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Abstract

We describe two modern methods for statistical model
building and classification, penalized likelihood meth-
ods and and support vector machines (SVM’s). Both
are obtained as solutions to optimization problems in
reproducing kernel Hilbert spaces (RKHS). A training
set is given, and an algorithm for classifiying future ob-
servations is built from it. The (k-category) multichoto-
mous penalized likelihood method returns a vector of
probabilities (p1(t), · · · pk(t)) where t is the attribute
vector of the object to be classified. The multicate-
gory support vector vachine returns a classifier vec-
tor (f1(t), · · · fk(t)) satisfying

∑

` f`(t) = 0, where
max`f`(t) identifies the category. The two category
SVM’s are very well known, while the multi-category
SVM (MSVM) described here, which includes modifi-
cations for unequal misclassification costs and unrep-
resentative training sets, is new.
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We describe applications of each method: For penal-
ized likelihood, estimating the 10-year probability of
death due to several causes, as a function of several
risk factors observed in a demographic study, and for
MSVM’s, classifying radiance profiles from the MODIS
instrument according to clear, water cloud or ice cloud.
Some computational and tuning issues are noted.
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♣♣ 0. Regularization Problems in RKHS
from Lecture 1

To set notation: The canonical regularization problem
in RKHS we discussed in the first lecture was: Given

{yi, ti}, yi ∈ S, ti ∈ T ,

and {φ1, · · · , φM}, M special functions defined on
T , find f of the form

f =
M
∑

ν=1

dνφν + h

with h ∈ HK to minimize

Iλ{f, y} =
1

n

n
∑

i=1

C(yi, f(ti)) + λ‖h‖2HK
.

Today yi will just be a class label, yi ∈ S = {1,2, · · · , k}

(k classes)
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♣♣ 1. Optimal Classification and the
Neyman-Pearson Lemma:

hA
hB

hA(·), hB(·) densities of t for class A and class B.

NOTATION:

πA = prob. next observation (Y ) is an A

πB = 1 − πA = prob. next observation is a B

p(t) = prob{Y = A|t}

=
πAhA(t)

πAhA(t) + πBhB(t)

1
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♣♣ 1.Optimal Classification and the
Neyman-Pearson Lemma (cont.).

Let cA = cost to falsely call a B an A

cB = cost to falsely call an A a B

Bayes classification rule: Let

φ(t) : t → {AB}

Optimum (Bayes) classifier: (Neyman-Pearson Lemma)
Minimizes the expected cost:

φOPT(t) =







A if p(t)
1−p(t)

> cA
cB

,

B otherwise.
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♣♣ 2. Penalized likelihood estimation, two classes.

Let f(t) = log p(t)/(1 − p(t)), the log odds ratio.
Assume (for simplicity only) cA

cB
= 1

Then the optimal classifier is

f(t) > 0 (equivalently, p(t) − 1
2 > 0) → A

f(t) < 0 (equivalently, p(t) − 1
2 < 0) → B

To estimate f : Assume (again for simplicity only) that
the relative frequency of A’s in the training set is about
the same as in the general population:
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♣♣ 2. Penalized likelihood estimation,two
classes(cont.).

Code the data as:

yi =
1

0

= A

= B
(important)

The probability distribution function (likelihood) for y | p:

L(y, p) = py(1 − p)1−y =







p if y = 1

(1 − p) if y = 0

and the negative log likelihood is

− logL = − log[py(1 − p)1−y]
= −y log p − (1 − y) log(1 − p).

Substituting p = ef/(1 + ef) gives

− logL(y, f) = −yf + log(1 + ef).

The penalized log likelihood estimate of f is obtained
by setting

C(yi, f(ti)) = −yif(ti) + log(1 + ef(ti))

in the optimization problem Iλ(f, y).
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♣♣ 3. The Support Vector Machine, two classes.

y =
+1 =

−1 =

A

B
(note different coding)

Find f(t) = d + h(t) with h ∈ HK to min

1

n

n
∑

i=1

(1 − yif(ti))+ + λ‖h‖2HK
(∗∗)

where (τ)+ = τ, τ > 0,= 0 otherwise.

Then

fλ(t) = d +
n

∑

i=1

ciK(t, ti). (∗)

Substitute (*) into (**), choose λ, given λ, find c and d.
The classifier is

fλ(t) > 0 → A

fλ(t) < 0 → B
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♣♣ 4. Penalized likelihood estimation and the SVM
compared:

Let us relabel y in the likelihood –

ỹi =







+1 if A,

−1 if B.

Then

−yf + log(1 + ef) → log(1 + e−ỹf)

Figure 1 compares

log(1 + e−yf), (1 − yf)+ and (−yf)∗

where

(τ)∗ =







1 if τ > 0,

0 otherwise.

