
DEPARTMENT OF STATISTICS

University of Wisconsin

1210 West Dayton St.

Madison, WI 53706

TECHNICAL REPORT NO. 1094

July 12, 2004

SOME PROBLEMS IN MODEL SELECTION 1

Chenlei Leng

chenlei@stat.wisc.edu

http://www.stat.wisc.edu/~chenlei

1This research is partially supported by NSF Grants DMS 0072292, DMS 0134987 and

NIH grant EYO9946.



i

SOME PROBLEMS IN MODEL

SELECTION

By

Chenlei Leng

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Statistics)

at the

UNIVERSITY OF WISCONSIN – MADISON

2004



ii

Abstract

This dissertation consists of three parts: the first two parts are related to

smoothing spline ANOVA models; the third part concerns the Lasso and its

related procedures in model selection.

In Part I, by adopting the Cox proportional hazard model to quantify the

hazard function, we propose a novel nonparametric model selection technique to

analyze time to event data, within the framework of smoothing spline ANOVA

models. Instead of the usual squared norms in the traditional smoothing spline

ANOVA, our method employs a regularization with the penalty functional being

the sum of the component norms. This method shrinks functional components

and produces some components that are exactly zeros. It is an extension of the

“COSSO” proposal by Lin and Zhang (2002) in Gaussian regression to hazard

regression. To compute the estimate when the smoothing parameter is fixed, we

develop an efficient algorithm based on a reformulation of the penalized partial

likelihood. Approximations to the leave-out-one likelihood cross validation score

are derived to choose the smoothing parameters. Both simulations and real

examples suggest that our proposal is very powerful for model selection and

component estimation.

Part II of the thesis concerns penalized likelihood density estimation. We

introduce a randomized Generalized Approximate Cross Validation score to
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estimate the smoothing parameters. A three dimensional example illustrates

the usefulness of the method.

Part III studies the consistency of several recent linear model selection pro-

posals. The Lasso, the Forward Stagewise regression and the Lars are closely

related procedures recently proposed for linear regression problems. Each of

them can produce sparse models and can be used both for estimation and vari-

able selection. We show, however, that the dual goal of accurate estimation

and consistent variable selection can not be achieved simultaneously: when the

tuning parameter is chosen to minimize the prediction error, as is commonly

done in practice, in general these procedures are not consistent in terms of vari-

able selection. That is, the sets of variable selected by the procedures are not

consistent at finding the true set of important variables. In particular, we show

that for any sample size n, when there are superfluous variables in the linear

regression model and the design matrix is orthogonal, the probability of the

procedures correctly identifying the true set of important variables is less than

a constant (smaller than one) not depending on n.
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Chapter 1

Introduction for Part I

“Everything should be made as simple as possible, but not simpler.”

Albert Einstein

1.1 Motivation

The first part of this dissertation focuses on developing an automatic model

selection and model estimation procedure for survival data.

The problem of analyzing time to event data arises in a number of applied

fields, such as biology, engineering, economics and epidemiology. A distinct

feature of such data sets is that they usually contain censored observations.

Censoring occurs when an object’s life length, or survival time, is known to

occur in a certain period of time, but the exact time is unknown. The main

interest in time to event data analysis is to study the dependence of the survival

time on some explanatory variables. Without prior knowledge what variables

may contribute to the survival time, it is a common practice for scientists to

collect many covariates at the beginning of such studies. The critical tasks are

to identify the subset of the important covariates and to assess their effects on



2

the survival time. The first objective is often referred to as model selection or

variable selection, and the second is estimation.

Model selection serves to reduce the dimensionality of the covariates and is

related to the parsimony of the model. For a given set of observations, there exist

infinite many possible models explaining the data. Simpler models are usually

preferred for the sake of interpretibility and scientific insight. It coincides with

the so called “Occam’s razor” principle which states the simplest model is more

likely to be correct. This property is especially important in medical studies,

since the investigators are usually interested in detecting variables which can

explain certain outcomes. By excluding noisy or irrelevant covariates, model

selection provides a better understanding of the data generating mechanism.

And identifying risk factors can greatly facilitate the goal of further scientific

investigation of the important variables.

The other goodness of measure is in terms of prediction performance. It is

desirable that the estimator follows closely with empirical evidence and general-

izes well for future observations. Intuitively, better prediction could be obtained

by pruning out the superfluous variables which do not contribute to prediction.

A vast majority of the literature study the model selection problem in the

context of multivariate linear models, in which the underlying multivariate func-

tion assumes a parametric form known a priori. Such simplification often leads

to simple and interpretable models. Furthermore, it is relatively easy to develop

inference procedures for parametric models. However, since parametric models
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rely heavily on the model assumption, misspecification of the model can lead

to misleading results in real practice. As a result, linear modeling procedures

should be exercised with caution unless such claim is supported by strong em-

pirical evidence. An immediate advantage of nonlinear models is that little prior

information on model structure is needed, and in turn, it may offer insight to

more appropriate forms for parametric modeling. Thanks to cheap and reliable

computing power, nonparametric methods have emerged as effective alterna-

tives to parametric modeling in a wide variety of statistical problems. This part

of the dissertation aims to develop an automatic nonparametric model selection

method for survival data where censoring occurs.

1.2 Literature Review

The problem of model selection has drawn the attention of applied and theo-

retical statisticians for a long time. Parametric modeling techniques are usually

used at the beginning of such analysis since they are well studied. Many linear

model selection methods utilize the maximum likelihood method while penal-

izing the number of non-zero components. Popular penalties include AIC, BIC

and Mallow’s Cp. Breiman (1995) showed that such traditional linear model se-

lection algorithms, which include forward, backward and best subset selection,

suffer from instability and relatively lack of accuracy. In an attempt to stabi-

lize the estimate and to improve prediction accuracy, Breiman (1995) proposed

a nonnegative garrote variable selection criterion by constrained optimization,



4

after an ordinary linear model is fitted. Tibshirani (1996) proposed a linear

model selection method called the Lasso (Least Absolute Shrinkage and Selec-

tion Operator). The Lasso employs an L1 type of penalty on the regression

coefficients which tends to produce sparse models. Its application in survival

analysis is studied in Tibshirani (1997). It has been shown that the Lasso has

very good performance in terms of model selection and prediction accuracy. Fan

and Li (2001, 2002) proposed a variant of the Lasso called the SCAD (Smoothly

Clipped Absolute Deviation). It was shown that the SCAD enjoys the oracle

property, namely, the true regression coefficients are estimated as if correct

sub-model is known. Despite the attractiveness of linear model selection tools,

parametric methods are useful only in the setting of standard linear models,

where a parametric form is known a priori. In practice, some of the covariates

could act nonlinearly. Linear modeling for such data can incur a large bias. One

way to overcome this challenge is to use a large number of parametric terms

for such covariates. Without prior knowledge, however, it is not clear how to

specify the parametric terms in advance. A nice alternative is to let the data

find nonlinear features, which is the main advantage of nonlinear methods.

The Cox’s proportional hazard model is among the most popular techniques

in modeling survival data since its introduction by Cox (1972, 1975) . A thor-

ough exposure to this topic can be found in Kalbfleisch and Prentice (2002),
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Klein and Moeschberger (1997), among others. The hazard assumes a semi-

parametric model where the baseline hazard is totally unspecified and a para-

metric form is hypothesized for the covariates. In this model, the covariates act

multiplicatively on the hazard function. The partial likelihood formulation is

the standard technique for parameter estimation and statistical inference. To

avoid possible model misspecification in a parametric setup, an alternative ap-

proach is to allow the covariate effects to vary in a high-dimensional function

space, leading to various nonparametric and semi-parametric estimation meth-

ods. A popular choice in the nonparametric modeling is via the minimization

of a penalized likelihood. O’Sullivan (1998) and Gu (1996) studied penalized

partial likelihood estimation. An upper bound on the rate of convergence is

given by O’Sullivan (1993). Zucker and Karr (1990) considered a generalization

of the proportional hazard model which allows time varying coefficients. For

model selection purposes, the existing nonparametric techniques are usually hy-

pothesis testing and heuristic search type of methods. Hastie and Tibshirani

(1990) section 9.4 considered several nonlinear model selection methods in the

same spirit as the stepwise selection, where the familiar additive models are

entertained. Gray (1992, 1994) used splines with fixed degrees of freedom as an

exploratory tool to assess the effect of covariates. The actual model selection

is dealt with using hypothesis testing. Kooperberg, Stone and Truong (1995)

employed a heuristic search algorithm using polynomial splines to model the
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hazard function. Additionally, Wood et al. (2002) derived a Bayesian formula-

tion and the corresponding Gibbs sampler to select a model in nonparametric

spline regression. Although posterior information can be used for model selec-

tion, the authors commented that the Bayesian method in the paper can only

be efficiently implemented for up to 5 to 6 variables.

The Reproducing Kernel Hilbert Space (RKHS) theory provides an elegant

framework to study functional approximation and conduct statistical analysis.

A thorough exposure on RKHS can be found in Aronszajn (1950). Smoothing

spline analysis of variance models (SS-ANOVA), a modeling procedure based

on RKHS theory, is a popular choice to investigate functional relations. SS-

ANOVA models are widely used for Gaussian regression, generalized regression,

density estimation and hazard rate regression, see, for example, Wahba (1990),

Wahba et al. (1995), Lin et al. (2000), Gao et al. (2001) and Gu (2002).

For model selection purposes, Zhang et al. (2002) proposed a likelihood basis

pursuit method. In this proposal, each nonparametric component is expanded

as a linear combination of basis functions. They employ an L1 penalty on the

coefficients to encourage sparsity in the estimated coefficients. This gives a

possible generalization of the Lasso method to nonparametric regression. How-

ever, a separate model selection has to be applied after model fitting, since

sparsity in coefficients does not guarantee the sparsity in components. A se-

quential Monte Carlo bootstrap test algorithm is developed for model selection

purpose. Recently, Lin and Zhang (2002) proposed an automatic nonparametric
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model selection for Gaussian observations in the context of SS-ANOVA models,

which is called the Cosso (COmponent Selection and Smoothing Operator). By

imposing a penalty on the sum of the component norms instead of the usual

squared norms, the method does automatic model selection and component es-

timation. The Cosso has very good properties in terms of selecting the right

components and estimating. It is shown that the Cosso can model reasonably

high dimensional data. A closely related procedure is proposed by Gunn and

Kandola (2002) in the machine learning literature.

In this dissertation, a unified framework for model selection and model esti-

mation is developed for time to event data analysis. The method is an extension

of the Cosso methodology for Gaussian data to survival data.

1.3 Outline of Part I

This part considers model selection for Cox’s proportional hazard models. The

method is a natural extension of the Gaussian Cosso proposal to survival data

analysis. The problem is formulated by using penalized partial likelihood with

the penalty being the sum of the norms, while the usual practice is to use

the sum of the squared norms as the penalty. We show that using the sum

of the norms has the advantage in generating exact zero estimates for some

components. We derive a prediction based cross validation criterion to facilitate

adaptive selection of the smoothing parameter, which governs the fit to the data

and the roughness of the estimate.
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The part is organized as follows. Chapter 2 derives the partial likelihood

and reviews SS-ANOVA models. In Chapter 3, the model selection problem

is formulated via the method of regularization, where a penalty on the sum of

the component norms is imposed on the partial likelihood. The formulation is

a natural extension of the Gaussian Cosso proposal to the context of survival

analysis. We show that the Cosso can be formulated as a traditional SS-ANOVA

problem with added constraints on some parameters. The connection enables

us to use the existing fitting algorithm for the traditional SS-ANOVA mod-

els. We then derive an efficient algorithm to compute the estimate when the

smoothing parameter is fixed. In Chapter 4, we further develop computationally

efficient tuning criteria to choose the smoothing parameter by approximating

the leave-out-one likelihood cross validation score. Our proposal involves no

further computation once the estimate is obtained. We demonstrate the useful-

ness of our method via some simulations in Chapter 5. The method is applied

to several real data sets in Chapter 6, including the lung cancer data, primary

biliary cirrhosis data and mouse leukemia data. Chapter 7 of this dissertation

gives conclusion remarks and future direction of research.
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Chapter 2

Nonparametric Model Selection

In this chapter, we review the partial likelihood method for the estimation of the

baseline hazard function. We then discuss the decomposition of the relative risk

function and introduce the corresponding Reproducing Kernel Hilbert Space.

2.1 The Partial Likelihood

To fix notations, suppose that there are n independent objects under study.

Let T, C, x be respectively survival time, censoring time and their associated

covariates, where x = (x(1), ..., x(d))T is a d-dimensional vector in the domain

X (1) ⊗ · · · ⊗ X (d), also known as explanatory variables or confounders. x may

contain some continuous variables and some categorical variables. Without loss

of generality, it is assumed that each continuous covariate is in the range of [0, 1),

otherwise each covariate is scaled to the interval [0, 1). Our data consist of the

triple (Zi, δi, xi), i = 1, ...n, where Zi = min{Ti, Ci} is the time on study for the

ith subject and δi = I(Ti≤Ci) is the censoring indicator (δi = 1 if the event has

occurred and δi = 0 if the lifetime is right censored). xi = (x
(1)
i , ..., x

(d)
i )T is the

vector of covariates associated with the ith subject which may affect the survival
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distribution of T . It is assumed that T and C are conditionally independent

given x and that the censoring mechanism is uninformative. We are interested

in studying the dependence of the survival time on the covariates.

