GCV-Spline SPM-HRF No Smoothing

Mean Bias -1.800×10−5 0.1801 0.5964
Median Bias -0.0332 0.2312 0.6627
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Figure 3: Spline smoothing of fMRI time series with the degree of smoothing selected by
generalized cross-validation. The time series in (a) required approximately the same amount
of smoothing as is provided by the SPM-HRF smoothing kernel. The plot of corresponding
GCV score (c) is well-behaved with a minimum at λ = 6.31. The SPM-HRF kernel is very
similar to the equivalent smoothing spline kernel (e). The other time series (b) was smoothed
more with the spline method than by the SPM-HRF kernel. The underlying signal is esti-
mated well at the minimum of the GCV score (d) where λ = 501. The equivalent smoothing
spline kernel (f) has a noticeably greater bandwidth than the SPM-HRF smoothing kernel.
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Figure 4: Images of the t-statistic under the null hypothesis for GCV-Spline smoothing,
SPM-HRF smoothing, and no smoothing.
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Figure 5: Histogram of log10(λopt) from the simulated data set.
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Figure 6: Histograms of bias(v̂ar(cT β̂)) from the simulated data with no smoothing (top),
SPM-HRF smoothing (middle), and GCV-Spline smoothing (bottom). Smoothing with the
GCV-Spline method produces v̂ar(cT β̂) estimates that are, on average, unbiased.
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Figure 7: Images of bias of the bias of v̂ar(cT β̂) for GCV-Spline (A), SPM-HRF (B), and
no smoothing (C). The bias in each voxel was computed for simulated time series with
autocorrelation structures estimated from the corresponding voxel. Voxels with positive bias
underestimate the true variance of its regression parameter estimate. The inference in these
regions is anticonservative. The converse is true for voxels with negative bias.
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Figure 8: Bias of the variance estimator and estimated variance of cT β̂ with GCV-Spline,
SPM-HRF, and no smoothing from the simulated data set with autocorrelation structures
estimated from the 100 most significantly task-related time series.
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4 Discussion

The novel contribution of this paper is to show that spline smoothing with generalized
cross-validation provides a method to determine the optimal amount of smoothing for an
fMRI time series. This method not only conditions the autocorrelation structure on the
data, but it does so in a way to optimally separate the underlying signal from noise. By
selecting the λ that minimizes the GCV score, the smoothing spline estimator for the signal
will minimize the predictive mean-square error (Craven and Wahba, 1979). The empirical
results from the spline smoothing of the fMRI data show that GCV is a sufficient method to
automatically choose the appropriate amount of smoothing. On average, the spline method
determined that a greater amount of smoothing was necessary than the amount provided by
the SPM-HRF kernel. This suggests that if one chooses to use a single smoother for all time
series the underlying signal might, on average, be better estimated if a smoothing kernel
with a greater bandwidth than the SPM-HRF kernel is used. However, if computational
time is not a major issue it is preferable to find the optimal degree of smoothing for each
time series. It must be emphasized that the premise for using a fixed smoothing kernel such
as the SPM-HRF was a computational constraint (Friston et al., 2000).

The results from the comparison of GCV-spline smoothing with the SPM-HRF and no
smoothing of the simulated data show that optimal spline smoothing of each time series is,
on average, significantly less biased than smoothing all time series with an identical SPM-
HRF kernel or ignoring residual autocorrelations. The mean bias reported in Table 1 for
the SPM-HRF is deceptive in the context of fMRI studies since the majority of voxels with
negative bias are located in regions other than grey matter. These negative bias voxels shift
the mean bias closer to zero. A more complete study where grey matter voxels are segmented
from the rest of the brain would likely show that the mean bias for SPM-HRF smoothing
is higher. This is also true for GCV-spline smoothing. However, the effect of studying only
gray matter voxels on the bias is expected to be lower since the distribution of bias is more
symmetric about zero for GCV-spline smoothing (Figure 6).