(−yf)∗ is the misclassification counter.
(1 − yf)+ is known as the ”hinge function”.
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Figure 1. Let C(yi, f(ti)) = c(yif(ti)) = c(τ).
Comparison of c(τ) = (−τ)∗, (1−τ)+ and log2(1+

e−τ). Any strictly convex function that goes through 1

at τ = 0 will be an upper bound on the missclassifi-
cation counter (−τ∗) and will be a looser bound than
some SVM (hinge) function (1 − θτ)+. Many other
”large margin” classifiers. (See [Wahba02]).
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♣♣ 4. Penalized likelihood and the SVM
compared(cont.).

The penalized log likelihood estimate is tuned by a
criteria which chooses λ to minimize a proxy for

R(λ) = E
1

n

n
∑

i=1

−ynew·ifλ(ti) + log(1 + efλ(ti)).

[XiangWahba96]. R(λ) is the expected ‘distance’ or
negative log likelihood for a new observation with the
same ti. fλopt

estimates the log odds ratio log[p/(1−

p)].

We say the SVM classifier is optimally tuned if we
have a criteria which chooses λ to minimize a proxy
for

R(λ) = E
1

n

n
∑

i=1

(1 − ynew·ifλ(xi))+.

That is, it is choosing λ to minimize a proxy for an
an upper bound on the misclassification rate [LeeLin-
Wahba02][Wahba99].
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♣♣ 4. Penalized likelihood and the SVM
compared(cont.).

What is the SVM estimating?

Lemma (Yi Lin [YLin02])

The minimizer of E(1 − ynewf(t))+ is sign f(t)

(= sign (p(t) − 1
2) = sign (2p(t) − 1))

where f(t) = log p(t)/(1− p(t)).

So the SVM, the solution of the problem: Find fλ =

d + h which minimizes

1

n

n
∑

i=1

(1 − yif(ti))+ + λ‖h‖2HK
,

where λ is chosen to minimize (a proxy for) R(λ), is
estimating sign f(t) - not f(t) itself, but just what you
need to minimize the misclassification rate.
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♣♣ 4. Penalized likelihood and the SVM
compared(cont.).
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t

truth
penalized likelihood
SVM

300 Bernoulli random variables were generated, equally
spaced t from p(t) = 0.4sin(0.4πt)+0.5 Solid line:
(2p(t) − 1). Dotted line:(2pλ − 1), pλ is (optimally
tuned) penalized likelihood estimate of p. Dashed line:
fsvm λ, is (optimally tuned) SVM. Observe fsvm λ ∼

±1, thus pλ is estimating p(t), whereas fsvm λ is esti-
mating sign(2p−1) = sign(p−1/2)= sign f . (based
on Gaussian K) (plot: Yoonkyung Lee)
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♣♣ 5. Multichotomous penalized likelihood[XLin98].

k + 1 categories, k > 1. Let pj(t) be the probability
that a subject with attribute vector t is in category j,
∑k

j=0 pj(t) = 1. From [XLin98]: Let

f j(t) = log pj(t)/p0(t), j = 1, · · · , k.

Then:

pj(t) = efj(t)

1+
∑k

j=1 efj(t)
, j = 1, · · · , k

p0(t) = 1

1+
∑k

j=1 efj(t)

Coding:

yi = (yi1, · · · , yik),

yij = 1 if the ith subject is in category j and 0 other-
wise.
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♣♣ 5. Multichotomous penalized likelihood (cont.).

Letting f = (f1, · · · , fk) the negative log likelihood
can be written as −logL(y, f)

=
n

∑

i=1

{−
k

∑

j=1

yijf
j(ti) + log(

k
∑

j=1

1 + ef j(ti))}.

where

f j =
M
∑

νj=1

dνjφν + hj.

λ‖h‖2HK
becomes

k
∑

j=1

λj‖h
j‖2HK

,

and the optimization problem becomes: Minimize

Iλ(y, f) = −logL(y, f) +
k

∑

j=1

λj‖h
j‖2HK

.
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♣♣ 5. Multichotomous penalized likelihood (cont.).

10 year risk of mortality as a function of t = (x1, x2, x3) =
age, glycosylated hemoglobin, and systolic blood pres-
sure[From XLin98].
age

pr
ob

40 50 60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gly1--1st Q, Sp1--1st Q

age

pr
ob

40 50 60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gly1--1st Q, sp1--median

age

pr
ob

40 50 60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gly1--1st Q, sp1--3rd Q

age

pr
ob

40 50 60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gly1--median, sp1--1st Q

age

pr
ob

40 50 60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age

pr
ob

40 50 60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gly1--median, sp1--3rd Q

age

pr
ob

40 50 60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gly1--3rd Q, sp1--1st Q

age

pr
ob

40 50 60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gly1--3rd Q, sp1--median

age

pr
ob

40 50 60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gly1--3rd Q, sp1--3rd Q

x2 and x3 set at their medians. The differences be-
tween adjacent curves (from bottom to top) are prob-
abilities pj(t) for : 0:alive, 1: diabetes, 2: heart attack,
3: other causes. f j(x1, x2, x3) =

µj + f
j
1(x1) + f

j
2(x2) + f

j
3(x3) + f

j
23(x2, x3)

(Smoothing Spline ANOVA model.)
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♣♣ 6. Multicategory support vector machines
(MSVMs).