To facilitate discussions to follow, let f(t|x), S(t|x) and h(t|x) be respec-

tively the conditional density function, the conditional survival function and

the conditional hazard function. It is easy to see that the full likelihood is

n
∏

i=1

f(Zi|xi)
δiS(Zi|xi)

1−δi =
n

∏

i=1

h(Zi|xi)
δi

n
∏

i=1

S(Zi|xi).

Without loss of generality, we assume that there are no ties in the observed

failure time. Presence of ties is dealt with using the technique in Breslow (1974).

Let t01 < ... < t0N be the ordered observed failure time. Denote (j) as the label

for the item falling at t0j so the covariates associated with the N failures are

x(1), ..., x(N). Let Rj be the risk set right before the time t0j :

Rj = {i : Zi ≥ t0j}.

For the family of proportional hazard models due to Cox (1972), the condi-

tional hazard rate of an individual with covariate x is

h(t|x) = h0(t) exp{η(x)},

where h0(t) is an arbitrary baseline hazard function and η(x) is the logarithm

of the relative risk function. Note that in the above expression for h(t|x), if

one multiplies h0(t) by a constant and divides exp{η(x)} by the same constant,

h(t|x) does not change. In order for η(x) to be identifiable, we assume
∫

η = 0.
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Cox models are also called multiplicative hazard models, since the hazard rates

of two subjects with distinct covariates are proportional.

In the parametric Cox model, it is assumed η(x) = xβ, where β = (β1, ..., βd)
T

is the parameter vector. In this dissertation, we relax the parametric assump-

tion and consider the situation where η(x) is a nonparametric function of x.

Our major concern is to identify and study the structure of η(x).

The log likelihood can be written as

n
∑

i=1

{δi[log h0(Zi) + η(xi)]−H0(Zi) exp[η(xi)]}, (2.1.1)

where H0(t) is the cumulative baseline hazard function.

Following Fan and Li (2002), p 79-80 and Breslow’s idea, denote the cumu-

lative hazard function as a piecewise constant function with possible jumps at

the observed failure times, that is H0(t) =
∑N

j=1 hjI[t0j≤t]. Then

H0(Zi) =
N

∑

j=1

hjIi∈Rj
.

Substituting the cumulative baseline hazard into (2.1.1), one obtains

N
∑

j=1

loghj +
n

∑

j=1

δjη(xj)−
n

∑

i=1

[exp(η(xi))
N

∑

j=1

hjIi∈Rj
]. (2.1.2)

Maximum likelihood method is used to estimate hj ’s. Taking derivative with

respect to hj and solving for hj in (2.1.2), one gets

ĥj = {
∑

i∈Rj

exp(η(xi))}
−1.
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Plugging ĥj’s back in (2.1.2) and dropping a constant −N , we get the so-called

partial likelihood
N

∑

i=1

{η(x(i))− log[
∑

j∈Ri

exp(η(xj))]}. (2.1.3)

The partial likelihood is treated as a usual likelihood for the purpose of

parameter estimation and statistical inference.

2.2 The Model Selection Problem

From a mathematical perspective, estimating the multivariate function η is a

functional approximation problem. An important aspect of statistical modeling,

which distinguishes it from mere functional approximation, is the interpretibility

of the results. It is of great interest to decompose multivariate functions in a

way similar to the classical analysis of variance (ANOVA).

As the first step to approximate the relative risk function, η(x) can be esti-

mated by a linear combination of parametric terms,

η(x) =

p
∑

i=1

βihi(x) = βTh(x),

where h(x) = [h1(x), ..., hp(x)]T is a vector of p fixed functions of input. In

the simplest linear regression case, h(x) = [x(1), ..., x(d)] with p = d. Maximum

likelihood method can be used to estimate βi’s. For model selection purposes,

one can use best subset, forward selection and backward selection to eliminate

some of the coefficients. The criteria such as AIC and BIC can be employed to

control the number of non-zero parameters. A different variable selection for
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linear model selection is the shrinkage method, which includes the nonnegative

garrote (Breiman 1995), the Lasso (Tibshirani 1996) and the SCAD (Fan and

Li, 2001). A distinct feature of these methods is that a penalized likelihood

score is minimized, where the penalty functions usually encourage sparsity in

the estimated coefficients.

Although sometimes linear models provide adequate fit, it is not always ap-

propriate to make linear or even quadratic or cubic assumptions. When the

linear assumption is far from the truth, the estimate under such assumptions

may be very misleading. In response to this, people turn to more flexible non-

linear models. Recent years have witnessed unprecedented advance in nonlinear

modeling. A wide variety of techniques have been proposed to allow data adap-

tive fitting.

Similar to the classical ANOVA in designed experiments, the d dimensional

function η can be decomposed as

η(x) = η0 +
d

∑

j=1

ηj(x
(j)) +

∑

j<k

ηj,k(x
(j), x(k)) + ... + η1,...,d(x

(1), ..., x(d)),

where η0 is a constant, ηj’s are the main effects, and the ηj,k’s are the two way

interactions and so on. The identifiability condition is assured by certain side

conditions on the ηj’s, ηj,k’s and so on. Higher order terms in this decomposition

are often excluded to control the model complexity. The truncated series is

written as

η(x) = η0 +

p
∑

α=1

ηα(x). (2.2.1)
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Excluding all the interactions yields the familiar additive models which have

been studied by Hastie and Tibshirani (1990). Including two way interactions

and lower order terms yields the two way interaction model

η(x) = η0 +
d

∑

j=1

ηj(x
(j)) +

∑

j<k

ηj,k(x
(j), x(k)).

Lower order approximations contribute to faster convergence rates, as investi-

gated by Lin (2000). The family of the low dimensional ANOVA decompositions

represents a nonparametric compromise in an attempt to overcome the “curse

of dimensionality”, since estimating a more general function η(x(1), ..., x(d)) re-

quires very large data sets for even moderate d.

The model selection problem in the functional ANOVA setup is to identify a

suitable subset of {ηα}’s which are important for the sake of estimating survival

time.

2.3 Smoothing Spline ANOVA Models

The idea of the method of regularization is to minimize a penalized partial

likelihood criterion

−
1

n

N
∑

i=1

{η(x(i))− log[
∑

j∈Ri

exp(η(xj))]}+ τJ(η), (2.3.1)

where J(η) is a roughness penalty. The parameter τ controls the smoothness of

the estimator. As τ increases, the estimated log relative risk function is forced

toward a function which lies in the null space of J(η), i.e., the estimator goes

to η0 satisfying J(η0) = 0.
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In SS-ANOVA models, the estimate is associated with a metric space such

that penalized likelihood score is continuous in η. More precisely, it is assumed

that η lies in a reproducing kernel Hilbert space (RKHS) corresponding to the

decomposition (2.2.1). An RKHS H is a Hilbert space of functions on a do-

main with all the evaluation functionals t : η → η(t) bounded. An RKHS

possesses a reproducing kernel R(·, ·), a non-negative definite function satisfy-

ing (R(t, ·), f(·)) = f(t),∀f ∈ H, where (·, ·) is an inner product in H. For

a thorough exposure to RKHS, see Aronszajn (1950) and Wahba (1990) for

details.

For the function space over X (j) on [0, 1], we use the second order Sobolev

Hilbert space, namely,

W (j)[0, 1] = {f : f(x(j)), f ′(x(j)) are absolutely continuous and f ′′(x(j)) ∈ L2[0, 1]}.

When endowed with the inner product

(f, g)W (j) = {

∫ 1

0

f(t)dt}{

∫ 1

0

g(t)dt} + {

∫ 1

0

f ′(t)dt}{

∫ 1

0

g′(t)dt}

+

∫ 1

0

f ′′(t)g′′(t)dt,

W (j) is an RKHS with a reproducing kernel

K(j)(s, t) = 1 + k1(s)k1(t) + k2(s)k2(t)− k4(|s− t|).

Here

k1(s) = s− 0.5,

k2(s) = [k2
1(s)− 1/12]/2,
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k4(s) = [k4
1(s)− k2

1(s)/2 + 7/240]/24,

for s, t ∈ X (j). This is a special case of equation (10.2.4) in Wahba (1990) with

m = 2.

W (j) can be decomposed into the direct sum of two orthogonal subspaces as

W (j) = 1(j) ⊕W
(j)
1 , where 1(j) is the “mean” space and W

(j)
1 is the “contrast”

space generated by the kernel

K
(j)
1 (s, t) = k1(s)k1(t) + k2(s)k2(t)− k4(|s− t|).

For a categorical variable X (i) on the discrete domain X (i) = {1, ..., D}, a

function is a vector of length D and evaluation is simply coordinate extraction.

We decompose W (i) as 1(i) ⊕W
(i)
1 , where

1(i) = {η : η(1) = · · · η(D)}

and

W
(i)
1 = {η :

D
∑

j=1

η(j) = 0}

is generated by the reproducing kernel

K
(i)
1 (s, t) = DI(s=t) − 1, s, t ∈ {1, ..., D}.

This kernel defines a shrinkage estimate being shrunk towards the mean, as

discussed in Gu (2002) section 2.2.

A convenient approach to the construction of RKHS on a product domain

⊗d
α=1X

(α) is by taking the tensor product of spaces constructed on the marginal
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domain X (α). The tensor product has the form

d
⊗

j=1

W (j) =
⊗

[{1(j)}
⊕

{W
(j)
1 }]

= [{1}]
⊕

d
∑

j=1

[{W
(j)
1 }]

⊕ ∑

j<k

[{W
(j)
1 }

⊗

{W
(k)
1 }] + ....,

(2.3.2)

where the dependence of the additive components on {1(j)} is suppressed, that

is,

{1} =
d

⊗

j=1

{1(j)},

{W
(j)
1 } = {1(1)}

⊗

· · ·
⊗

{1(j−1)}
⊗

{W
(j)
1 }

⊗

{1(j+1)} · · ·
⊗

{1(d)},

and so on. Each functional component in the decomposition (2.2.1) falls in the

corresponding subspace of
⊗d

j=1 W (j). Therefore, the tensor sum in (2.3.2) is

truncated using the same functional ANOVA argument. We will denote the

truncated series as

H = {1}
⊕

H1 = {1}
⊕

p
∑

α=1

{Wα}. (2.3.3)

To obtain additive spline models, one retains the mean space {1} and only those

subspaces of the form {W
(j)
1 }. Retaining all [{W

(j)
1 }

⊗

{W
(k)
1 }] and lower order

terms yield two way interaction models. The reproducing kernel of
⊗

X (j) is
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the product of the d reproducing kernels on the marginal domains

d
∏

j=1

{1 + K
(j)
1 (s(j), t(j))}

=1 +
d

∑

j=1

K
(j)
1 (s(j), t(j)) +

∑

j<k

K
(j)
1 (s(j), t(j))K

(k)
1 (s(k), t(k)) + ...

+
d

∏

j=1

K
(j)
1 (s(j), t(j)),

where s, t ∈
⊗

X (α). Using the property that the reproducing kernel for a

product term is the product of individual reproducing kernels, we can obtain

a truncated expansion of the product of the reproducing kernels, which corre-

sponds to the functional decomposition of η(x). With some abuse of the nota-

tion, we use Kα(s, t) as the reproducing kernel for the term ηα in the functional

decomposition of η, where Kα applies to the corresponding coordinate of s and

t, and ηα can be any main effect, or any interaction term. For example, for the

term ηi,j , its reproducing kernel is simply Kα(s, t) = K
(i)
1 (s(i), t(i))K

(j)
1 (s(j), t(j)).

Thus, the reproducing kernel corresponding to H is conveniently written as

K = 1 +
∑p

α=1 Kα.

To further encompass the linear model, we may make a further orthogonal

decomposition of W
(j)
1 into parametric and nonparametric terms. This issue is

not explored in this article since our emphasis is on the selection of functional

components of the SS-ANONA.
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Chapter 3

Model Formulation

This chapter further studies the model selection problem in SS-ANOVA. A

Cosso type of penalty is introduced for this purpose. We show that the mini-

mization problem can be reformulated as a usual SS-ANOVA model with added

constraints on a set of parameters. We present a one step update algorithm to

compute the estimate while the smoothing parameter is fixed. The important

issue of choosing the smoothing parameter will be discussed in the next chapter.

3.1 The Cosso Estimate in Survival Analysis

The usual smoothing spline ANOVA penalizes the squared norm of each com-

ponent, namely

J(η) =

p
∑

α=1

θ−1
α ||P

αη||2,

where P αη is the projection of η onto W α and θα’s are nonnegative smoothing

parameters. With high dimensional covariates, fitting a model with p smoothing

parameters is computationally intensive but not infeasible. The algorithm of Gu

and Wahba (1991) has been used to optimally tune the smoothing parameters

via multi dimensional minimization. However, since the algorithm operates on τ
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and log(θα), none of the functional components is estimated as zero. Therefore,

ad hoc variable selection technique has to be applied after the estimation. Gu

(1992) introduced some geometric diagnostics for the identifiability and the

practical significance of the fitted terms. The Cosso, however, does simultaneous

model selection and model estimation.

The Cosso extension to survival data aims at minimizing a penalized partial

likelihood score

−
1

n

N
∑

i=1

{η(x(i))− log[
∑

j∈Ri

exp(η(xj))]}+ τJ(η) with J(η) =

p
∑

α=1

‖Pαη‖. (3.1.1)

The penalty functional is a sum of RKHS norms instead of the squared RKHS

norm penalty. The penalty term J(η) used in the Cosso is not a norm. However,

it is a pseudo-norm in the following sense: for any f, g ∈ H, J(f) ≥ 0, J(cf) =

|c|J(f) and J(f + g) ≤ J(f) + J(g). The Lasso in linear cases can be seen as a

special case of the Cosso. For the input space [0, 1]d, consider the linear function

space {1} ⊕ {x(1) − 1/2} ⊕ ... ⊕ {x(d) − 1/2}, with the usual L2 inner product

(f, g) =
∫

fg. The penalty in the Cosso becomes J(η) = (12)−1/2
∑d

j=1 |βj | for

a linear estimator η(x) = β0 +
∑d

j=1 βjx
(j). This is equivalent to the L1 penalty

on the linear coefficients, which leads to the Lasso estimator.