The bias improvement is attributed to the ability of the spline method to select appropri-
ate smoothing for each time series. The gain in bias reduction comes at the cost of a slight
increase in variance (e.g., Figure 8). This increase in variance simply reflects a bias-variance
tradeoff in the variance estimator that is controlled by the amount of smoothing. A large
reduction in statistical efficiency is not expected from the greater amount of smoothing with
the GCV-spline than the SPM-HRF since var(cT β̂) was not orders of magnitude greater with
GCV-spline smoothing. The t-maps in Figure 4 also reflect how greater smoothing causes
greater variances which lead to lower values of the t-statistic.

One limitation of the GCV-spline method is the additional computational expense. Fit-
ting a GLM with SPM-HRF smoothing is on the order of minutes compared to a few hours
for the GCV-spline method. The algorithms used in this study for the GCV-spline method
were not numerically optimal. A simple grid search for the minimum of the GCV score is
inefficient. A fixed step size of log10(λ) = 0.1 is a particularly poor choice since the GCV
score is very well-behaved for fMRI time series (Figure 3c,d). Both improved algorithms
and better optimization could dramatically reduce the amount of computer time needed for
spline smoothing and generalized cross-validation. Interpreted languages such as MATLAB
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are often slower than compiled code. FORTRAN routines for minimizing the GCV score
are available in RKPACK (Gu, 1989) which is freely available on www.netlib.org/gcv. To
find optimal smoothers with RKPACK for 12,000 time series takes about six minutes on
computer harware comparable to that used in this study. Thus, the use of RKPACK or
other compiled code is encouraged for researchers adopting the methods of this paper.

Generalization of the bias analysis of simulated data to real data depends on how re-
alistic the assumptions made when the simulated time series were constructed. The first
assumption is that the signal s has a given amplitude and is generated by the convolution
of the hemodynamic response function with a boxcar function. The second assumption is
that the noise is additive and specified by Kε. The third assumption is that the AR(8)
model provides an accurate estimate to construct an estimate of K, namely, K̃. The first
assumption is not critical in the context of this study since s is modeled exactly in the design
matrix. The structure and additivity of the noise model is generally accepted with strong
evidence to suggest its validity from the null data studies of Woolrich et al. (2001). Finally,
the assumption that the AR(8) model is sufficient is the critical assumption to establish the
validity of the simulated time series. An examination of the necessary AR order from six
null data sets by Woolrich et al. (2001) concluded that AR(6) was sufficient for their data.
Thus, the AR(8) is conservative with enough freedom to accommodate even more complex
AR processes than expected.

This study did not consider the performance or applicability of spline smoothing to a
random event design fMRI experiment. A Tukey taper applied to a spectral density estimate
and nonlinear spatial smoothing can be used to estimate the autocorrelation for the purposes
of prewhitening that yields acceptable levels of bias (Woolrich et al., 2001). This is likely
to be a more efficient method for handling autocorrelations in random event data than
spline smoothing. However, there is likely to be no gain in efficiency with this method over
spline smoothing since smoothing and prewhitening have similar efficiencies for block design
experiments (Worsley and Friston, 1995; Friston et al., 2000; Woolrich et al., 2001).

5 Conclusion

Spline smoothing with the optimal degree of smoothing selected with generalized cross-
validation is a method for smoothing fMRI time series that may be used to separate a
smooth signal from white noise. In this study, we use the implied spline smoother to select
an appropriate smoothing matrix for a GLM of an fMRI time series. For fMRI experiments
with block designs, there is a significant reduction in bias over smoothing with the SPM-
HRF kernel or simply ignoring residual autocorrelations. Since the appropriate degree of
smoothing is selected for each time series, spline smoothing (with compiled code such as
RKPACK) is slightly computationally more expensive than applying a single smoothing
kernel to all time series. Nonetheless, the bias advantage of the GCV-spline smoothing
suggests that it is an appropriate smoothing method for regression analysis of fMRI time
series.
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