From [LeeLinWahba02],[LWA03], earlier reports.
k > 2 categories. Coding:

yi = (yi1, · · · , yik),
k

∑

j=1

yij = 0,

in particular yij = 1 if the ith subject is in category j

and yij = − 1
k−1 otherwise. yi = (1,− 1

k−1, · · · ,− 1
k−1)

indicates yi is from category 1. The MSVM produces
f(t) = (f1(t), · · · fk(t)), with each f j = dj + hj

with hj ∈ HK , required to satisfy a sum-to-zero con-
straint

k
∑

j=1

f j(t) = 0,

for all t in T . The largest component of f indicates
the classification.
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♣♣ 6. Multicategory support vector machines
(MSVMs)(cont.).

Let Ljr = 1 for j 6= r and 0 otherwise. The MSVM is
defined as the vector of functions fλ = (f1

λ , · · · , fk
λ),

with each hk in HK satisfying the sum-to-zero con-
straint, which minimizes

1

n

n
∑

i=1

k
∑

r=1

Lcat(i)r(f
r(ti) − yir)+ + λ

k
∑

j=1

‖hj‖2HK

equivalently

1

n

n
∑

i=1

∑

r 6=cat(i)

(fr(ti) +
1

k − 1
)+ + λ

k
∑

j=1

‖hj‖2HK

where cat(i) is the category of yi.

The k = 2 case reduces to the usual 2-category
SVM.

The target for the MSVM is f(t) = (f1(t), · · · , fk(t))

with f j(t) = 1 if pj(t) is bigger than the other pl(t)

and f j(t) = − 1
k−1 otherwise.
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♣♣ 6. Multicategory support vector machines
(MSVMs)(cont.).
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SVM demonstration.(Gaussian Kernel)
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The left panel above gives the estimated f1, f2 and
f3. λ and σ were optimally tuned. (i. e. with the
knowledge of the ‘right’ answer). In the second from
left panel both λ and σ were chosen by 5-fold cross
validation in the MSVM and in the third panel they
were chosen by GACV. In the rightmost panel the clas-
sification is carried out by a one-vs-rest method.
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♣♣ 6. Multicategory support vector
machines(MSVMs)(cont.).

The nonstandard MSVM:

More generally, suppose the sample is not represen-
tative, and misclassification costs are not equal. Let

Ljr = (πj/πs
j)Cjr, j 6= r

Cjr is the cost of misclassifying a j as an r, Crr =

0, πj is the prior probability of category j, and πs
j is

the fraction of samples from category j in the training
set. Then the nonstandard MSVM has as its target the
Bayes rule, which is to choose the j which minimizes

k
∑

`=1

C`jp`(x)
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♣♣ 7. Tuning the estimates.

GACV (generalized approximate cross validation). Pe-
nalized likelihood: [XiangWahba96][XLin98];
SVM[Wahba99], MSVM[Lee02][LeeLinWahba02].

Leaving out one:

VO(λ) =
1

n

n
∑

i=1

C(yi, f
[i]
λ (ti))

where f
[i]
λ is the estimate without the ith data point.

GACV (λ) =
1

n

n
∑

i=1

C(yi, f(ti)) + D(y, fλ)

where

D(y, fλ) ≈
1

n

n
∑

i=1

{

C(yi, f
[i]
λ (ti)) − C(yi, fλ(ti))

}

is obtained by a tailored perturbation argument. Easy
to compute for the SVM, use randomized trace tech-
niques to estimate the perturbation in the likelihood
case.
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♣♣ 8. The classification of upwelling MODIS
radiance data to clear sky, water clouds or ice clouds.

From [LWA03].Classification of 12 channels of upwelling
radiance data from the satellite- borne MODIS instru-
ment. MODIS is a key part of the Earth Observing
System (EOS).

Classify each vertical profile as coming from clear sky,
water clouds, or ice clouds.

Next page: 744 simulated radiance profiles (81 clear-
blue, 202 water clouds-green, 461 ice clouds-purple).
10 samples from clear, from water and from ice:
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Classification boundaries on the 374 test set deter-
mined by the MSVM using 370 training examples, two
variables, one is composite. Y. K. Lee Student poster prize AMet-

Soc Satellite Meteorology and Oceanography session.
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Classification boundaries determined by the nonstan-
dard MSVM when the cost of misclassifying clear clouds
is 4 times higher than other types of misclassifica-
tions.
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♣♣ 9. Closing Remarks

We have examined two class and multi-class penal-
ized likelihood estimates and Support Vector Machines,
both of which can be obtained as optimization prob-
lems in an RKHS. Non-representative samples and
unequal misclassification costs can be handled. Newton-
Raphson and Mathematical Programming are used
to solve the optimization problems. Downhill simplex
works well for searching multiple λ’s. Convergence
theory of various penalized likelihood models have been
around a long time, convergence theory for the SVM
(to sign f ) and MSVM (to its target) is younger. Pe-
nalized likelihood estimates and SVM’s are just two of
the many examples of optimization problems related
to regularization in RKHS, which have many useful
scientific applications.
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