The difference between the form of the Cosso and the usual smoothing spline

mirrors the difference between the Lasso and the ridge regression. The Lasso

estimate shrinks some of the components to be exactly zero, while the ridge

regression shrinks every component but never produces zero coefficients. The
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correspondence suggests that the Cosso is a possible variable selection proce-

dure.

3.2 An Equivalent Formulation

Although the solution to (3.1.1) is posed in an infinite-dimensional space, the

minimizer η̂ is finite-dimensional, as shown in the following lemma.

Lemma 3.2.1. Denote η̂ = b̂+
∑p

α=1 η̂α as the minimizer of (3.1.1) in (2.3.3),

with η̂α ∈ W
α. Then η̂α ∈ span{Kα(xi, ·), i = 1, ..., n}, where Kα(·, ·) is the

reproducing kernel of the space Wα.

Proof. For any η ∈ H, write it as η = b +
∑p

α=1 ηα with ηα ∈ W
α. Denote

the projection of ηα onto span{Kα(xi, ·), i = 1, ..., n} ⊂ Wα as πα, and the

orthogonal complement as ωα. Then ηα = πα +ωα, and ‖ηα‖
2 = ‖πα‖

2 + ‖ωα‖
2.

By orthogonality, ωα(xi) = (Kα(xi, ·), ωα(·)) = 0. So

η(xi) = (1 +

p
∑

α=1

Kα(xi, ·), b +

p
∑

α=1

(πα + ωα)) = b +

p
∑

α=1

(Kα(xi, ·), πα).

Therefore, we can write (3.1.1) as

−
1

n

N
∑

i=1

{b +

p
∑

α=1

(Kα(x(i), ·), πα)− log[
∑

j∈Ri

exp(b +

p
∑

α=1

(Kα(xj, ·), πα)]}

+τ(‖πα‖
2 + ‖ωα‖

2‖)1/2.

(3.2.1)

We immdediately see that any minimizing η satisfies ωα = 0, α = 1, ..., p. The

conclusion of the lemma follows.
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The Cosso problem (3.1.1) is very hard to optimize due to the sum of the

RKHS norms. Lin and Zhang (2002) gave an equivalent formulation which is

to minimize

−
1

n

N
∑

i=1

{η(x(i))− log[
∑

j∈Ri

exp(η(xj))]}+ λ0

p
∑

α=1

θ−1
α ‖P

αη‖2}+ λ

p
∑

α=1

θα

subject to θα ≥ 0, α = 1, ..., p,

(3.2.2)

where λ0 is a fixed parameter and λ is the smoothing parameter.

After introducing another set of parameters θ = (θ1, ..., θp)
T , the Cosso for-

mulation has the same form as the usual smoothing spline ANOVA setup except

that the sum of θα’s is penalized.

We remark that the additional parametrization on θ makes it possible to

estimate some θα’s to be zeros, leading to zero components in the Cosso estimate.

In addition, tuning is much easier since only one smoothing parameter λ has to

be chosen, compared to multiple smoothing parameters in the usual SS-ANOVA

models.

An alternative formulation to (3.2.2) is through a contrained penalized par-

tial likelihood problem, which minimizes

−
1

n

N
∑

i=1

{η(x(i))− log[
∑

j∈Ri

exp(η(xj))]}+ λ0

p
∑

α=1

θ−1
α ‖P

αη‖2}

subject to

p
∑

α=1

θα ≤M, θα ≥ 0, α = 1, ..., p.

(3.2.3)

Here M assumes the role of the smoothing parameter λ in (3.2.2).
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3.3 The Form of the Solution

For any fixed θ, the Cosso is equivalent to the usual smoothing spline. It is well

known that the soluition has the form

η(x) = b +
n

∑

i=1

Kθ(x, xi)ci,

where Kθ =
∑p

α=1 θαKα and we set b = 0 for η to be identifiable.

Let
∑n

i=1 Kα(x, xi)ci be Gα(x). A componentwise form of the estimate is

simply

η(x) =

p
∑

α=1

θαGα(x).

θα = 0 implies that the corresponding component estimator is zero.

The exact solution to (3.1.1) has a form η(x) =
∑n

i=1

∑p
α=1 θαKα(x, xi)ci. In

the case where n is large, one way to reduce the computational load is to use the

parsimonious approach as suggested by Xiang and Wahba (1996), Ruppert and

Carroll (2000), Lin et al. (2000). In this approach, a proper subset {x1∗, ..., xm∗}

(m ≤ n) of {x1, ..., xn} is used as the basis functions and the corresponding

approximate solution is

η(x) =
m

∑

i=1

p
∑

α=1

θαKα(x, xi∗)ci.

It has been shown that there is only a little sacrifice in accuracy of the estimation

by using a proper subset.

In our implementation, the simple random sampling scheme is used to choose

the basis functions. Kim and Gu (2004) provides some empirical justification
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of the efficacy of the random sampling technique in the Gaussian regression.

Other sampling schemes, such as cluster sampling in Xiang and Wahba (1996),

can be used for the purpose of sub-sampling. Better sampling techniques may

improve the approximation accuracy of the estimate.

It is possible to simultaneously minimize the objective function in (3.2.3)

with respect to both θ and c, however, the optimization is nonlinear and com-

plex. It is noticed that it is much easier to optimize the objective function with

respect to one set of variables (θ or c) when the other set (c or θ) is fixed.

Existing algorithms for fitting the usual SS-ANOVA models can then be bor-

rowed when the smoothing paramter is fixed. In our implementation, we iterate

between estimating θ and c.

3.4 Algorithm for a Fixed Smoothing Parame-

ter

Denote expression (3.2.3) as A(c, θ), where c = (c1, ..., cm)T . Denote Q as an

m ×m matrix with (k, l) entry Kθ(xk∗, xl∗) and Qα as an m ×m matrix with

(k, l) entry Kα(xk∗, xl∗). Let U be an n × m matrix with (k, l) entry being

Kθ(xk, xl∗) and Uα be an n×m matrix with (k, l) entry Kα(xk, xl∗). Denoting

δ as the vector of censoring indicators δ = (δ1, ..., δn)T , we can write (3.2.3) in
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the matrix form as

A(c, θ) = −
1

n
δT Uc +

1

n

N
∑

i=1

log(
∑

j∈Ri

eUjc) + λ0c
T Qc, s.t.

p
∑

α=1

θα ≤M, θα ≥ 0,

(3.4.1)

where Uj is the jth row of U .

The gradient vector and the hessian of A with respect to c are given by

∂A

∂c
= −

1

n
UT δ +

1

n

N
∑

i=1

∑

j∈Ri
UT

j eUjc

∑

j∈Ri
eUjc

+ 2λ0Qc;

∂2A

∂c∂ct
=

1

n

N
∑

i=1

{

∑

j∈Ri
UT

j Uje
Ujc

∑

j∈Ri
eUjc

−

∑

j∈Ri
UT

j eUjc

∑

j∈Ri
eUjc

∑

j∈Ri
Uje

Ujc

∑

j∈Ri
eUjc

}+ 2λ0Q.

(3.4.2)

When θ is fixed, the Newton-Rhaphson iteration is used to update c as

c = c0 − (
∂2A

∂c∂cT
)−1
co

(
∂A

∂c
)c0, (3.4.3)

where c0 is the current estimate of the coefficient vector, and the hessian and

the gradient are evaluated at c0.

Denote G as an m× p matrix with αth column being Qαc and S as an n× p

matrix with αth column being Uαc, (3.2.3) can be written as a function of θ

A(c, θ) = −
1

n
δT Sθ +

1

n

N
∑

i=1

log(
∑

j∈Ri

eSjθ) + λ0c
T Gθ, s.t.

p
∑

α=1

θα ≤M, θα ≥ 0,

(3.4.4)

where Sj is the jth row of S.

When c is fixed, we can expand A(c, θ) around the current estimate θ0 via

second order Taylor expansion as following

A(c, θ) ≈ A(c, θ0) + (θ − θ0)
T (

∂A

∂θ
)θ0 +

1

2
(θ − θ0)

T (
∂2A

∂θ∂θT
)θ0(θ − θ0),
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where

∂A

∂θ
= −

1

n
ST δ +

1

n

N
∑

i=1

∑

j∈Ri
ST

j eSjθ

∑

j∈Ri
eSjθ

+ λ0G
T c;

∂2A

∂θ∂θT
=

1

n

N
∑

i=1

{

∑

j∈Ri
ST

j Sje
Sjθ

∑

j∈Ri
eSjθ

−

∑

j∈Ri
ST

j eSjθ

∑

j∈Ri
eSjθ

∑

j∈Ri
Sje

Sjθ

∑

j∈Ri
eSjθ

}.

(3.4.5)

The iteration for updating θ is via the minimization of the following linearly

constrained quadratic objective function

1

2
θT (

∂2A

∂θ∂θT
)θ0θ + [(

∂A

∂θ
)θ0 − (

∂2A

∂θ∂θT
)θ0θ0]

T θ, s.t.

p
∑

α=1

θα ≤M, θα ≥ 0, (3.4.6)

The precense of the linear constraint on the sum of θα’s makes it possible to

estimate some of θα’s as exact zeros, which leads to zero fitted components.

For fixed λ0 and M , we iterate between updating c and θ. Our experience

shows that it can take a large number of iterations for the algorithm to con-

verge. As argued in Fan and Li (2002), the one-step penalized partial likelihood

estimator can be as efficient as the fully iterative one with a good initial starting

estimate of η. The fact that our algorithm starts with the smoothing spline es-

timate indicates that we do not need an exact solution. We observe empirically

that after the initial iteration, the update in the estimate changes fairly slowly.

Thereofore, a one step quadratic programing update for estimating θ provides

sufficient iteration.

The algorithm for a fixed smoothing paramter is the following one step

update procedure:

1. Initialization: Fix θ0 = (1, ..., 1)T ;
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2. Use Newton-Rhaphson iteration (3.4.3) to solve for c until the change in

c is less than some threshold;

3. Expand A(c, θ) around θ0, and use (3.4.6) to solve for θ. Denote the

solution as θτ ;

4. Use (3.4.3) to solve for c with the new θ until the change in c is less than

some threshold. Denote the solution as cτ ;

5. Output the estimate as ητ = Kθτ
cτ .
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Chapter 4

Choosing the Smoothing

Parameter

The problem of choosing the smoothing parameter(s) is very important in non-

linear estimation. The smoothing parameter τ in the Cosso formulation governs

the fidelity to the data and the roughness of the estimate. Different values of τ

give different estimates. When τ is small, the estimate has small bias but large

variance. When τ increases, the solution goes to a parametric model in the null

space NJ = {η : J(η) = 0}, which is zero in the Cosso case. The estimated

hazard function corresponding to τ = +∞ is simply the Nelson-Aalen estimator

(Nelson (1972), Aalen (1978)). By varying the smoothing parameter, features

of the data that arise on different scales can be explored. In practice, a specific

value of τ has to be chosen, which calls for effective methods for smoothing

parameter selection.

An automatic method is desired whereby the smoothing parameter is adap-

tively chosen by the data such that the estimate is close to the true relative

hazard function. The discrepancy between two probability distributions is of-

ten measured in terms of Kullback-Leibler (KL) loss. Suppose gτ is an estimate
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of the true density g, the KL loss between gτ and g is defined as

KL(g, gτ ) = Eg log
g

gτ

,

where Eg denotes the expectation under g. It is easy to see that KL(g, gτ ) ≥ 0

and the equality holds if and only if g = gτ . For the relative risk function, the

KL loss is

KL(η, ητ ) = E[ln(ητ )− ln(η)],

where ln(ητ ) is the negative log likelihood of the data given an estimate ητ and

ln(η) is the negative log likelihood of the data at the true function.

Excluding a quantity not depending on ητ , we minimize the so called com-

parative Kullback-Leibler (CKL) loss, namely

CKL(τ) = CKL(η, ητ ) = KL(η, ητ ) + E[ln(η)] = E[ln(ητ )].

Minimizing the CKL score is equivalent to maximize the expected log-likelihood

for future observations. Ideally, if enough data are available, we would set aside

a validation set and use it to assess a sampled version of the CKL. Without a

separate validation data set, a popular technique is the K fold cross validation,

usually K = 5 or K = 10. In the K fold cross validation, the data is split into

roughly equal size parts. For each part k, one fits the model using the other

K−1 parts and calculates the CKL for the kth part which is not used for model

fitting. The same is done for each part and one averages the K estimates to

get an estimate of CKL for each τ . The smoothing parameter which gives the

smallest average CKL loss corresponds to the final estimate. This technique
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involves fitting the same model K times and is not computationally efficient.

The extreme case is the so called leave-out-one cross validation where K = n.

It is the various approximations of the leave-out-one cross validation score to

estimate the CKL loss that have been under extensive study. In Gaussian

SS-ANOVA models, Craven and Wahba (1979) proposed the generalized cross

validation (GCV) criterion to choose the smoothing parameter. Xiang and

Wahba (1996) developed a generalized approximate cross validation (GACV)

for SS-ANOVA models in exponential families. In the estimation of the relative

risk function, O’Sullivan (1988a) proposed a GCV type criterion by using an

iterative reweighted least square algorithm. An AIC type of criterion is derived

in O’Sullivan (1988b) when covariates are absent.

In this chapter, we derive two approximations to the leave-out-one estimate

of the CKL loss.

4.1 ACV Criterion

We first derive an approximate cross validation criterion (ACV) to estimate

the CKL score. A similar criterion is obtained in Chapter 7.2 of Gu (2002)

by estimating a leave-out-one cross validation score using the counting process

approach.
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4.1.1 Leave-Out-One Cross Validation

Let the observed minus fitted partial likelihood be

PL(τ) = −
1

n

n
∑

i=1

δiητ (xi) +
1

n

N
∑

i=1

log[
∑

j∈Ri

exp(ητ (xj))].

It is well known that PL(τ) tends to underestimate CKL(τ) due to the fact

that (Zi, δi) is used to estimate ητ (Zi|xi). To correct this bias, the leave-out-one

cross validation criterion in the following is used to estimate CKL

CV (τ) = −
1

n

n
∑

i=1

δiη
[−i]
τ (xi) +

1

n

N
∑

i=1

log[
∑

j∈Ri

exp(ητ (xj))], (4.1.1)

where η[−i](xi) stands for the fitted log relative risk at xi when (3.1.1) is fitted

without the ith data point. The second term in (4.1.1) is not cross validated.

Similar argument can be found in Xiang and Wahba (1996), Lin et al. (2000),

Gao et al. (2001). Since η
[−i]
τ is independent of (Zi, δi), it is expected

Eδiη
[−i]
τ (xi) ≈ Eδiητ (xi).

Hence we can expect CV (τ) to be roughly unbiased for computing CKL(τ).

4.1.2 Approximate Estimate

Because of the partial likelihood formulation, the leave-out-one version of (3.1.1)

is complicated and it is prohibitively expensive to compute. Here a one step

Newton-Raphson expansion is used to approximate the leave-out-one estimate

η[−i](xi). A modified leave-out-one cross validation is to minimize

−
1

n− 1

∑

j 6=i

δjη(xj) +
1

n

N
∑

j=1

log[
∑

k∈Rj

exp(η(xk))] + τJ(η), (4.1.2)
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where the ith data point is left out. The iteration starts at the solution of (3.1.1)

and only one step Newton-Raphson update is used to estimate η[−i](xi). The

invovlement of the ith observation in the second term makes computation much

easier. The modified cross validation seems to work well in the simulations.

To estimate η
[−i]
τ , we need to estimate θ

[−i]
τ and c

[−i]
τ for (4.1.2). In our

derivation, we ignore the variability in estimating θ and assume that the esti-

mate θ
[−i]
τ does not differ from θτ . The one step Newton-Raphson iteration is

used to estimate c
[−i]
τ .

Using the matrix form (3.4.3), the minimizer of (4.1.2) can be esimated from

solution cτ of (3.2.3) by one step iteration as following

c[−i]
τ ≈ cτ − (Hcτ

+ 2λ0Q)−1{(
∂A

∂c
)cτ

+
UT δ

n
−

UT δ[−i]

n− 1
},

where δ[−i] = (δ1, ..., δi−1, 0, δi+1, ..., δn)T and Hcτ
is the hessian matrix of the

minus partial likelihood evaluated at cτ .

Follow simple algebra,

c[−i]
τ ≈ cτ − (Hcτ

+ 2λ0Q)−1{(
∂A

∂c
)cτ
−

UT δ

n(n− 1)
+

δiU
T
i

n− 1
},

= cτ − (Hcτ
+ 2λ0Q)−1(

∂A

∂c
)cτ
−H−1

cτ
{−

UT δ

n(n− 1)
+

δiU
T
i

n− 1
}

≈ cτ − (Hcτ
+ 2λ0Q)−1{−

UT δ

n(n− 1)
+

δiU
T
i

n− 1
},

since cτ ≈ cτ − (Hcτ
+ 2λ0Q)−1(∂A

∂c
)cτ

at convergence. We have

η[−i]
τ (xi) = Uic

[−i]
τ

≈ ητ (xi)−
1

n− 1
Ui(Hcτ

+ 2λ0Q)−1(δiU
T
i −

UT δ

n
).
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It follows

CV (τ) = PL(τ) +
1

n

n
∑

i=1

(δiητ (xi)− δiη
[−i]
τ (xi))

≈ PL(τ) +
1

n(n− 1)

n
∑

i=1

δiUi(Hcτ
+ 2λ0Q)−1(δiU

T
i −

UT δ

n
)

= PL(τ) + {
tr(∆U(Hcτ

+ 2λ0Q)−1UT∆)

n(n− 1)
−

δT U(Hcτ
+ 2λ0Q)−1UT δT

n2(n− 1)
},

where ∆ = diag(δ1, ..., δn).

A simple modification of the above expression, which is called approximate

cross validation (ACV), appears as follows

ACV(τ) = PL(τ) +
N

n
{
tr(UT (Hcτ

+ 2λ0Q)−1U)

n(n− 1)
−

1T UT (Hcτ
+ 2λ0Q)−1U1

n2(n− 1)
},

(4.1.3)

where 1 = (1, ..., 1)T is a vector of ones. The ACV criterion averages the effect

of the censoring. No extra computation is needed to compute ACV once an

estimate is obtained.

4.2 Another Approximate Cross Validation Cri-

terion

In deriving the leave-out-one estimate of the hazard function, the change of the

second term due to the fact that the model is fitted without the ith observation

in (4.1.2) is ignored. The corresponding second term in PL(τ) is not cross

validated. In this section, we derive another cross validation criterion targeting
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at the full leave-out-one version of the likelihood.

In the case that the baseline hazard is known, the cross validation scores are

easy to define. We propose to use these scores with the baseline hazard replaced

by the partial likelihood estimate.

Denote the baseline culmulative hazard as Λ0(t). The penalized partial

likelihood can be replaced by the penalized full likelihood and (3.1.1) becomes

−
1

n

n
∑

i=1

δi[η(xi) + log h0(zi)] +
1

n

n
∑

i=1

Λ0(zi) exp(η(xi)) + τJ(η). (4.2.1)

The full likelihood is denoted as ln.

The variability in estimating θ is again ignored. A one step Newton-Raphson

expansion is used to approximate the leave-out-one estimates

c[−i]
τ ≈ cτ − (H + 2λ0Q)−1g[−i],

where g[−i] is the gradient of the leave-out-one version of (4.2.1), and H is the

converged hessian of ln at cτ . Since the gradient is zero at cτ , one has

g[−i] =
1

n
δiU

T
i −

1

n
Λ0(zi) exp(ητ (xi))U

T
i .
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The leave-out-one version of the CKL loss is simply

CV (τ) = −
1

n

n
∑

i=1

δi[η
[−i]
τ (xi) + log h0(zi)] +

1

n

n
∑

i=1

Λ0(zi) exp(η[−i]
τ (xi))

= LH(τ) +
1

n

n
∑

i=1

δi[ητ (xi)− η[−i]
τ (xi)]

+
1

n

n
∑

i=1

Λ0(zi)[exp(η[−i]
τ (xi))− exp(ητ (xi))]

≈ LH(τ) +
n

∑

i=1

{g[−i]}T H−1g[−i]

= LH(τ) +
1

n
trace[(H + 2λ0Q)−1H∗]

where LH(τ) stands for fitted minus log likelihood for ητ , and H∗ = n
∑n

i=1 g[−i]{g[−i]}T .

Let l(t, δ, c) be the contribution to the negative likelihood by a single obser-

vation, i.e.

l(zi, δi, c) = Λ0(zi) exp(Uic)− δiUic− δi log h0(zi).

If the model is correct then with minimal conditions at the true value of c, there

is a familiar relation between the first and the second derivatives of the negative

log-likelihood function

E(∂cl∂cl) = E(∂2
c l).

From this we develop the approximations

H∗ = n
n

∑

i=1

g[−i]{g[−i]}T ≈ E(∂cl∂cl)

= E(∂2
c l) ≈ H.

Substituting the fitted likelihood by the fitted partial likelihood (up to a con-

stant) and replacing the hessian by the hessian of the partial likelihood, one is
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led to another cross validation criterion

ACV ∗ = PL(τ) +
1

n
trace[(H + 2λ0Q)−1H].

Similar to the argument in Chapter 6.3 of Gu (2002), the method may severely

undersmooth up to about 10% of the replicates in simulation studies. A simple

modification is to multiply the trace term by a constant γ. We denote the

modified version as ACV ∗(γ). Simulation studies suggest that a γ around 1.4

is most effective.

4.3 The Full Algorithm

Combined with the one step update procedure, the complete algorithm to fit

the Cosso estimate is the following:

1 Neglect M and fix θ = θ0 = (1, ..., 1)T , tune λ0 according to ACV (or

ACV ∗);

2 For M in a reasonable range, use the one step update scheme to calcu-

late ACV (or ACV ∗). Choose the M which gives the minimum ACV

(or ACV ∗). The estimate corresponding to this chosen M is the Cosso

estimate.

In our implementation, we use the reformulation (3.2.3) instead of (3.2.2).

Our simulations show that once λ0 is fixed, the estimated number of nonzero
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components is roughly equal to M . This correspondence greatly facilitate the

specification of a reasonable range for the tuning parameter.
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Chapter 5

Simulation Results

We conduct some simulations in this chapter to study the efficacy of our esti-

mates in terms of prediction accuracy and model selection.

To measure the prediction performance of an estimate fτ of the true density

function f , we use the Kullback-Leibler loss defined as

KL(f, fτ |X) = Ef log
f(T |X)

fτ (T |X)
. (5.0.1)

It is easy to see

Ef log fτ (T |X) =

∫ ∞

0

{log fτ (t|X)}f(t|X)dt

=

∫ ∞

0

log{h0(t) exp(ητ (X)) exp[−

∫ t

0

h0(u) exp(ητ (X))du]}

·h0(t) exp(η(X)) exp[−

∫ t

0

h0(u) exp(η(X))du]dt. (5.0.2)

In the simulations to follow, we use h0(t) = 1 as the baseline hazard function.

Plugging h0(t) into (5.0.2), one gets

Ef log fτ (T |X) =

∫ ∞

0

[ητ (X)− exp(ητ (X))t]

· exp(η(X)) exp[− exp(η(X))t]dt

= ητ (X)− exp{ητ (X)− η(X)}. (5.0.3)
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Therefore the KL loss is simply

KL(f, fτ |X) = η(X)− ητ (X) + exp[ητ (X)− η(X)]− 1.

We evaluate KL(η, ητ ) = EX [KL(f, fτ |X)] by Monte Carlo integration using

10000 test points from the same distribution as the training points.

The following mechanism is used to generate d dimensional covariate X =

(X(1), ..., X(d)):

X(j) = (U (j) + tU)/(1 + t), j = 1, ..., d,

where U (1), ..., U (d) and U are i.i.d. from uniform(0,1). Therefore, corr(x(j), x(k)) =

t2/(1+ t2) and the marginal distributions of X (i)’s are uniform on [0, 1]. We use

t = 0 and t = 1 to generate uncorrelated covariates and correlated covariates

with a correlation ρ = 0.5.

5.1 Efficacy of the Corss Validation Criteria

We first illustrate the efficacy of the ACV as a computing proxy of the theoretical

KL loss via a simple example.

Random samples consisting of n = 100 and n = 400 are drawn from the

following hazard model

h(t|x) = exp{g1(x
(1)) + g2(x

(2))−D},

where g1(s) = sin(πs2), g2(s) = 0 and D is a normalizing constant such that

D =
∫ 1

0
g1(s)ds. This example has one true component x(1) and one noisy
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component x(2). The censoring time is exponentially distributed with mean

U exp[−g1(x
(1))], where U is randomly generated from the uniform distribution

on [1, 3]. The empirical censoring rate is about 34%. One hundred data sets are

generated and the KL loss for each data set is calculated.

Additive models are fitted on the grid M = (0.2)(0.1)(4). 50 basis functions

are randomly chosen to approximate the solution. Figure 5.1.1 depicts the

pairwise comparison for the theoretical best KL loss KL(η, ητ ) on the grid and

the KL loss corresponding to the best estimate using ACV criterion. We see

that the ACV serves as an excellent proxy for approximating the KL loss.

The same example with n = 100 and ρ = 0 is used to demonstrate the

effectiveness of ACV ∗(γ). Figure 5.1.2 shows KL(η, ητ ) of the ACV ∗(γ) with

(a) γ = 1 and (b) γ = 1.4 versus the minimum KL loss on the grid. Also plotted

in (c) and (d) are the minimum KL loss obtained by versions of ACV ∗ versus

minimum KL loss obtained by ACV which corresponds to Figure 5.1.1 (a). The

plots suggest that the modified ACV ∗ score (γ = 1.4) may gain significantly over

unmodified one on some replicates but only lose minimally on some others. The

plots also suggest that the performance of ACV ∗ with γ = 1.4 is comparable to

that of ACV .

We use ACV score in the following simulations and data examples.
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Figure 5.1.1: Performance of ACV for hazard estimation. (a) n = 100 and
ρ = 0; (b) n = 100 and ρ = 0.5; (c) n = 400 and ρ = 0; (d) n = 400 and
ρ = 0.5.
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Figure 5.1.2: (a) Performance of ACV ∗(1): the minimum KL loss obtained
by ACV ∗ versus the theoretical minimum on the grid, (b) Performance of
ACV ∗(1.4): the minimum KL loss obtained by ACV ∗ versus the theoretical
minimum on the grid, (c) the minimum KL loss obtained by ACV ∗(1) versus
that by ACV , (d) the minimum KL loss obtained by ACV ∗(1.4) versus that by
ACV ,
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5.2 More Complicated Simulations

To study the performance of model selection and component estimation, we

conduct more complicated simulations. To assess the goodness of component

estimation, the integrated square error is used instead of the KL loss,

ISE = EX{η(X)− ητ (X)}2.

For each replicate of the simulation, the ISE is estimated by Monte Carlo in-

tegration using 10000 test points from the same distribution as the training

points. We run the simulation 100 times and average.

The following basic functions in Lin and Zhang (2002) are used for the

building block for our examples,

g1(t) = t; g2(t) = (2t− 1)2; g3(t) =
sin(2πt)

2− sin(2πt)
;

g4(t) = 0.1sin(2πt) + 0.2cos(2πt) + 0.3sin2(2πt) + 0.4cos3(2πt) + 0.5sin3(2πt).

To include categorical variable, we add

g5(t) = t, t = 0, 1.

We consider additive model on [0, 1]10 with the true hazard function being

η(x) = 5g1(x
(1)) + 3g2(x

(2)) + 4g3(x
(3) + 6g4(x

(4)) + 3g5(I(x(5)>0.6)).

Two more categorical variables are introduced as I(x(6)<0.8) and I(x(7)>0.2).

Sample sizes of n = 100, 200, 400, 800 are generated from the exponential

hazard function

h(t|x) = exp(η(x)).
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The censoring time is exponentially distributed with mean Uexp(−η(x)),

where U is randomly generated from the uniform distribution on [1, 3]. The

empirical censoring rate is about 35%. Notice the censoring is noninformative

given x since η(x) is a known function. We use either all the observations up to

200 or randomly chosen m = 50 observations as basis functions. We fit additive

models and tune M in the range (0.5)(0.5)(min{p + 2, 35}).

The magnitudes of the functional components are measured by their em-

pirical L1 norms , defined as 1/n
∑n

i=1 |ηα(x
(j)
i )| for α = 1, ..., d. Figure 5.2.1

depicts how the empirical L1 norms of the estimated components change with

the tuning parameter in one single run. The ACV criterion chooses M = 2.5

in this simulation, giving a model of 5 components in the final estimate.

The model selection results are summarized in Table 5.2.1 for the inde-

pendent case and Table 5.2.2 for the compound symmetry case. The column

“No.Cor.Mod” refers to the number of models which are correctly identified.

The average number of zero components is reported in the column “Aver.no. of

0 Comp”, where “correct” presents the average restricted to the true nonzero

components, and “incorrect” indicates the average number of components er-

roneously set to zero. For a sample size n = 100, about 50% of the estimates

correctly identify the true model for independent covariates, while for corre-

lated covariates with a correlation 0.5, this ratio is about 30%. For a sample

size n = 800, approximately 90% of the estimates correctly identify the true

model, for independent and correlated covariates.
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Figure 5.2.1: The empirical L1 norm of the estimated components against the
tuning parameter M in one run when n = 200 and ρ = 1. The red dashed line
indicates the M chosen by ACV criterion.

n(m) No.Cor.Mod. Aver.no.of 0 Comp.
correct incorrect

100 (100) 53 4.95 0.64
100 (50) 55 4.94 0.55
200 (200) 70 5.00 0.40
200 (50) 69 5.00 0.40
400 (50) 76 5.00 0.28
800 (50) 89 5.00 0.11

Table 5.2.1: Simulation results in terms of model selection for ρ = 0.
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n(m) No.Cor.Mod. Aver.no.of 0 Comp.
correct incorrect

100 (100) 32 4.65 0.71
100 (50) 27 4.64 0.55
200 (200) 69 5.00 0.43
200 (50) 73 4.99 0.36
400 (50) 85 5.00 0.20
800 (50) 88 5.00 0.15

Table 5.2.2: Simulation results in terms of model selection for ρ = 0.5.

We summarize the performance in terms of the ISE in Table 5.2.3. We

can see that using a subset of observations as the basis does not degrade the

performance. Furthermore, the ISE clearly has a decreasing trend, while the

sample size increases.

n(m) cov=0 cov=0.5
100(100) 3.91(0.11) 4.08(0.22)
100(50) 3.86(0.13) 4.12(0.20)
200(200) 1.17(0.05) 1.02(0.05)
200(50) 1.10(0.05) 0.89(0.05)
400(50) 0.36(0.02) 0.32(0.02)
800(50) 0.14(0.01) 0.16(0.01)

Table 5.2.3: Estimated integrated square error for the simulation. In parethesis
are the standard errors.

We plot the 5th, 50th, 95th best estimates according to the ISE in Figure

5.2.2, Figure 5.2.3, Figure 5.2.4, Figure 5.2.5, Figure 5.2.6, Figure 5.2.7 for

different sample sizes when 50 randomly chosen observations are used as basis

functions. We see that the estimates follow very well with the true component
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functions.
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Figure 5.2.2: The estimated effects when n = 100,m = 50 and ρ = 0. The blue
solid lines indicate the true components; the red dashed lines indicate the 5th
best; the magenta dash-dot lines indicate the 50th best; the black dot lines are
the 95th best.

In summary, our proposal is very powerful at identifying the true subset of

the important variables and estimating the components.
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Figure 5.2.3: The estimated effects when n = 100,m = 50 and ρ = 0.5. The
blue solid lines indicate the true components; the red dashed lines indicate the
5th best; the magenta dash-dot lines indicate the 50th best; the black dot lines
are the 95th best.
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Figure 5.2.4: The estimated effects when n = 200,m = 50 and ρ = 0. The blue
solid lines indicate the true components; the red dashed lines indicate the 5th
best; the magenta dash-dot lines indicate the 50th best; the black dot lines are
the 95th best.
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Figure 5.2.5: The estimated effects when n = 200,m = 50 and ρ = 0.5. The
blue solid lines indicate the true components; the red dashed lines indicate the
5th best; the magenta dash-dot lines indicate the 50th best; the black dot lines
are the 95th best.
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Figure 5.2.6: The estimated effects when n = 800,m = 50 and ρ = 0. The blue
solid lines indicate the true components; the red dashed lines indicate the 5th
best; the magenta dash-dot lines indicate the 50th best; the black dot lines are
the 95th best.
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Figure 5.2.7: The estimated effects when n = 800,m = 50 and ρ = 0.5. The
blue solid lines indicate the true components; the red dashed lines indicate the
5th best; the magenta dash-dot lines indicate the 50th best; the black dot lines
are the 95th best.
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Chapter 6

Real Data Examples

We apply our automatic model selection procedure to several well known data

sets in this chapter.

6.1 Lung Cancer Data

The data is from the Veteran’s Administration lung cancer trial, listed in

Kalbfleisch and Prentice (2002), pp.378-379. There are 137 patients in the

study and there are 9 censored observations among those. The main interest is

to study the dependence of the survival time in days on the covariates listed in

following:

1. treatment, 1=standard, 2=test.

2. celltype, 1=squamous, 2=smallcell, 3=adeno, 4=large.

3. Karnofsky performance score (10, 20, ..., 100=good).

4. months from diagnosis to randomization.

5. age in years.
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6. prior therapy 0=no, 1=yes.

Tibshirani (1997) used the Lasso technique to choose important variables.

Since the Lasso estimates a categorical variable as zero only when all the esti-

mated levels are zeros, the cell type is treated as a continuous variable. It was

found that only Karnofsky performance score is left in the final model using the

Lasso or the stepwise regression.

Because of the nature of the SS-ANOVA models, a categocial component

can be estimated as zero if its corresponding θα is zero. Therefore, we treat

cell type as a categorical variable. For parametric Cox proportional model, we

use Mallow’s Cp as the criterion in stepwise selection. The stepwise procedure

chooses karnofsky performance score and cell type in the final model. The

estimated effects for cell type are -0.550 for squamous, 0.166 for small cell, 0.608

for adeno and -0.224 for large cell. Clearly, cell type may not be treated as a

continuous variable since the effect is clearly nonlinear. Our procedure yields the

a similar estimate as plotted in Figure 6.1.1. The coefficients for different cell

types are -0.545 for squamous, 0.198 for small cell, 0.592 for adeno and -0.244

for large cell. The estimates are quite close to those obtained by the stepwise

variable selection. We also notice that the effect of Karnofsky performance score

is linear, which suggests a linear model for karnofsky performance score may be

sufficient for subsequent analysis.
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Figure 6.1.1: Fitted main effects for lung cancer data.
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6.2 PBC Data

We analyze the primary biliary cirrhosis (PBC) data from Therneau and Gramb-

sch (2000). The data are from the Mayo Clinic trial in primary biliary cirrhosis

of liver conducted between 1974 and 1984. PBC is a progressive disease thought

to be of an autoimmune origin. The subsequent inflammatory process eventu-

ally leads to cirrhosis and destruction of the liver’s bileducts and death of the

patient. The PBC database is a valuable resource to liver specialists because

PBC is a rare but fatal disease. A more detailed discussion can be found in

Dickson et al. (1989). In this study, 312 patients from a total of 424 patients

who agreed to participate in the randomized trial are eligible for the analysis.

For each of the 312 clinical trial patients, clinical, biochemical, serologic, and

histologic parameters are collected. Of those, 125 patients died before the end

of follow-up.

Two separate analyses are conducted to study the dependence of the survival

time on the following covariates.

1 Continuous variables

age: age in years

alb: serum albumin in gm/dl

alk: alkaline phosphatase in U/liter

bil: serum bilirunbin in mg/dl

chol: serum cholesterol in mg/dl

cop: urine copper in µg/day
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plat: platelets per cubic ml/1000

prot: standardized prothrombin time in seconds

sgot: liver enzyme (now called AST) in U/ml

trig: triglycerides in mg/dl

2 Categorical variables

asc: 0, absence of ascites; 1, presence of ascites

ede: 0 no edema; 0.5 untreated or successfully treated; 1 unsuccessfully

treated edema

hep: 0, absence of hepatomegaly; 1, presence of hepatomegaly

sex: 0, male; 1, female

spid: 0, absence of spiders; 1, presence spiders

stage: histological stage of disease (needs biopsy), graded 1, 2, 3 or 4

trt: 1 for control, 2 for treatment

6.2.1 PBC Analysis A

We constrain our attention to the 11 covariates as shown in Table 4.4.2 of Flem-

ing and Harrington (1991), including continuous variables age (age), albumin

(alb), alkaline phos (alk), bilirubin (bili), platelet count (plat), pro time (prot)

as well as categorical variables ascites (asc), edema (ede), hepatomegaly (hep),

sex (sex) and spiders (spid). The four observations with missing data in those

covariates are excluded.

We take log transformation to alk, bili and prot since they are skewed to
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the right. After applying our procedure to the data, the ACV criterion selects

M = 4.5 (Figure 6.2.1) as the final estimate of the smoothing parameter. The

corresponding fitted main effects are shown in Figure 6.2.2. Comparing with

Table 4.4.3 in Fleming and Harrington (1991), our model has one extra term

asc. From the plot, the data could be fitted using proportional hazard models

with parametric main effects.

0 2 4 6 8 10 12
1.74

1.76

1.78

1.8

1.82

1.84

1.86

Figure 6.2.1: Cross validation curve for PBC analysis A. The minimum is ob-
tained at M = 4.5.

6.2.2 PBC Analysis B

Tibshirani (1997) analyzed the PBC data via the Lasso using all the 17 co-

variates, which include 10 continuous variables and 7 categorical variables. We
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Figure 6.2.2: Fitted effects for PBC analysis A.
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apply our procedure to 276 observations with no missing data in these covari-

ates. As reported in Tibshirani (1997), the stepwise selection chooses age, ede,

bili, alb, cop, sgot, prot and stage; totally 8 variables appear in the final se-

lected model. The Lasso procedure selects three more variables, sex, asc and

spid. Compared to the result of the stepwise selection, our procedure selects two

more variables sex and chol. Quite interestingly, the stepwise model selects only

those covariates with absolute Z-scores larger than 2.00, and our model selects

only those covariates with absolute Z-scores larger than 1.00, where Z-scores re-

fer to as the scores obtained via full parametric Cox proportional hazard model.

The Lasso, instead, selects two covariates asc (Z-score 0.23) and spid (Z-score

0.42) with Z-scores less than 1 while leaving chol (Z-score 1.11) out of the model.

It remains unclear that to what extent accounting for nonlinearity contributes

to the discrepancy. The fitted effects of our model are shown in Figure 6.2.4.

Except for cop, possible linear effects are quite obvious for the other covariates.

6.3 Mouse Leukemia Data

This data set is from Kalbfleisch and Prentice (2002), pp 390-395. The goal

of this study is to examine genetic and viral factors which may influence the

development of spontaneous leukemia in AKR mice. We consider continuous

predictors antibody level (% gp 70 ppt), virus level (PFU/ml), and categorical

predictors mhc phenotype (1 or 2), sex (1=male, 2=female) and coat color (1
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Figure 6.2.3: Cross validation curve for PBC analysis B. The minimum is ob-
tained at M = 9.

or 2). The data set contains 175 mice after removing observations with missing

covariates. We compare our analysis with parametric model selection, which is

obtained by using the backward deletion option of the function stepAIC in the

R library MASS and survival. This gives a final model with antibody as the

only significant regressor. The linear model selection result is summarized in

Table 6.3.1. We run our nonlinear procedure to the same data. Our procedure

selects virus, mhc and coat as the final regressors. The fitted main effects are

shown in Figure 6.3.1. This is to be compared with Analysis 6 in Kalbfleisch

and Prentice (2002) Table 11.6. Kalbleisch and Prentice discretized virus and

antibody and found when responses are allowed to vary among different level of
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virus, the effect of antibody is no longer significant. Our analysis treats virus

and antibody as continuous variables and reaches the same conclusion. Hastie

and Tibshirani (1990) analyzed the same data set using a backward stepwise

procedure in generalized additive models, while fixing degrees of freedoms for

antibody and virus level to be 4. They concluded that the final model contains

virus level and coat color.

(a) First step, log likelihood = −264.93
Coef. Std.Err Z stat.

mhc −1.00e− 02 2.56e− 01 −0.0391
sex 2.71e− 01 2.65e− 01 1.0249
coat 2.36e− 01 2.45e− 01 0.9651

antibody −1.90e− 02 8.38e− 03 −2.2649
virus 1.24e− 05 3.11e− 05 0.3981

(b) Last step, log likelihood = −265.90
Coef. Std.Err Z stat.

antibody −1.67e− 2 6.84e− 3 −2.44

Table 6.3.1: Results of linear variable selection for mouse leukemia data.
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Figure 6.3.1: Fitted main effects for mouse leukemia data using our method.
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Chapter 7

Conclusions and Future

Research

The Cosso penalty for Gaussian SS-ANOVA models is used for model selection

purpose in nonparamteric Cox’s proportional hazard models. The connection of

our proposal to the usual SS-ANOVA models is established. We further propose

an approximate leave-out-one cross validation criterion ACV for the selection

of the smoothing parameter. We have shown that the method has attractive

properties for model selection and component estimation.

In deriving the leave-out-one cross validation criterion, we did not account

for the variability in estimating θ. It remains a task to investigate how to

incorporate the variability into the cross validation criterion. Unlike their coun-

terparts in the linear cases, the confidence argument is not established. These

are of great interest for future research.

Our procedure assumes the Cox’s proportional hazard model, which is the

most popular model for studying survival data. However, the proportionality

assumption may not hold for every time-to-event data set. To check the Cox
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assumption, the procedures in Lin, Wei and Ying (1993) can be used. Alterna-

tively, we may consider accelerated failure time models analogous to the classical

linear regression approach. In this approach, the log of the survival time is a

regression function of the covariates as follows

log(T ) = µ + η(X) + σW,

where µ is a constant and W is the error distribution. Another direction of

research is to consider the hazard function as

h(t|x) = η(t, x),

of which the Cox model is a special case. In this model, smooth estimate of the

baseline hazard is incoporated into the model, and time covariate interaction can

be explored in the functional decomposition. Chapter 7 of Gu (2002) contains

discussion of this estimate in the usual SS-ANOVA models. The extension of

our proposal to multivariate survival data where multiple survival times are

correlated is under way.

To summarize, the nonparametric model selection for time-to-event data can

be very useful for selecting important risk factors.
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Chapter 8

Part II - Penalized Log

Likelihood Density Estimation

This part has appeared in Wahba, Lin and Leng (2002) . Gu and Wang (2003)

studied the same problem via SS-ANOVA models.

In this part, we will examine a penalized likelihood method for the (log)

density estimation problem. It is based on solving a variational problem in an

infinite dimensional (Hilbert) space, where the problem has a Bayesian flavor,

and where the solution to the variational problem is (essentially) known to lie

in a particular n dimensional subspace. Then the smoothing parameter(s) are

chosen by a predictive loss criteria. If the penalty functional is square integral

second derivative, the n-dimensional subspace is spanned by a basis of cubic

splines with knots at the observation points.

We will discuss the extension to several dimensions via a smoothing spline

ANOVA (SS-ANOVA) model. We briefly demonstrate a three dimensional re-

sult. The conceptual extension of the penalized likelihood method to higher

dimensions is fairly straightforward, and the real thrust of the work is to be

able to estimate densities in higher dimensions. One of the rationales behind
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the use of the SS-ANOVA model for density estimation in several dimensions is

that the pattern of main effects and interactions has an interesting interpreta-

tion in terms of conditional dependencies, and can thus be used to fit graphical

models (Darroch and Lauritzen and Speed (1980), Whittaker (1990), Jordan

(1998)) nonparametrically.

8.1 Introduction

Our density estimate is based on the penalized log likelihood estimate of Silver-

man (1982). When going to higher dimensions we will use the basic ANOVA

decomposition idea in Gu (1993) . Our density estimate will have compact sup-

port Ω, which will be scaled to the unit interval or the unit cube in Ed and

then rescaled back after fitting. Let the density p = eg with g in some repro-

ducing kernel Hilbert space (RKHS) H with square seminorm J(g) , where the

null space of J contains the constant function and is low dimensional. Let-

ting xi ∈ Ω, Silverman showed that the penalized log likelihood minimization

problem: min g ∈ H

−
1

n

n
∑

i=1

g(xi) + λJ(g) (8.1.1)

subject to the condition
∫

Ω

eg = 1 (8.1.2)

is the same as the minimizer of

Iλ(g) = −
1

n

n
∑

i=1

g(xi) +

∫

Ω

eg + λJ(g). (8.1.3)
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We will describe the estimate in general form so that its extension from the

univariate to the multivariate case is clear. Let H = H0 ⊕H1 where H0 is the

null space of J , and let the reproducing kernel for H1 be K(x, x′). If the term

∫

Ω
eg were not in (8.1.3), then (it is well known that) the minimizer of (8.1.3)

would be in Hn ≡ H0 ⊕ span{ξi, i = 1, · · · , n}, where ξi(x) = K(x, xi). (ξi is

known as a representer.) We will therefore feel confident that the minimizer of

(8.1.3) in Hn is a good approximation to the minimizer of (8.1.3) in H. In fact,

we will seek a minimizer in HN = H0 ⊕ span{ξir , r = 1, · · ·N} where the ir is

a representative subset chosen sufficiently large that the minimizer in HN is a

good approximation to the minimizer in Hn.

8.2 Choosing the Smoothing Parameter

In order to carry out penalized log likelihood estimation a method for choosing

λ is required. We have obtained a randomized Generalized Approximate Cross

Validation (ranGACV ) estimate for λ, for density estimation. We briefly de-

scribe it here, details will be given elsewhere. Let fλ be the estimate of the

log density, and let f
[−i]
λ (xi) be the estimate with the ith observation left out.

Define the ordinary leaving-out-one function as

V0(λ) = OBS(λ) + D(λ) (8.2.1)

where

OBS(λ) = −
1

n

n
∑

i=1

fλ(xi) (8.2.2)
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and

D(λ) =
1

n

n
∑

i=1

[fλ(xi)− f
[−i]
λ (xi)]. (8.2.3)

Elsewhere (to appear) we show that nD(λ) can be approximated by the trace

of the inverse Hessian of Iλ with respect to fλ(xi), i = 1, · · · , n and that it can

be estimated by a randomization technique as follows. Let Iλ(g, y) be

Iλ(g, y) = −
1

n

n
∑

i=1

yig(xi) +

∫

Ω

eg + λJ(g). (8.2.4)

When y = (1, · · · , 1)′ then (8.2.4) becomes (8.1.3).

Letting f y
λ be the minimizer of (8.2.4), D(λ) is estimated as

D̂(λ) =
1

nσ2
ε

ε′(f y+ε
λ − f y

λ) (8.2.5)

where y = (1, · · · , 1)′, ε is a random vector with mean 0 and covariance σ2
ε I,

and, with some abuse of notation f z
λ = (f z

λ(x1), · · · , f
z
λ(xn))′. Several replicates

in ε may be used for greater accuracy. Then

ranGACV (λ) = OBS(λ) + D̂(λ). (8.2.6)

Our numerical results (to appear) show that ranGACV is a good proxy for the

comparative Kullback Liebler distance between the density determined by fλ

and the true density.

8.3 Algorithm

The procedure is to start with N representers. In the one-dimensional case

we choose roughly equally spaced order statistics. Fix λ large. Use a Newton
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Raphson iteration to estimate the coefficients of fλ in the basis functions span-

ning HN . Evaluate ranGACV (λ). Decrease λ and repeat, until the minimizer

over λ is found. Double N and repeat. Compare the resulting estimates with

N and 2N , if they agree within a specified tolerance, stop, otherwise double N

again. We tried this penalized log likelihood estimate on the examples in HK,

using H = W 2
2 ≡ {g : g, g′abs.cont., g′′ ∈ L2} and J(g) =

∫ 1

0
(g′′(x))2. In this

case H0 is spanned by linear functions and K(x, x′) = k2(x)k2(x
′)−k4([x−x′]),

x ∈ [0, 1] where [τ ] is the fractional part of τ and km(x) = Bm(x)/x! where Bm

is the mth Bernoulli polynomial. The estimate is a cubic spline (Wahba (1990))

with knots at the xir .

8.4 Multivariate Smoothing Spline ANOVA Den-

sity Estimation

The univariate penalized log likelihood density estimation procedure we have

described can be generalized to the multivariate case in various ways. Here we

describe the smoothing spline ANOVA (SS-ANOVA) model. The use of SS-

ANOVA in a density estimate was suggested by Gu (1993), who also gave a

method for choosing the smoothing parameter(s). It can be shown that (for

the same smoothing parameters) the estimates of Gu and Silverman are mathe-

matically equivalent, however we found the variational problem in Silverman
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easier to compute. The problem in d dimensions is transformed to the d-

dimensional unit cube, and xi = (xi1, · · · , xid). H will be an RKHS on the

d dimensional cube which is formed as the direct sum of subspaces of the tensor

product of d one dimensional RKHS’s. Details of SS-ANOVA models may be

found in Wahba (1990), Wahba, and el at (1995) Lin, and el at (2000). Letting

u = (u1, · · · , ud) ∈ [0, 1]d, we have

g(u) = µ +
d

∑

α=1

gα(uα) +
∑

α6=β

gαβ(uα, uβ) + ... (8.4.1)

where the terms satisfy averaging conditions analogous to those in ordinary

ANOVA that insure identifiability, and the series may be truncated somewhere.

The interesting feature of this representation of a log density is the fact that the

presence or absence of interaction terms determines the conditional dependen-

cies, that is, a graphical model, see Whittaker (1990). For example the main

effects model represents independent component random variables, and if, for

example d = 3 and the g23 and g123 terms are missing then the second and third

component random variables are conditionally independent, given the first.

Let H̃ be the d-fold tensor product of W 2
2 and let H be the subspace of

H̃ consisting of the direct sum of subspaces containing the terms retained in

the expansion. (They are orthogonal in H̃) We have
∫ 1

0
gα(uα)duα = 0, and

so forth. The penalty functional J(g) of (8.1.3) becomes Jθ(g) where the θ

represents a vector of (relative) weights on separate penalty terms for each of

the components of (8.4.1). As before H = H0 ⊕ H1 where H0 is the (low

dimensional) null space of Jθ. Let Kθ(x, x′), x, x′ ∈ [0, 1]d be the reproducing
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kernel for H1 where θ has been incorporated into the norm on H1. (See Wahba

(1990) Chapter 10.) Let ξi(x) = ξiθ(x) = Kθ(x, xi). The same arguments

hold as in the one dimensional case, and we seek a minimizer of (8.1.3) (with

J = Jθ) in HN = H0 ⊕ span{ξirθ, r = 1, · · · , N}, and λ and θ are chosen using

the ranGACV of (8.2.6).

8.5 A 3-dimenional Example

We will give a three dimensional example, essentially to demonstrate that the

calculations are possible and the ranGACV reasonable in higher dimensions.

The SS-ANOVA model for this example contained only the main effects and

two factor interactions, and we had altogether 6 smoothing parameters, pa-

rameterized in a convenient manner. For fixed smoothing parameters λ, θ the

coefficients in the expansion in HN are obtained via a Newton-Raphson itera-

tion. In this case integrations over [0, 1]3 are required, and we used quadrature

formulae based on the hyperbolic cross points, see Novak and Ritter (1996),

Wahba (1978). These quadrature formulae seem particularly appropriate for

SS-ANOVA models and make high dimensional quadrature feasible. Then

the ranGACV was minimized over smoothing parameters via a 6-dimensional

downhill simplex calculation.

The underlying true density used in the example is p(x) = 0.5N(µ1, Σ) +
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0.5N(µ2, Σ), where µ1 = (0.25, 0.25, 0.25), µ2 = (0.75, 0.75, 0.75),

Σ =
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.

(This density has a non zero three factor interaction which is not in our two

factor model.) In this example the sample size was n = 1000. N = 40 and

the 40 representers were randomly chosen from among the n possibilities. The

N = 80 estimate was essentially indistinguishable from the N = 40 case. (Note

that the smoothing parameters will not generally be the same in the two cases.)

Figure 8.5.1 gives cross sections of the true density, and Figure 8.5.2 gives the SS-

ANOVA penalized log likelihood estimate. Figure 8.5.3 compares the ranGACV

and the CKL (CKL(λ) = −
∫

Ω
fλ,θ(u)p(u)du) as a function of iteration number

in a downhill simplex minimization of the ranGACV .

8.6 Closing Remarks

We have proposed a penalized likelihood density estimate with ranGACV to

choose the smoothing parameter(s). We have shown that these penalized like-

lihood estimates can be extended to the multivariate case (work in progress).

It remains to develop tests to allow the construction of graphical models from

the SS-ANOVA estimates in higher dimensions. Alternatively, we can use the

Cosso penalty to develop component selection procedures for the log density

estimation.
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Figure 8.5.1: The true density. x1 = .1, ..., .9. is fixed in the plots, left to right,
then top to bottom.
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Figure 8.5.2: The estimated density. x1 = .1, ..., .9 is fixed in the plots, left to
right, then top to bottom.
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Chapter 9

Part III - Consistency of

Selected Linear Model Selection

Techniques

In this part, we study the consistency of several popular model selection tech-

niques in linear model selection, including the highly celebrated Lasso, and two

related procedures, the forward stagewise selection and a newly proposed algo-

rithm, the Lars. All these methods are shrinkage type of methods which can

give a sequence of models. We show that these methods are not consistent if a

prediction based tuning criterion is used.

9.1 Introduction

The Least Absolute Shrinkage and Selection Operator (the Lasso) proposed by

Tibshirani (1996) is a popular technique for model selection and estimation in

linear regression models. It employs an L1 type penalty on the regression coeffi-

cients which tends to produce sparse models, and thus is often used as a variable



78

selection tool as in Tibshirani (1997), Osborne, Presnell and Turlach (2000).

Knight and Fu (2000) studied the asymptotic properties of Lasso-type estima-

tors. They showed that under appropriate conditions, the Lasso estimators are

consistent for estimating the regression coefficients, and the limit distribution of

the Lasso estimators can have positive probability mass at 0 when the true value

of the parameter is 0. It has been demonstrated in Tibshirani (1996) that the

Lasso is more stable and accurate than the traditional variable selection meth-

ods such as the best subset selection. Efron, Hastie, Johnstone and Tibshirani

(2004) proposed the Least Angle Regression (the Lars), and showed that there

is a close connection between the Lars, the Lasso, and another model selection

procedure called the Forward Stagewise regression. Each of these procedures

involves a tuning parameter that is chosen to minimize the prediction error.

This paper is concerned with the properties of the resulting estimators in terms

of variable selection.

Consider the common Gaussian linear regression model

y = Xβ + ε,

where y = (y1, ..., yn)T are the responses, β = (β1, ..., βd)
T are the regression

coefficients, X = (x1, ...,xd) is the covariate matrix, and ε = (ε1, ..., εn) ∼

N(0, σ2In) are the normal noises. Without loss of generality, throughout this

paper we assume that the covariates have been standardized to mean 0 and

variance 1, and the response has mean 0. That is,

1Ty = 0, 1Txj = 0, and xT
j xj = 1 for j = 1, ..., d.
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In many practical situations, some covariates are superfluous. That is, only a

proper subset of the regression coefficients are nonzero. The problem of variable

selection is to identify this set of important covariates. A variable selection

procedure is said to be consistent, if the probability that the procedure correctly

identifies the set of important covariates approaches one when the sample size

n goes to infinity. See, for example, Rao and Wu (1989) and Shao (1997) for

some earlier studies on the consistent variable selection problem.

It is of interest to investigate whether the Lasso and related methods are

consistent in terms of variable selection as they are often used as variable se-

lectors. Tibshirani (1996) noted in one of the simulation examples, that in the

majority of the runs the Lasso chose models that contain the true model, but

only in a small fraction of runs did the Lasso pick the correct model. Fan and

Li (2001) studied the penalized likelihood methods in linear regression, of which

the Lasso is a special case. They proposed a nonconcave penalized likelihood

method that enjoys the oracle property when the tuning parameter is appro-

priately chosen. The nonconcave penalized likelihood method is consistent in

terms of variable selection, and it estimates the nonzero regression coefficients

as well as when the correct submodel is known. They conjectured that the Lasso

does not enjoy the oracle property. In this paper we show that when the tuning

parameter is chosen to minimize the prediction error, as is commonly done in

practice, in general the Lasso and related procedures are not consistent variable

selectors. In particular, we show that when there are superfluous variables in



80

the linear regression model and the design matrix is orthogonal, the probabil-

ity of the procedures correctly identifying the true set of important variables is

less than a constant (smaller than one) not depending on n. This implies the

inconsistency for model selection but is actually much stronger. It is a finite

sample result, since it is true for any sample size n.

The remaining part of this article is organized as follows. In section 9.2, we

review the Lasso, the Lars and the Forward Stagewise regression. In section

9.3, we give a simple example to illustrate the ideas and demonstrate that the

three methods fail to find the right model with certain probability. The general

results are given in section 9.4. We present some simulation results in section

9.5 and a summary is given in section 9.6.

9.2 The Lasso, the Lars and the Forward Stage-

wise Regression

The Lasso estimate is the solution to

min
β

(y−Xβ)T (y−Xβ), s.t.
d

∑

j=1

|βj | ≤ t.

Here t ≥ 0 is a tuning parameter. Let β̂0 be the ordinary least square (OLS)

estimate and t0 =
∑

|β̂0
j |. Values of t < t0 will shrink the solutions toward

0. As shown in Tibshirani (1996), the Lasso gives sparse interpretable models

and has excellent estimation accuracy. Equivalently, the Lasso estimate can be
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obtained as the solution to the penalized likelihood problem

min
β

1

n
(y−Xβ)T (y−Xβ) + λ

d
∑

j=1

|βj|, (9.2.1)

where there is a one to one correspondence between t and λ.

The Forward Stagewise regression, which will be called the FSW hereafter,

is an iterative procedure, where successive estimates are built via a series of

small steps. Letting η = Xβ, and beginning with η̂0 =0, if η̂ is the current

estimate, the next step is taken in the direction of the greatest correlation

between covariate xj and the current residual. That is, writing ĉ = XT (y− η̂)

and ĵ = argmax|ĉj|, the update is

η̂ ← η̂ + ε · sign(ĉĵ) · xĵ,

where ε > 0 is some small constant. It is readily seen that ε = |ĉĵ | yields the

familiar standard forward selection. Smaller ε yields less greedy algorithm for

the FSW and is recommended.

The Lars is a newly proposed model selection tool. We briefly describe the

procedure in the following. For a detailed account of the procedure, the readers

are referred to Efron, Hastie, Johnstone & Tibshirani (2004). The algorithm

begins at η̂0 = 0. Suppose η̂ is the current estimate and write ĉ = XT (y − η̂).

Define the active set A as the set of the indices corresponding to the covariates

with the largest absolute correlations,

Ĉ = max
j
{|ĉj|} and A = {j : |ĉj| = |Ĉ|}.
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Define the active matrix corresponding to A as

XA = (sjxj)j∈A, where sj = sign(ĉj).

Let

GA = XT
AXA and AA = (1T

AG−1
A 1A)−1/2,

where 1A is a vector of ones of length being |A|, the size ofA. A unit equiangular

vector with columns of the active set matrix XA can be defined as

uA = XAwA, where wA = AAG−1
A 1A,

so that

XT
AuA = AA1A and ||uA||

2 = 1.

The next step of the Lars estimate gives the update

η̂ ← η̂ + γ̂uA,

where γ̂ is the smallest positive number such that one and only one new index

joins the active set A. It can be shown that

γ̂ = min+
j∈AC{

Ĉ − ĉj

AA − aj
,

Ĉ + ĉj

AA + aj
},

where min+ means the minimum is taken over only positive components and aj

is the jth component of the vector a = XAuA.

The Lasso, the FSW and the Lars all build a sequence of candidate models,

from which the final model is chosen. In the Lasso, the sequence is controlled

by t and in the FSW, it is controlled by the number of steps (the step size in the
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procedure is taken to be a small constant arbitrarily close to zero). The Lars

builds (d + 1) models with the number of variables ranging from 0 to d. Efron,

Hastie, Johnstone & Tibshirani (2004) showed that there is a close relation-

ship among these procedures in that they give almost identical solution paths.

That is, if the candidate models are connected in each of these procedures, the

resulting graphs are very similar. The solution path of the Lars is formed by

connecting the (d + 1) models with linear segments. They noted that in the

special case of orthogonal design matrix, the solution paths of the procedures

are identical. Therefore we concentrate on the Lasso in the following, and all

the results apply to the Lars and the FSW as well. In the orthogonal design

matrix case, the Lasso solution has the form

β̂j = sign(β̂0
j )(|β̂

0
j | − γ)+, j = 1, ..., d, (9.2.2)

where γ = λ/2 for the λ in (9.2.1); and (π)+ = π, π > 0; 0, π ≤ 0. It coincides

with the soft thresholding solution of Donoho and Johnstone (1994) , where it

is applied to wavelet coefficients.

In the implementation of the Lars, it is often the case that only the (d + 1)

models at the end of the steps are considered as candidate models. The final

model is chosen among the (d + 1) models, not the whole solution path. In

this case the Lars is slightly different from the Lasso or the FSW, even in the

orthogonal design matrix case. We will treat this case separately in this article.

The implementation of the Lasso, the Lars and the FSW attempts to find

a model with the smallest estimation error among the sequence of candidate
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models built by these procedures. The estimation error is typically in terms of

the squared loss (SL). For an estimate η̂ = Xβ̂, the squared loss is

SL(η̂) = (η̂ − η)T (η̂ − η) = (β̂ − β)T XTX(β̂ − β).

In practice, since β is unknown, several methods, such as generalized cross

validation (Craven & Wahba 1979), k-fold cross validation or Stein’s unbiased

estimate of risk (Stein 1981), can be used for the purpose of minimizing the

squared error.

9.3 A Simple Example

In this section we give a simple example to demonstrate that the Lasso, the

FSW and the Lars when tuned to minimize the squared error (as people usually

attempt to do), miss the right model with a certain probability.

Consider a linear regression model with two predictors. Suppose the true

coefficient vector is β0 = (β0
1 , 0)T with β0

1 > 0, and the design matrix X is

orthonormal. Therefore the model has one true component x1 and one noisy

component x2, and XT X = I2. Denote the ordinary least squares solution by

β̂0. In this case the solution to the Lasso problem (9.2.1) is

β̂j = sign(β̂0
j )(|β̂

0
j | − γ)+, j = 1, 2. (9.3.1)

Figure 9.3.1 shows the Lasso estimate versus the OLS estimate. The Lasso esti-

mate is shifted towards zero by some constant. For completeness, the estimate

by subset selection versus the OLS estimate is included in the figure.
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LASSO

OLS estimate

Subset Selection

OLS estimate

Figure 9.3.1: In the left plot, the red solid line indicates the Lasso estimate
versus the OLS estimate; the right plot shows the subset estimate against the
OLS estimate. For comparison, the 45 degree lines are drawn.

Let δ̂ = (δ̂1, δ̂2)
T = β̂0 − β0. Since ε is a normal variate and XTX = I2, we

have

δ̂ ∼ N(0, σ2I2), (9.3.2)

where σ2 is the noise variance.

Define

R1 = {(δ1, δ2)
T : δ1 < 0},

R2 = {(δ1, δ2)
T : δ1 > 0, δ1 < |δ2|},

R3 = {(δ1, δ2)
T : δ1 > 0, δ1 > |δ2|}.

We will show that when δ̂ ∈ R1 or δ̂ ∈ R2, the Lasso does not select the right

model. The only region where the Lasso selects the right model is R3. Thus
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from (9.3.2), the probability of the Lasso selecting the correct model is 1/4.

It is clear that when |β̂0
1 | ≤ |β̂

0
2 |, the Lasso can not select the correct variables

by (9.3.1). As a result, we only need to consider the situation where |β̂0
1 | > |β̂

0
2 |

in the following.

For δ̂ ∈ R1, we consider the situations β̂0
1 ≤ 0 and β̂0

1 > 0 separately. For

β̂0
1 ≤ 0, when |β̂0

1 | > |β̂0
2 |, it is easy to see that a naive estimate η̂ = 0 with

γ̂ = |β̂0
1 | yields the Lasso estimate with the smallest squared loss.

For β̂0
1 > 0, the Lasso solution minimizes

SL(γ) = (β̂1 − β0
1)

2 + (β̂2 − β0
2)

2 = [(β0
1 + δ̂1 − γ)+ − β0

1 ]
2 + [(|δ̂2| − γ)+]2.

For γ ∈ [|β̂0
2 |, β̂

0
1), SL(γ) = (δ̂1 − γ)2. Since δ̂1 < 0, we have

SL(γ) = (δ̂1 − γ)2 > δ̂2
1 + δ̂2

2 = SL(0),

where SL(0) is the SL of the OLS estimate. Therefore, the optimal γ that

minimizes SL(γ) is not in the interval [|β̂0
2 |, β̂

0
1). We then see from (9.3.1) that

the optimal γ does not yield the correct model. The claim is proved for δ̂ ∈ R1.

For δ̂ ∈ R2 and γ ∈ [|β̂0
2 |, β̂

0
1), SL(γ) = (δ̂1 − γ)2. Since δ̂1 < |δ̂2|, the

minimum is obtained at γ1 = |δ̂2| on this interval and SL(γ1) = (δ̂1 − |δ̂2|)
2.

However, when γ2 = (δ̂1 + |δ̂2|)/2 < |δ̂2|,

SL(γ2) = (δ̂1 − |δ̂2|)
2/2 < SL(γ1).

The estimated coefficients corresponding to γ2 are

β̂1 = β̂0
1 + (δ̂1 − |δ̂2|)/2 and β̂2 = sign(δ̂2)(|δ̂2| − δ̂1)/2 6= 0.
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Again, the optimal γ that minimizes SL(γ) is not in the interval [|β̂0
2 |, β̂

0
1).

Therefore, the Lasso does not select the right model for δ̂ ∈ R2 either.

The Lasso, however, selects the right model when δ̂ ∈ R3. It is easy to see

that SL(γ̂) = 0 and η(γ̂) = β0
1x1 for the Lasso solution γ̂ = δ̂1. Therefore,

we have shown that the Lasso selects the right model only when δ̂ ∈ R3. The

probability associated with R3 is 1/4.

The argument above is valid for any finite sample size, and shows that

with probability 3/4, the Lasso with the tuning parameter selected to minimize

the estimation error does not select the correct model. The argument can be

generalized to the following lemma.

Lemma 9.3.1. When β0 = (β0
1 , 0, · · · , 0)T with (d − 1) > 0 zero components

and XT X = Id, the Lasso selects the right model only when δ̂ = β̂0 − β0 ∈ R,

where

R =
{

δ : δ1β
0
1 > 0, |δ1| ≥ max{|δ2|, · · · , |δd|}

}

,

that is, the probability of the Lasso selecting the right model is 1/(2d).

Proof. The Lasso solution has the form (9.2.2) when XT X = I. Without loss

of generality, assume β0
1 > 0 and |β̂0

2 | > |β̂0
3 | > · · · > |β̂0

d |. We will show for

δ̂ not in R, the Lasso does not select the right model. It is clear that when

|β̂0
1 | ≤ |β̂

0
2 |, the Lasso can not select the correct variables by (9.2.2). Therefore,

we concentrate on the situation where |β̂0
1 | > |β̂

0
2 | in the following.

1. For δ̂1 ≤ 0 and β̂0
1 ≤ 0, a naive estimate η̂ = 0 yields the Lasso estimate.
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2. For δ̂1 ≤ 0 and β̂0
1 > 0, for the Lasso to select the right model, γ must

satisfy γ ∈ [|β̂0
2 |, β̂

0
1) and thus SL(γ) = (δ̂1−γ)2. It is easy to see that the

minimum is obtained at γ1 = |δ̂2| and SL(γ1) = (δ̂1 − |δ̂2|)
2. But when

γ2 = |δ̂3|,

SL(γ1) =(δ̂1 − |δ̂2|)
2 = (δ̂1 − |δ̂3|] + |δ̂3| − |δ̂2|)

2

=(δ̂1 − |δ̂3|)
2 + (|δ̂2| − |δ̂3|)

2 + 2(δ̂1 − |δ̂3|)(|δ̂3| − |δ̂2|)

>(δ̂1 − |δ̂3|)
2 + (|δ̂2| − |δ̂3|)

2 = SL(γ2).

The estimated model corresponding to γ2 is

η(γ2) = (β̂0
1 − |β̂

0
3 |)x1 + sign(β̂0

2)(|β̂
0
2 | − |β̂

0
3 |)x2,

which is not the right model.

3. For 0 < δ̂1 < |δ̂2|, the γ which minimizes SL(γ) on the interval [|β̂0
2 |, β̂

0
1)

is obtained at γ1 = |δ̂2| and SL(γ1) = (δ̂1 − |δ̂2|)
2. However, when |δ̂3| <

(δ̂1 + |δ̂2|)/2, if we let γ2 = (δ̂1 + |δ̂2|)/2, we have SL(γ2) = (δ̂1−|δ̂2|)
2/2 <

SL(γ1). When |δ̂3| ≥ (δ̂1 + |δ̂2|)/2, if we let γ3 = |δ̂3|, we have SL(γ3) <

SL(γ1). The estimated models corresponding to γ2 and γ3 both include

x1 and x2.

Therefore, when δ̂ ∈ RC , the Lasso selects a wrong model. For δ̂ ∈ R, the Lasso

solution γ̂ = δ̂1 yields the correct model η(γ̂) = β0
1x1 with SL(γ̂) = 0. Since

δ̂ ∼ N(0, σ2Id), we have Pr(δ̂ ∈ R) = 1/(2d). This completes the proof.

Now we return to our two dimensional example considered at the beginning

of this section. Figure 9.3.2 is a schematic sketch of the Lars algorithm in this
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situation. The ordinary least squares estimate is shown in the figure as point B.

The initial Lars estimate is simply η̂0 = 0, corresponding to point A. The Lars

estimate after step one is shown in the figure as point D, which has the property

that the angle between the line DB and the axes is 45 degrees. The step two

estimate is simply the ordinary least squares estimate corresponding to point B

in the figure. If we consider the whole path of solutions (line segments AD and

DB), and choose the estimate along the path with the smallest squared error,

in our example with orthonormal design matrix, the Lars is exactly equivalent

to the Lasso and the above results for the Lasso applies to the Lars directly. In

practical implementation of the Lars, however, the final solution is often chosen

only among the models after each complete step, that is, points A, D, and B in

the figure, while in subset selection, the final solution is chosen among points

A, C and B, where point C is the projection of point B to x1. Thus we consider

this situation in the following, and study the probability of choosing the correct

model (point D in this example) when the squared error is used as the criterion.

In the following we show that when δ̂ ∈ R1, which has probability 1/2, the

Lars does not select the correct model. It is clear from the Lars algorithm

that the Lars does not yield the correct model when β̂0
1 ≤ 0 or |β̂0

1 | ≤ |β̂
0
2 |.

We only need to consider the situation when β̂0
1 > 0 and β̂0

1 > |β̂0
2 |. In this

case, the Lars estimate can be written as η̂0 = 0, η̂1 = (β0
1 + δ̂1 − |δ̂2|)x1 and

η̂2 = (β0
1 + δ̂1)x1 + δ̂2x2. It follows

SL(η̂0) = (β0
1)

2, SL(η̂1) = (δ̂1 − |δ̂2|)
2, and SL(η̂2) = δ̂2

1 + δ̂2
2.
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We immediately see SL(η̂1) > SL(η̂2) when δ̂1 < 0. Therefore, we have shown

that the Lars does not select the right model when the OLS estimate satisfies

β̂0
1 < β0

1 . The probability of this region is Pr(R) = 1/2 since δ̂ is a normal

variate. The overall probability that the Lars selects the right model is no

larger than 1/2.
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Figure 9.3.2: Lars algorithm when d = 2.

We prove a more general theorem in the following section.
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9.4 More General Situations

Theorem 9.4.1. When the true coefficient vector is β0 = (α1, ..., αd1 , 0, ..., 0)T

with d2 = (d− d1) > 0 zero coefficients and XT X = Id, we have

Pr(the Lasso selects the right model) ≤ C,

with respect to any sample size, where C < 1 is a constant depending only on

σ2 and d1.

Proof. Let the OLS estimate be β̂0 and denote β̂0 − β0 = (δ̂1, ..., δ̂d)
T . Without

loss of generality we assume |δ̂d1+1| > |δ̂d1+2| > ... > |δ̂d| and αi > 0, i = 1, ..., d1.

We will show for the region

R = {(δ1, ..., δd)
T : δj > −αj, j = 1, ..., d1 and

d1
∑

i=1

δi < 0},

the Lasso does not select the right model.

If β̂0 does not satisfy

{

|β̂0
j | > |β̂

0
k |, for j ∈ {1, ..., d1} and k ∈ {d1 + 1, .., d}

}

, (9.4.1)

obviously the Lasso does not select the right model. So we can concentrate on

the situation where (9.4.1) is satisfied. For the Lasso to select the right model,

the solution must satisfy

min{|β̂0
1 |, ..., |β̂

0
d1
|} > γ ≥ |β̂0

d1+1|. (9.4.2)

Since δ̂ ∈ R, we have β̂0
j > 0, j = 1, ..., d1. The estimate corresponding to
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any γ satisfying (9.4.2) is

η(γ) = (β̂0
1 − γ)x1 + ... + (β̂0

d1
− γ)xd1

= (α1 + δ̂1 − γ)x1 + ... + (αd1 + δ̂d1 − γ)xd1.

On the other hand, the estimate with γ1 = |β̂0
d1+2| has the form

η(γ1) = (β̂0
1 − |β̂

0
d1+2|)x1 + · · · + (β̂0

d1
− |β̂0

d1+2|)xd1

+ sign(β̂0
d1+1)(|β̂

0
d1+1| − |β̂

0
d1+2|)xd1+1

= (α1 + δ̂1 − |δ̂d1+2|)x1 + · · ·+ (αd1 + δ̂d1 − |δ̂d1+2|)xd1

+ sign(δ̂d1+1)(|δ̂d1+1| − |δ̂d1+2|)xd1+1.

It is easy to see the squared losses for the two estimates are

SL(γ) =

d1
∑

i=1

(δ̂i − γ)2;

SL(γ1) =

d1
∑

i=1

(δ̂i − |δ̂d1+2|)
2 + (|δ̂d1+1| − |δ̂d1+2|)

2.

We show for any γ satisfying (9.4.2), SL(γ) > SL(γ1). Simple algebra yields

SL(γ) =

d1
∑

i=1

(δ̂i − γ)2 =

d1
∑

i=1

(δ̂i − |δ̂d1+2|+ |δ̂d1+2| − γ)2

=

d1
∑

i=1

(δ̂i − |δ̂d1+2|)
2 + d1(γ − |δ̂d1+2|)

2 + 2(γ − |δ̂d1+2|)

d1
∑

i=1

(|δ̂d1+2| − δ̂i)

=SL(γ1)− (|δ̂d1+1| − |δ̂d1+2|)
2

+ d1(γ − |δ̂d1+2|)
2 + 2(γ − |δ̂d1+2|)

d1
∑

i=1

(|δ̂d1+2| − δ̂i).

Since γ ≥ |δ̂d1+1|, we have

d1(γ − |δ̂d1+2|)
2 − (|δ̂d1+1| − |δ̂d1+2|)

2 ≥ (d1 − 1)(γ − |δ̂d1+2|)
2.
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It follows

SL(γ) ≥ SL(γ1) + (d1 − 1)(γ − |δ̂d1+2|)
2 + 2(γ − |δ̂d1+2|)

d1
∑

i=1

(|δ̂d1+2| − δ̂i).

It is easy to see when
∑d1

i=1 δ̂i < 0, the following satisfies

(d1−1)(γ−|δ̂d1+2|)+2

d1
∑

i=1

(|δ̂d1+2|− δ̂i) = (d1+1)|δ̂d1+2|+(d1−1)γ−2

d1
∑

i=1

δ̂i > 0.

Therefore, we have SL(γ) > SL(γ1) when δ̂ ∈ R. The optimal γ that minimizes

SL(γ) does not satisfy (9.4.2), that is, the optimal γ does not yield the correct

model. Since (δ̂1, · · · , δ̂d)
T follows a multivariate normal distribution N(0, Id),

it is readily seen

Pr(R) > Pr({(δ1, ..., δd) : 0 > δj > −αj, j = 1, ..., d1}) = C,

where C is a constant strictly less than 1 depending on σ2 and d1 but not on the

sample size n. We have proved that with a positive probability not depending

on n, the Lasso algorithm does not select the right model.

The conclusion holds for the Lars and the FSW due to the equivalence of the

three procedures, if the whole solution path of the Lars is considered. When only

(d + 1) candidate models in the Lars are considered, the conclusion follows by

replacing γ by |δ̂d1+1| in the preceding proof. When the design matrix satisfies

XT X = nId, following the same argument in theorem 9.4.1, we can prove that

the probability of the Lasso selecting the wrong model is larger than a strictly

positive constant not depending on n.
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Although the conclusion of the theorem is proved with the design matrix

being orthonormal, it is expected to hold for general design matrix cases, as

shown in the simulation in the next section.

9.5 Simulations

We conduct some simple simulations in general design matrix cases to demon-

strate that the Lasso is not consistent in terms of model selection, when the

prediction error is to be minimized. All simulations were conducted using MAT-

LAB code. We used the algorithm as suggested in Tibshirani (1996). Each βj

is rewritten as β+
j − β−

j , where β+
j and β−

j are nonnegative. We then used

the quadratic programming module quadprog in MATLAB to find the Lasso

solution.

We generate data from two models which have the form

y = Xβ + ε,

where

Model 1 : β = (1, 0)T ,

Model 2 : β = (3, 1.5, 0, 0)T ;

ε follows standard normal distribution and xj has marginal distribution N(0, 1).

The pairwise correlation between xi and xj, i 6= j, is ρ with ρ = 0, 0.5, 0.9. We

simulate data with sample size n = 40, 400, 4000. For each ρ and each sample
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size, we simulate 100 data sets and apply the Lasso method. We summarize the

result for various sample sizes and correlations in Table 9.5.1. The percentage

of correctly selected models is summarized in the PCM column. We see that

the Lasso misses the right model a large fraction of the time, and this is inde-

pendent of the sample size and the correlation. The results of the experiment

are consistent with the previous conclusion.

n ρ Model 1 PCM (%) Model 2 PCM (%)

40
0 26 15
0.5 16 20
0.9 22 16

400
0 27 9
0.5 23 15
0.9 25 13

4000
0 22 15
0.5 21 18
0.9 24 20

Table 9.5.1: Simulation results for the Lasso.

9.6 Conclusion

We have showed in this paper that the Lasso, the Lars and the FSW are not

consistent in terms of model selection when a prediction based criterion is used

to select the tuning parameters, and there are superfluous variables in the model.

We remark that our results should not be taken to imply that the Lasso
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and related methods can not be used as variable selection tools. What our re-

sults imply is that the dual goal of accurate estimation and consistent variable

selection can not be achieved simultaneously by these methods. The common

practice in applying these methods is to choose the tuning parameter to min-

imize the prediction error, our results state that in this case the procedures

are not consistent in terms of variable selection. It is possible that some other

criteria of choosing the tuning parameter can yield consistent variable selection

for these methods.
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